License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.CONCUR.2015.383
URN: urn:nbn:de:0030-drops-53624
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2015/5362/
Go to the corresponding LIPIcs Volume Portal


Song, Fu ; Miao, Weikai ; Pu, Geguang ; Zhang, Min

On Reachability Analysis of Pushdown Systems with Transductions: Application to Boolean Programs with Call-by-Reference

pdf-format:
2.pdf (0.6 MB)


Abstract

Pushdown systems with transductions (TrPDSs) are an extension of pushdown systems (PDSs) by associating each transition rule with a transduction, which allows to inspect and modify the stack content at each step of a transition rule. It was shown by Uezato and Minamide that TrPDSs can model PDSs with checkpoint and discrete-timed PDSs. Moreover, TrPDSs can be simulated by PDSs and the predecessor configurations pre^*(C) of a regular set C of configurations can be computed by a saturation procedure when the closure of the transductions in TrPDSs is finite. In this work, we comprehensively investigate the reachability problem of finite TrPDSs. We propose a novel saturation procedure to compute pre^*(C) for finite TrPDSs. Also, we introduce a saturation procedure to compute the successor configurations post^*(C) of a regular set C of configurations for finite TrPDSs. From these two saturation procedures, we present two efficient implementation algorithms to compute pre^*(C) and post^*(C). Finally, we show how the presence of transductions enables the modeling of Boolean programs with call-by-reference parameter passing. The TrPDS model has finite closure of transductions which results in model-checking approach for Boolean programs with call-by-reference parameter passing against safety properties.

BibTeX - Entry

@InProceedings{song_et_al:LIPIcs:2015:5362,
  author =	{Fu Song and Weikai Miao and Geguang Pu and Min Zhang},
  title =	{{On Reachability Analysis of Pushdown Systems with Transductions: Application to Boolean Programs with Call-by-Reference}},
  booktitle =	{26th International Conference on Concurrency Theory (CONCUR 2015)},
  pages =	{383--397},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-91-0},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{42},
  editor =	{Luca Aceto and David de Frutos Escrig},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2015/5362},
  URN =		{urn:nbn:de:0030-drops-53624},
  doi =		{10.4230/LIPIcs.CONCUR.2015.383},
  annote =	{Keywords: Verification, Reachability problem, Pushdown system with transductions, Boolean programs with call-by-reference}
}

Keywords: Verification, Reachability problem, Pushdown system with transductions, Boolean programs with call-by-reference
Collection: 26th International Conference on Concurrency Theory (CONCUR 2015)
Issue Date: 2015
Date of publication: 26.08.2015


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI