License:
Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/DagSemProc.09391.5
URN: urn:nbn:de:0030-drops-22966
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2009/2296/
Go to the corresponding Portal |
Gnewuch, Michael
Weighted L_2 B Discrepancy and Approximation of Integrals over Reproducing Kernel Hilbert Spaces
Abstract
We extend the notion of $L_2$ $B$ discrepancy provided in
[E. Novak, H. Wo'zniakowski, $L_2$ discrepancy and multivariate
integration, in: Analytic number theory. Essays in honour of Klaus
Roth. W. W. L. Chen, W. T. Gowers, H. Halberstam, W. M. Schmidt,
and R. C. Vaughan (Eds.), Cambridge University Press, Cambridge,
2009, 359 -- 388] to the weighted $L_2$ $mathcal{B}$ discrepancy.
This newly defined notion allows to
consider weights, but also volume measures different from the Lebesgue
measure and classes of test sets different from measurable subsets
of some Euclidean space.
We relate the weighted $L_2$ $mathcal{B}$ discrepancy to numerical
integration defined over weighted reproducing kernel Hilbert spaces
and settle in this way an open problem posed by Novak and
Wo'zniakowski.
BibTeX - Entry
@InProceedings{gnewuch:DagSemProc.09391.5,
author = {Gnewuch, Michael},
title = {{Weighted L\underline2 B Discrepancy and Approximation of Integrals over Reproducing Kernel Hilbert Spaces}},
booktitle = {Algorithms and Complexity for Continuous Problems},
pages = {1--9},
series = {Dagstuhl Seminar Proceedings (DagSemProc)},
ISSN = {1862-4405},
year = {2009},
volume = {9391},
editor = {Thomas M\"{u}ller-Gronbach and Leszek Plaskota and Joseph. F. Traub},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/opus/volltexte/2009/2296},
URN = {urn:nbn:de:0030-drops-22966},
doi = {10.4230/DagSemProc.09391.5},
annote = {Keywords: Discrepancy, Numerical Integration, Quasi-Monte Carlo, Reproducing Kernel Hilbert Space}
}
Keywords: |
|
Discrepancy, Numerical Integration, Quasi-Monte Carlo, Reproducing Kernel Hilbert Space |
Collection: |
|
09391 - Algorithms and Complexity for Continuous Problems |
Issue Date: |
|
2009 |
Date of publication: |
|
02.12.2009 |