License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.STACS.2016.19
URN: urn:nbn:de:0030-drops-57202
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2016/5720/
Blumensath, Achim ;
Colcombet, Thomas ;
Parys, Pawel
On a Fragment of AMSO and Tiling Systems
Abstract
We prove that satisfiability over infinite words is decidable for a fragment of asymptotic monadic second-order logic. In this fragment we only allow formulae of the form "exists t forall s exists r: phi(r,s,t)", where phi does not use quantifiers over number variables, and variables r and s can be only used simultaneously, in subformulae of the form s < f(x) <= r.
BibTeX - Entry
@InProceedings{blumensath_et_al:LIPIcs:2016:5720,
author = {Achim Blumensath and Thomas Colcombet and Pawel Parys},
title = {{On a Fragment of AMSO and Tiling Systems}},
booktitle = {33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016)},
pages = {19:1--19:14},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-001-9},
ISSN = {1868-8969},
year = {2016},
volume = {47},
editor = {Nicolas Ollinger and Heribert Vollmer},
publisher = {Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
address = {Dagstuhl, Germany},
URL = {http://drops.dagstuhl.de/opus/volltexte/2016/5720},
URN = {urn:nbn:de:0030-drops-57202},
doi = {10.4230/LIPIcs.STACS.2016.19},
annote = {Keywords: monadic second-order logic, boundedness, tiling problems}
}
Keywords: |
|
monadic second-order logic, boundedness, tiling problems |
Collection: |
|
33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016) |
Issue Date: |
|
2016 |
Date of publication: |
|
16.02.2016 |