License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.APPROX-RANDOM.2015.212
URN: urn:nbn:de:0030-drops-53040
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2015/5304/
Cygan, Marek ;
Kociumaka, Tomasz
Approximating Upper Degree-Constrained Partial Orientations
Abstract
In the Upper Degree-Constrained Partial Orientation (UDPO) problem we are given an undirected graph G=(V,E), together with two degree constraint functions d^-,d^+:V -> N. The goal is to orient as many edges as possible, in such a way that for each vertex v in V the number of arcs entering v is at most d^-(v), whereas the number of arcs leaving v is at most d^+(v). This problem was introduced by Gabow [SODA'06], who proved it to be MAXSNP-hard (and thus APX-hard). In the same paper Gabow presented an LP-based iterative rounding 4/3-approximation algorithm.
As already observed by Gabow, the problem in question is a special case of the classic 3-Dimensional Matching, which in turn is a special case of the k-Set Packing problem. Back in 2006 the best known polynomial time approximation algorithm for 3-Dimensional Matching was a simple local search by Hurkens and Schrijver [SIDMA'89], the approximation ratio of which is (3+epsilon)/2; hence the algorithm of Gabow was an improvement over the approach brought from the more general problems.
In this paper we show that the UDPO problem when cast as 3-Dimensional Matching admits a special structure, which is obliviously exploited by the known approximation algorithms for k-Set Packing. In fact, we show that already the local-search routine of Hurkens and Schrijver gives (4+epsilon)/3-approximation when used for the instances coming from UDPO. Moreover, the recent approximation algorithm for 3-Set Packing [Cygan, FOCS'13] turns out to be a (5+epsilon)/4-approximation for UDPO. This improves over 4/3 as the best ratio known up to date for UDPO.
BibTeX - Entry
@InProceedings{cygan_et_al:LIPIcs:2015:5304,
author = {Marek Cygan and Tomasz Kociumaka},
title = {{Approximating Upper Degree-Constrained Partial Orientations}},
booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015)},
pages = {212--224},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-939897-89-7},
ISSN = {1868-8969},
year = {2015},
volume = {40},
editor = {Naveen Garg and Klaus Jansen and Anup Rao and Jos{\'e} D. P. Rolim},
publisher = {Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
address = {Dagstuhl, Germany},
URL = {http://drops.dagstuhl.de/opus/volltexte/2015/5304},
URN = {urn:nbn:de:0030-drops-53040},
doi = {10.4230/LIPIcs.APPROX-RANDOM.2015.212},
annote = {Keywords: graph orientations, degree-constrained orientations, approximation algorithm, local search}
}
Keywords: |
|
graph orientations, degree-constrained orientations, approximation algorithm, local search |
Collection: |
|
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015) |
Issue Date: |
|
2015 |
Date of publication: |
|
13.08.2015 |