License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.CCC.2015.448
URN: urn:nbn:de:0030-drops-50736
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2015/5073/
Lauria, Massimo ;
Nordström, Jakob
Tight Size-Degree Bounds for Sums-of-Squares Proofs
Abstract
We exhibit families of 4-CNF formulas over n variables that have sums-of-squares (SOS) proofs of unsatisfiability of degree (a.k.a. rank) d but require SOS proofs of size n^Omega(d) for values of d = d(n) from constant all the way up to n^delta for some universal constant delta. This shows that the n^O(d) running time obtained by using the Lasserre semidefinite programming relaxations to find degree-d SOS proofs is optimal up to constant factors in the exponent. We establish this result by combining NP-reductions expressible as low-degree SOS derivations with the idea of relativizing CNF formulas in [Krajicek '04] and [Dantchev and Riis '03], and then applying a restriction argument as in [Atserias, Müller, and Oliva '13] and [Atserias, Lauria, and Nordstrom '14]. This yields a generic method of amplifying SOS degree lower bounds to size lower bounds, and also generalizes the approach in [ALN14] to obtain size lower bounds for the proof systems resolution, polynomial calculus, and Sherali-Adams from lower bounds on width, degree, and rank, respectively.
BibTeX - Entry
@InProceedings{lauria_et_al:LIPIcs:2015:5073,
author = {Massimo Lauria and Jakob Nordstr{\"o}m},
title = {{Tight Size-Degree Bounds for Sums-of-Squares Proofs}},
booktitle = {30th Conference on Computational Complexity (CCC 2015)},
pages = {448--466},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-939897-81-1},
ISSN = {1868-8969},
year = {2015},
volume = {33},
editor = {David Zuckerman},
publisher = {Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
address = {Dagstuhl, Germany},
URL = {http://drops.dagstuhl.de/opus/volltexte/2015/5073},
URN = {urn:nbn:de:0030-drops-50736},
doi = {10.4230/LIPIcs.CCC.2015.448},
annote = {Keywords: Proof complexity, resolution, Lasserre, Positivstellensatz, sums-of-squares, SOS, semidefinite programming, size, degree, rank, clique, lower bound}
}
Keywords: |
|
Proof complexity, resolution, Lasserre, Positivstellensatz, sums-of-squares, SOS, semidefinite programming, size, degree, rank, clique, lower bound |
Collection: |
|
30th Conference on Computational Complexity (CCC 2015) |
Issue Date: |
|
2015 |
Date of publication: |
|
06.06.2015 |