License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.CSL.2013.61
URN: urn:nbn:de:0030-drops-41907
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2013/4190/
Berkholz, Christoph ;
Krebs, Andreas ;
Verbitsky, Oleg
Bounds for the quantifier depth in finite-variable logics: Alternation hierarchy
Abstract
Given two structures G and H distinguishable in FO^k (first-order logic with k variables), let A^k(G,H) denote the minimum alternation depth of a FO^k formula distinguishing G from H. Let A^k(n) be the maximum value of A^k(G,H) over n-element structures. We prove the strictness of the quantifier alternation hierarchy of FO^2 in a strong quantitative form, namely A^2(n) >= n/8-2, which is tight up to a constant factor. For each k >= 2, it holds that A^k(n) > log_(k+1) n-2 even over colored trees, which is also tight up to a constant factor if k >= 3. For k >= 3 the last lower bound holds also over uncolored trees, while the alternation hierarchy of FO^2 collapses even over all uncolored graphs.
We also show examples of colored graphs G and H on n vertices that can be distinguished in FO^2 much more succinctly if the alternation number is increased just by one: while in Sigma_i it is possible to distinguish G from H with bounded quantifier depth, in Pi_i this requires quantifier depth Omega(n2). The quadratic lower bound is best possible here because, if G and H can be distinguished in FO^k with i quantifier alternations, this can be done with quantifier depth n^(2k-2).
BibTeX - Entry
@InProceedings{berkholz_et_al:LIPIcs:2013:4190,
author = {Christoph Berkholz and Andreas Krebs and Oleg Verbitsky},
title = {{Bounds for the quantifier depth in finite-variable logics: Alternation hierarchy}},
booktitle = {Computer Science Logic 2013 (CSL 2013)},
pages = {61--80},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-939897-60-6},
ISSN = {1868-8969},
year = {2013},
volume = {23},
editor = {Simona Ronchi Della Rocca},
publisher = {Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
address = {Dagstuhl, Germany},
URL = {http://drops.dagstuhl.de/opus/volltexte/2013/4190},
URN = {urn:nbn:de:0030-drops-41907},
doi = {10.4230/LIPIcs.CSL.2013.61},
annote = {Keywords: Alternation hierarchy, finite-variable logic}
}
Keywords: |
|
Alternation hierarchy, finite-variable logic |
Collection: |
|
Computer Science Logic 2013 (CSL 2013) |
Issue Date: |
|
2013 |
Date of publication: |
|
02.09.2013 |