License: Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported license (CC BY-NC-ND 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.STACS.2012.374
URN: urn:nbn:de:0030-drops-33900
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2012/3390/
Go to the corresponding LIPIcs Volume Portal


Eggermont, Christian E.J. ; Woeginger, Gerhard J.

Motion planning with pulley, rope, and baskets

pdf-format:
6.pdf (0.5 MB)


Abstract

We study a motion planning problem where items have to be transported from the top room of a tower to the bottom of the tower, while simultaneously other items have to be transported into the opposite direction. Item sets are moved in two baskets hanging on a rope and pulley. To guarantee stability of the system, the weight difference between the contents of the two baskets must always stay below a given
threshold.

We prove that it is Pi-2-p-complete to decide whether some given initial situation of the underlying discrete system can lead to a given goal situation. Furthermore we identify several polynomially solvable special cases of this reachability problem, and we also settle the computational complexity of a number of related questions.

BibTeX - Entry

@InProceedings{eggermont_et_al:LIPIcs:2012:3390,
  author =	{Christian E.J. Eggermont and Gerhard J. Woeginger},
  title =	{{Motion planning with pulley, rope, and baskets}},
  booktitle =	{29th International Symposium on Theoretical Aspects of Computer Science (STACS 2012)},
  pages =	{374--383},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-35-4},
  ISSN =	{1868-8969},
  year =	{2012},
  volume =	{14},
  editor =	{Christoph D{\"u}rr and Thomas Wilke},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2012/3390},
  URN =		{urn:nbn:de:0030-drops-33900},
  doi =		{10.4230/LIPIcs.STACS.2012.374},
  annote =	{Keywords: planning and scheduling; computational complexity}
}

Keywords: planning and scheduling; computational complexity
Collection: 29th International Symposium on Theoretical Aspects of Computer Science (STACS 2012)
Issue Date: 2012
Date of publication: 24.02.2012


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI