License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.CP.2023.28
URN: urn:nbn:de:0030-drops-190650
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2023/19065/
Go to the corresponding LIPIcs Volume Portal


Peng, Xiao ; Solnon, Christine

Using Canonical Codes to Efficiently Solve the Benzenoid Generation Problem with Constraint Programming

pdf-format:
LIPIcs-CP-2023-28.pdf (0.8 MB)


Abstract

The Benzenoid Generation Problem (BGP) aims at generating all benzenoid molecules that satisfy some given properties. This problem has important applications in chemistry, and Carissan et al (2021) have shown us that Constraint Programming (CP) is well suited for modelling this problem because properties defined by chemists are easy to express by means of constraints. Benzenoids are described by hexagon graphs and a key point for an efficient enumeration of these graphs is to be invariant to rotations and symmetries. In this paper, we introduce canonical codes that uniquely characterise hexagon graphs while being invariant to rotations and symmetries. We show that these codes may be defined by means of constraints. We also introduce a global constraint for ensuring that codes are canonical, and a global constraint for ensuring that a pattern is included in a code. We experimentally compare our new CP model with the CP-based approach of Carissan et al (2021), and we show that it has better scale-up properties.

BibTeX - Entry

@InProceedings{peng_et_al:LIPIcs.CP.2023.28,
  author =	{Peng, Xiao and Solnon, Christine},
  title =	{{Using Canonical Codes to Efficiently Solve the Benzenoid Generation Problem with Constraint Programming}},
  booktitle =	{29th International Conference on Principles and Practice of Constraint Programming (CP 2023)},
  pages =	{28:1--28:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-300-3},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{280},
  editor =	{Yap, Roland H. C.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2023/19065},
  URN =		{urn:nbn:de:0030-drops-190650},
  doi =		{10.4230/LIPIcs.CP.2023.28},
  annote =	{Keywords: Benzenoid Generation Problem, Canonical Code, Hexagon Graph}
}

Keywords: Benzenoid Generation Problem, Canonical Code, Hexagon Graph
Collection: 29th International Conference on Principles and Practice of Constraint Programming (CP 2023)
Issue Date: 2023
Date of publication: 22.09.2023


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI