License: Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported license (CC BY-NC-ND 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.CSL.2012.470
URN: urn:nbn:de:0030-drops-36910
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2012/3691/
Kuusisto, Antti ;
Meyers, Jeremy ;
Virtema, Jonni
Undecidable First-Order Theories of Affine Geometries
Abstract
Tarski initiated a logic-based approach to formal geometry that studies first-order structures with a ternary betweenness relation (\beta) and a quaternary equidistance relation (\equiv). Tarski established, inter alia, that the first-order (FO) theory of (R^2,\beta,\equiv) is decidable. Aiello and van Benthem (2002) conjectured that the FO-theory of expansions of (R^2,\beta) with unary predicates is decidable. We refute this conjecture by showing that for all n > 1, the FO-theory of monadic expansions of (R^n,\beta) is Pi^1_1-hard and therefore not even arithmetical. We also define a natural and comprehensive class C of geometric structures (T,\beta), where T is a subset of R^n, and show that for each structure (T,\beta) in C, the FO-theory of the class of monadic expansions of (T,\beta) is undecidable. We then consider classes of expansions of structures (T,\beta) with restricted unary predicates, for example finite predicates, and establish a variety of related undecidability results. In addition to decidability questions, we briefly study the expressivity of universal MSO and weak universal MSO over expansions of (R^n,\beta). While the logics are incomparable in general, over expansions of (R^n,\beta), formulae of weak universal MSO translate into equivalent formulae of universal MSO. An extended version of this article can be found on the ArXiv (arXiv:1208.4930v1).
BibTeX - Entry
@InProceedings{kuusisto_et_al:LIPIcs:2012:3691,
author = {Antti Kuusisto and Jeremy Meyers and Jonni Virtema},
title = {{Undecidable First-Order Theories of Affine Geometries}},
booktitle = {Computer Science Logic (CSL'12) - 26th International Workshop/21st Annual Conference of the EACSL},
pages = {470--484},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-939897-42-2},
ISSN = {1868-8969},
year = {2012},
volume = {16},
editor = {Patrick C{\'e}gielski and Arnaud Durand},
publisher = {Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
address = {Dagstuhl, Germany},
URL = {http://drops.dagstuhl.de/opus/volltexte/2012/3691},
URN = {urn:nbn:de:0030-drops-36910},
doi = {10.4230/LIPIcs.CSL.2012.470},
annote = {Keywords: Tarski’s geometry, undecidability, spatial logic, classical logic}
}
Keywords: |
|
Tarski’s geometry, undecidability, spatial logic, classical logic |
Collection: |
|
Computer Science Logic (CSL'12) - 26th International Workshop/21st Annual Conference of the EACSL |
Issue Date: |
|
2012 |
Date of publication: |
|
03.09.2012 |