License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.DISC.2023.14
URN: urn:nbn:de:0030-drops-191409
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2023/19140/
Go to the corresponding LIPIcs Volume Portal


Cosson, Romain ; Massoulié, Laurent ; Viennot, Laurent

Efficient Collaborative Tree Exploration with Breadth-First Depth-Next

pdf-format:
LIPIcs-DISC-2023-14.pdf (0.9 MB)


Abstract

We study the problem of collaborative tree exploration introduced by Fraigniaud, Gasieniec, Kowalski, and Pelc [Pierre Fraigniaud et al., 2006] where a team of k agents is tasked to collectively go through all the edges of an unknown tree as fast as possible and return to the root. Denoting by n the total number of nodes and by D the tree depth, the ?(n/log(k)+D) algorithm of [Pierre Fraigniaud et al., 2006] achieves a ?(k/log(k)) competitive ratio with respect to the cost of offline exploration which is at least max{{2n/k,2D}}. Brass, Cabrera-Mora, Gasparri, and Xiao [Peter Brass et al., 2011] study an alternative performance criterion, the competitive overhead with respect to the cost of offline exploration, with their 2n/k+?((D+k)^k) guarantee. In this paper, we introduce "Breadth-First Depth-Next" (BFDN), a novel and simple algorithm that performs collaborative tree exploration in 2n/k+?(D²log(k)) rounds, thus outperforming [Peter Brass et al., 2011] for all values of (n,D,k) and being order-optimal for trees of depth D = o(√n). Our analysis relies on a two-player game reflecting a problem of online resource allocation that could be of independent interest. We extend the guarantees of BFDN to: scenarios with limited memory and communication, adversarial setups where robots can be blocked, and exploration of classes of non-tree graphs. Finally, we provide a recursive version of BFDN with a runtime of ?_?(n/k^{1/?}+log(k) D^{1+1/?}) for parameter ? ≥ 1, thereby improving performance for trees with large depth.

BibTeX - Entry

@InProceedings{cosson_et_al:LIPIcs.DISC.2023.14,
  author =	{Cosson, Romain and Massouli\'{e}, Laurent and Viennot, Laurent},
  title =	{{Efficient Collaborative Tree Exploration with Breadth-First Depth-Next}},
  booktitle =	{37th International Symposium on Distributed Computing (DISC 2023)},
  pages =	{14:1--14:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-301-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{281},
  editor =	{Oshman, Rotem},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2023/19140},
  URN =		{urn:nbn:de:0030-drops-191409},
  doi =		{10.4230/LIPIcs.DISC.2023.14},
  annote =	{Keywords: collaborative exploration, online algorithms, trees, adversarial game, competitive analysis, robot swarms}
}

Keywords: collaborative exploration, online algorithms, trees, adversarial game, competitive analysis, robot swarms
Collection: 37th International Symposium on Distributed Computing (DISC 2023)
Issue Date: 2023
Date of publication: 05.10.2023


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI