License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.APPROX-RANDOM.2014.500
URN: urn:nbn:de:0030-drops-47195
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2014/4719/
Go to the corresponding LIPIcs Volume Portal


Bradonjic, Milan ; Perkins, Will

On Sharp Thresholds in Random Geometric Graphs

pdf-format:
36.pdf (0.5 MB)


Abstract

We give a characterization of vertex-monotone properties with sharp thresholds in a Poisson random geometric graph or hypergraph. As an application we show that a geometric model of random k-SAT exhibits a sharp threshold for satisfiability.

BibTeX - Entry

@InProceedings{bradonjic_et_al:LIPIcs:2014:4719,
  author =	{Milan Bradonjic and Will Perkins},
  title =	{{On Sharp Thresholds in Random Geometric Graphs}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2014)},
  pages =	{500--514},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-74-3},
  ISSN =	{1868-8969},
  year =	{2014},
  volume =	{28},
  editor =	{Klaus Jansen and Jos{\'e} D. P. Rolim and Nikhil R. Devanur and Cristopher Moore},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2014/4719},
  URN =		{urn:nbn:de:0030-drops-47195},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2014.500},
  annote =	{Keywords: Sharp thresholds, random geometric graphs, k-SAT}
}

Keywords: Sharp thresholds, random geometric graphs, k-SAT
Collection: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2014)
Issue Date: 2014
Date of publication: 04.09.2014


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI