License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.SoCG.2016.56
URN: urn:nbn:de:0030-drops-59481
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2016/5948/
Go to the corresponding LIPIcs Volume Portal


Oh, Eunjin ; Barba, Luis ; Ahn, Hee-Kap

The Farthest-Point Geodesic Voronoi Diagram of Points on the Boundary of a Simple Polygon

pdf-format:
LIPIcs-SoCG-2016-56.pdf (0.6 MB)


Abstract

Given a set of sites (points) in a simple polygon, the farthest-point geodesic Voronoi diagram partitions the polygon into cells, at most one cell per site, such that every point in a cell has the same farthest site with respect to the geodesic metric. We present an O((n+m)loglogn)-time algorithm to compute the farthest-point geodesic Voronoi diagram for m sites lying on the boundary of a simple n-gon.

BibTeX - Entry

@InProceedings{oh_et_al:LIPIcs:2016:5948,
  author =	{Eunjin Oh and Luis Barba and Hee-Kap Ahn},
  title =	{{The Farthest-Point Geodesic Voronoi Diagram of Points on the Boundary of a Simple Polygon}},
  booktitle =	{32nd International Symposium on Computational Geometry (SoCG 2016)},
  pages =	{56:1--56:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-009-5},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{51},
  editor =	{S{\'a}ndor Fekete and Anna Lubiw},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2016/5948},
  URN =		{urn:nbn:de:0030-drops-59481},
  doi =		{10.4230/LIPIcs.SoCG.2016.56},
  annote =	{Keywords: Geodesic distance, simple polygons, farthest-point Voronoi diagram}
}

Keywords: Geodesic distance, simple polygons, farthest-point Voronoi diagram
Collection: 32nd International Symposium on Computational Geometry (SoCG 2016)
Issue Date: 2016
Date of publication: 10.06.2016


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI