License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.FSTTCS.2015.206
URN: urn:nbn:de:0030-drops-56467
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2015/5646/
Go to the corresponding LIPIcs Volume Portal


Mukhopadhyay, Sagnik ; Sanyal, Swagato

Towards Better Separation between Deterministic and Randomized Query Complexity

pdf-format:
31.pdf (0.4 MB)


Abstract

We show that there exists a Boolean function F which gives the following separations among deterministic query complexity (D(F)), randomized zero error query complexity (R_0(F)) and randomized one-sided error query complexity (R_1(F)): R_1(F) = ~O(sqrt{D(F)) and R_0(F)=~O(D(F))^3/4. This refutes the conjecture made by Saks and Wigderson that for any Boolean function f, R_0(f)=Omega(D(f))^0.753.. . This also shows widest separation between R_1(f) and D(f) for any Boolean function. The function F was defined by Göös, Pitassi and Watson who studied it for showing a separation between deterministic decision tree complexity and unambiguous non-deterministic decision tree complexity. Independently of us, Ambainis et al proved that different variants of the function F certify optimal (quadratic) separation between D(f) and R_0(f), and polynomial separation between R_0(f) and R_1(f). Viewed as separation results, our results are subsumed by those of Ambainis et al. However, while the functions considered in the work of Ambainis et al are different variants of F, in this work we show that the original function F itself is sufficient to refute the Saks-Wigderson conjecture and obtain widest possible separation between the deterministic and one-sided error randomized query complexity.

BibTeX - Entry

@InProceedings{mukhopadhyay_et_al:LIPIcs:2015:5646,
  author =	{Sagnik Mukhopadhyay and Swagato Sanyal},
  title =	{{Towards Better Separation between Deterministic and Randomized Query Complexity}},
  booktitle =	{35th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015)},
  pages =	{206--220},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-97-2},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{45},
  editor =	{Prahladh Harsha and G. Ramalingam},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2015/5646},
  URN =		{urn:nbn:de:0030-drops-56467},
  doi =		{10.4230/LIPIcs.FSTTCS.2015.206},
  annote =	{Keywords: Deterministic Decision Tree, Randomized Decision Tree, Query Complexity, Models of Computation.}
}

Keywords: Deterministic Decision Tree, Randomized Decision Tree, Query Complexity, Models of Computation.
Collection: 35th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015)
Issue Date: 2015
Date of publication: 14.12.2015


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI