License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ICALP.2016.33
URN: urn:nbn:de:0030-drops-63126
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2016/6312/
Kayal, Neeraj ;
Saha, Chandan ;
Tavenas, Sébastien
An Almost Cubic Lower Bound for Depth Three Arithmetic Circuits
Abstract
We show an almost cubic lower bound on the size of any depth three arithmetic circuit computing an explicit multilinear polynomial in n variables over any field. This improves upon the previously known quadratic lower bound by Shpilka and Wigderson [CCC, 1999].
BibTeX - Entry
@InProceedings{kayal_et_al:LIPIcs:2016:6312,
author = {Neeraj Kayal and Chandan Saha and S{\'e}bastien Tavenas},
title = {{An Almost Cubic Lower Bound for Depth Three Arithmetic Circuits}},
booktitle = {43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)},
pages = {33:1--33:15},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-013-2},
ISSN = {1868-8969},
year = {2016},
volume = {55},
editor = {Ioannis Chatzigiannakis and Michael Mitzenmacher and Yuval Rabani and Davide Sangiorgi},
publisher = {Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
address = {Dagstuhl, Germany},
URL = {http://drops.dagstuhl.de/opus/volltexte/2016/6312},
URN = {urn:nbn:de:0030-drops-63126},
doi = {10.4230/LIPIcs.ICALP.2016.33},
annote = {Keywords: arithmetic circuits, depth-3 circuits, shifted partials}
}
Keywords: |
|
arithmetic circuits, depth-3 circuits, shifted partials |
Collection: |
|
43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016) |
Issue Date: |
|
2016 |
Date of publication: |
|
23.08.2016 |