License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.TYPES.2014.1
URN: urn:nbn:de:0030-drops-54891
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2015/5489/
Ahrens, Benedikt ;
Spadotti, Régis
Terminal Semantics for Codata Types in Intensional Martin-Löf Type Theory
Abstract
We study the notions of relative comonad and comodule over a relative comonad. We use these notions to give categorical semantics for the coinductive type families of streams and of infinite triangular matrices and their respective cosubstitution operations in intensional Martin-Löf type theory. Our results are mechanized in the proof assistant Coq.
BibTeX - Entry
@InProceedings{ahrens_et_al:LIPIcs:2015:5489,
author = {Benedikt Ahrens and R{\'e}gis Spadotti},
title = {{Terminal Semantics for Codata Types in Intensional Martin-L{\"o}f Type Theory}},
booktitle = {20th International Conference on Types for Proofs and Programs (TYPES 2014)},
pages = {1--26},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-939897-88-0},
ISSN = {1868-8969},
year = {2015},
volume = {39},
editor = {Hugo Herbelin and Pierre Letouzey and Matthieu Sozeau},
publisher = {Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
address = {Dagstuhl, Germany},
URL = {http://drops.dagstuhl.de/opus/volltexte/2015/5489},
URN = {urn:nbn:de:0030-drops-54891},
doi = {10.4230/LIPIcs.TYPES.2014.1},
annote = {Keywords: relative comonad, Martin-L{\"o}f type theory, coinductive type, computer theorem proving}
}
Keywords: |
|
relative comonad, Martin-Löf type theory, coinductive type, computer theorem proving |
Collection: |
|
20th International Conference on Types for Proofs and Programs (TYPES 2014) |
Issue Date: |
|
2015 |
Date of publication: |
|
12.10.2015 |