License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/DagSemProc.09111.5
URN: urn:nbn:de:0030-drops-20332
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2009/2033/
Go to the corresponding Portal |
Wenk, Carola ;
Cook, Atlas F.
Shortest Path Problems on a Polyhedral Surface
Abstract
We develop algorithms to compute edge sequences, Voronoi diagrams, shortest
path maps, the Fréchet distance, and the diameter for a polyhedral surface. Distances on the surface are measured either by the length of a Euclidean shortest path or by link distance. Our main result is a linear-factor speedup for computing all shortest path edge sequences on a convex polyhedral surface.
BibTeX - Entry
@InProceedings{wenk_et_al:DagSemProc.09111.5,
author = {Wenk, Carola and Cook, Atlas F.},
title = {{Shortest Path Problems on a Polyhedral Surface}},
booktitle = {Computational Geometry},
pages = {1--30},
series = {Dagstuhl Seminar Proceedings (DagSemProc)},
ISSN = {1862-4405},
year = {2009},
volume = {9111},
editor = {Pankaj Kumar Agarwal and Helmut Alt and Monique Teillaud},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/opus/volltexte/2009/2033},
URN = {urn:nbn:de:0030-drops-20332},
doi = {10.4230/DagSemProc.09111.5},
annote = {Keywords: Shortest paths, edge sequences}
}
Keywords: |
|
Shortest paths, edge sequences |
Collection: |
|
09111 - Computational Geometry |
Issue Date: |
|
2009 |
Date of publication: |
|
23.06.2009 |