License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ICALP.2016.6
URN: urn:nbn:de:0030-drops-62728
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2016/6272/
Bhangale, Amey ;
Gandhi, Rajiv ;
Hajiaghayi, Mohammad Taghi ;
Khandekar, Rohit ;
Kortsarz, Guy
Bicovering: Covering Edges With Two Small Subsets of Vertices
Abstract
We study the following basic problem called Bi-Covering. Given a graph G(V, E), find two (not necessarily disjoint) sets A subseteq V and B subseteq V such that A union B = V and that every edge e belongs to either the graph induced by A or to the graph induced by B. The goal is to minimize max{|A|, |B|}. This is the most simple case of the Channel Allocation problem [Gandhi et al., Networks, 2006]. A solution that outputs V,emptyset gives ratio at most 2. We show that under the similar Strong Unique Game Conjecture by [Bansal-Khot, FOCS, 2009] there is no 2 - epsilon ratio algorithm for the problem, for any constant epsilon > 0.
Given a bipartite graph, Max-bi-clique is a problem of finding largest k*k complete bipartite sub graph. For Max-bi-clique problem, a constant factor hardness was known under random 3-SAT hypothesis of Feige [Feige, STOC, 2002] and also under the assumption that NP !subseteq intersection_{epsilon > 0} BPTIME(2^{n^{epsilon}}) [Khot, SIAM J. on Comp., 2011]. It was an open problem in [Ambühl et. al., SIAM J. on Comp., 2011] to prove inapproximability of Max-bi-clique assuming weaker conjecture. Our result implies similar hardness result assuming the Strong Unique Games Conjecture.
On the algorithmic side, we also give better than 2 approximation for Bi-Covering on numerous special graph classes. In particular, we get 1.876 approximation for Chordal graphs, exact algorithm for Interval Graphs, 1 + o(1) for Minor Free Graph, 2 - 4*delta/3 for graphs with minimum degree delta*n, 2/(1+delta^2/8) for delta-vertex expander, 8/5 for Split Graphs, 2 - (6/5)*1/d for graphs with minimum constant degree d etc. Our algorithmic results are quite non-trivial. In achieving these results, we use various known structural results about the graphs, combined with the techniques that we develop tailored to getting better than 2 approximation.
BibTeX - Entry
@InProceedings{bhangale_et_al:LIPIcs:2016:6272,
author = {Amey Bhangale and Rajiv Gandhi and Mohammad Taghi Hajiaghayi and Rohit Khandekar and Guy Kortsarz},
title = {{Bicovering: Covering Edges With Two Small Subsets of Vertices}},
booktitle = {43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)},
pages = {6:1--6:12},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-013-2},
ISSN = {1868-8969},
year = {2016},
volume = {55},
editor = {Ioannis Chatzigiannakis and Michael Mitzenmacher and Yuval Rabani and Davide Sangiorgi},
publisher = {Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
address = {Dagstuhl, Germany},
URL = {http://drops.dagstuhl.de/opus/volltexte/2016/6272},
URN = {urn:nbn:de:0030-drops-62728},
doi = {10.4230/LIPIcs.ICALP.2016.6},
annote = {Keywords: Bi-covering, Unique Games, Max Bi-clique}
}
Keywords: |
|
Bi-covering, Unique Games, Max Bi-clique |
Collection: |
|
43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016) |
Issue Date: |
|
2016 |
Date of publication: |
|
23.08.2016 |