License: Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported license (CC BY-NC-ND 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/DFU.Vol2.SciViz.2011.160
URN: urn:nbn:de:0030-drops-32926
Go to the corresponding DFU Volume Portal

Kim, Youngmin ; Patro, Robert ; Yiu Ip, Cheuk ; O’Leary, Dianne P. ; Anishkin, Andriy

Salient Frame Detection for Molecular Dynamics Simulations

11.pdf (0.8 MB)


Recent advances in sophisticated computational techniques have facilitated simulation of incrediblydetailed time-varying trajectories and in the process have generated vast quantities of simulation data. The current tools to analyze and comprehend large-scale time-varying data, however, lag far behind our ability to produce such simulation data. Saliency-based analysis can be applied to time-varying 3D datasets for the purpose of summarization, abstraction, and motion analysis. As the sizes of time-varying datasets continue to grow, it becomes more and more difficult to comprehend vast amounts of data and information in a short period of time. In this paper, we use eigenanalysis to generate orthogonal basis functions over sliding windows to characterize regions of unusual deviations and significant trends. Our results show that motion subspaces provide an effective technique for summarization of large molecular dynamics trajectories.

BibTeX - Entry

  author =	{Youngmin Kim and Robert Patro and Cheuk Yiu Ip and Dianne P. O’Leary and Andriy Anishkin},
  title =	{{Salient Frame Detection for Molecular Dynamics Simulations}},
  booktitle =	{Scientific Visualization: Interactions, Features, Metaphors},
  pages =	{160--175},
  series =	{Dagstuhl Follow-Ups},
  ISBN =	{978-3-939897-26-2},
  ISSN =	{1868-8977},
  year =	{2011},
  volume =	{2},
  editor =	{Hans Hagen},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-32926},
  doi =		{10.4230/DFU.Vol2.SciViz.2011.160},
  annote =	{Keywords: Saliency based analysis, Molecular Dynamics, Simulation}

Keywords: Saliency based analysis, Molecular Dynamics, Simulation
Collection: Scientific Visualization: Interactions, Features, Metaphors
Issue Date: 2011
Date of publication: 26.10.2011

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI