License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ICALP.2016.96
URN: urn:nbn:de:0030-drops-62315
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2016/6231/
Go to the corresponding LIPIcs Volume Portal


Bojanczyk, Mikolaj

Thin MSO with a Probabilistic Path Quantifier

pdf-format:
LIPIcs-ICALP-2016-96.pdf (0.4 MB)


Abstract

This paper is about a variant of MSO on infinite trees where:

- there is a quantifier "zero probability of choosing a path pi in 2^{omega} which makes omega(pi) true";

- the monadic quantifiers range over sets with countable topological closure.

We introduce an automaton model, and show that it captures the logic.

BibTeX - Entry

@InProceedings{bojanczyk:LIPIcs:2016:6231,
  author =	{Mikolaj Bojanczyk},
  title =	{{Thin MSO with a Probabilistic Path Quantifier}},
  booktitle =	{43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)},
  pages =	{96:1--96:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-013-2},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{55},
  editor =	{Ioannis Chatzigiannakis and Michael Mitzenmacher and Yuval Rabani and Davide Sangiorgi},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2016/6231},
  URN =		{urn:nbn:de:0030-drops-62315},
  doi =		{10.4230/LIPIcs.ICALP.2016.96},
  annote =	{Keywords: Automata, mso, infinite trees, probabilistic temporal logics}
}

Keywords: Automata, mso, infinite trees, probabilistic temporal logics
Collection: 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)
Issue Date: 2016
Date of publication: 23.08.2016


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI