License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.SoCG.2016.56
URN: urn:nbn:de:0030-drops-59481
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2016/5948/
Oh, Eunjin ;
Barba, Luis ;
Ahn, Hee-Kap
The Farthest-Point Geodesic Voronoi Diagram of Points on the Boundary of a Simple Polygon
Abstract
Given a set of sites (points) in a simple polygon, the farthest-point geodesic Voronoi diagram partitions the polygon into cells, at most one cell per site, such that every point in a cell has the same farthest site with respect to the geodesic metric. We present an O((n+m)loglogn)-time algorithm to compute the farthest-point geodesic Voronoi diagram for m sites lying on the boundary of a simple n-gon.
BibTeX - Entry
@InProceedings{oh_et_al:LIPIcs:2016:5948,
author = {Eunjin Oh and Luis Barba and Hee-Kap Ahn},
title = {{The Farthest-Point Geodesic Voronoi Diagram of Points on the Boundary of a Simple Polygon}},
booktitle = {32nd International Symposium on Computational Geometry (SoCG 2016)},
pages = {56:1--56:15},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-009-5},
ISSN = {1868-8969},
year = {2016},
volume = {51},
editor = {S{\'a}ndor Fekete and Anna Lubiw},
publisher = {Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
address = {Dagstuhl, Germany},
URL = {http://drops.dagstuhl.de/opus/volltexte/2016/5948},
URN = {urn:nbn:de:0030-drops-59481},
doi = {10.4230/LIPIcs.SoCG.2016.56},
annote = {Keywords: Geodesic distance, simple polygons, farthest-point Voronoi diagram}
}
Keywords: |
|
Geodesic distance, simple polygons, farthest-point Voronoi diagram |
Collection: |
|
32nd International Symposium on Computational Geometry (SoCG 2016) |
Issue Date: |
|
2016 |
Date of publication: |
|
10.06.2016 |