License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.CCC.2016.28
URN: urn:nbn:de:0030-drops-58469
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2016/5846/
Go to the corresponding LIPIcs Volume Portal


Bouland, Adam ; Mancinska, Laura ; Zhang, Xue

Complexity Classification of Two-Qubit Commuting Hamiltonians

pdf-format:
25.pdf (0.7 MB)


Abstract

We classify two-qubit commuting Hamiltonians in terms of their computational complexity. Suppose one has a two-qubit commuting Hamiltonian H which one can apply to any pair of qubits, starting in a computational basis state. We prove a dichotomy theorem: either this model is efficiently classically simulable or it allows one to sample from probability distributions which cannot be sampled from classically unless the polynomial hierarchy collapses. Furthermore, the only simulable Hamiltonians are those which fail to generate entanglement. This shows that generic two-qubit commuting Hamiltonians can be used to perform computational tasks which are intractable for classical computers under plausible assumptions. Our proof makes use of new postselection gadgets and Lie theory.

BibTeX - Entry

@InProceedings{bouland_et_al:LIPIcs:2016:5846,
  author =	{Adam Bouland and Laura Mancinska and Xue Zhang},
  title =	{{Complexity Classification of Two-Qubit Commuting Hamiltonians}},
  booktitle =	{31st Conference on Computational Complexity (CCC 2016)},
  pages =	{28:1--28:33},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-008-8},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{50},
  editor =	{Ran Raz},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2016/5846},
  URN =		{urn:nbn:de:0030-drops-58469},
  doi =		{10.4230/LIPIcs.CCC.2016.28},
  annote =	{Keywords: Quantum Computing, Sampling Problems, Commuting Hamiltonians, IQP, Gate Classification Theorems}
}

Keywords: Quantum Computing, Sampling Problems, Commuting Hamiltonians, IQP, Gate Classification Theorems
Collection: 31st Conference on Computational Complexity (CCC 2016)
Issue Date: 2016
Date of publication: 19.05.2016


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI