Abstract
We present a very elementary algebraic proof providing an explicit sum of squares.
This result generalizes a result on discriminants of symmetric matrices
due to Ilyushechkin
and proved also by P. Lax.
BibTeX - Entry
@InProceedings{roy:DagSemProc.05021.20,
author = {Roy, Marie-Fran\c{c}oise},
title = {{Subdiscriminant of symmetric matrices are sums of squares}},
booktitle = {Mathematics, Algorithms, Proofs},
pages = {1--4},
series = {Dagstuhl Seminar Proceedings (DagSemProc)},
ISSN = {1862-4405},
year = {2006},
volume = {5021},
editor = {Thierry Coquand and Henri Lombardi and Marie-Fran\c{c}oise Roy},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/opus/volltexte/2006/347},
URN = {urn:nbn:de:0030-drops-3471},
doi = {10.4230/DagSemProc.05021.20},
annote = {Keywords: Real algebra, sums of squares, subdiscriminants}
}
Keywords: |
|
Real algebra, sums of squares, subdiscriminants |
Collection: |
|
05021 - Mathematics, Algorithms, Proofs |
Issue Date: |
|
2006 |
Date of publication: |
|
16.01.2006 |