License:
Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported license (CC BY-NC-ND 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.STACS.2012.66
URN: urn:nbn:de:0030-drops-34059
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2012/3405/
Elberfeld, Michael ;
Jakoby, Andreas ;
Tantau, Till
Algorithmic Meta Theorems for Circuit Classes of Constant and Logarithmic Depth
Abstract
An algorithmic meta theorem for a logic and a class C of structures
states that all problems expressible in this logic can be solved
efficiently for inputs from $C$. The prime example is Courcelle's
Theorem, which states that monadic second-order (MSO) definable
problems are linear-time solvable on graphs of bounded tree width. We
contribute new algorithmic meta theorems, which state that
MSO-definable problems are (a) solvable by uniform constant-depth
circuit families (AC0 for decision problems and TC0 for counting
problems) when restricted to input structures of bounded tree depth
and (b) solvable by uniform logarithmic-depth circuit families (NC1
for decision problems and #NC1 for counting problems) when a tree
decomposition of bounded width in term representation is part of the
input. Applications of our theorems include a TC0-completeness proof
for the unary version of integer linear programming with a fixed
number of equations and extensions of a recent result that counting
the number of accepting paths of a visible pushdown automaton lies in
#NC1. Our main technical contributions are a new tree automata model
for unordered, unranked, labeled trees; a method for representing the
tree automata's computations algebraically using convolution circuits;
and a lemma on computing balanced width-3 tree decompositions of trees
in TC0, which encapsulates most of the technical difficulties
surrounding earlier results connecting tree automata and NC1.
BibTeX - Entry
@InProceedings{elberfeld_et_al:LIPIcs:2012:3405,
author = {Michael Elberfeld and Andreas Jakoby and Till Tantau},
title = {{Algorithmic Meta Theorems for Circuit Classes of Constant and Logarithmic Depth}},
booktitle = {29th International Symposium on Theoretical Aspects of Computer Science (STACS 2012)},
pages = {66--77},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-939897-35-4},
ISSN = {1868-8969},
year = {2012},
volume = {14},
editor = {Christoph D{\"u}rr and Thomas Wilke},
publisher = {Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
address = {Dagstuhl, Germany},
URL = {http://drops.dagstuhl.de/opus/volltexte/2012/3405},
URN = {urn:nbn:de:0030-drops-34059},
doi = {10.4230/LIPIcs.STACS.2012.66},
annote = {Keywords: algorithmic meta theorem, monadic second-order logic, circuit complexity, tree width, tree depth}
}
Keywords: |
|
algorithmic meta theorem, monadic second-order logic, circuit complexity, tree width, tree depth |
Collection: |
|
29th International Symposium on Theoretical Aspects of Computer Science (STACS 2012) |
Issue Date: |
|
2012 |
Date of publication: |
|
24.02.2012 |