License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ESA.2016.67
URN: urn:nbn:de:0030-drops-64098
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2016/6409/
Mnich, Matthias ;
Vassilevska Williams, Virginia ;
Végh, László A.
A 7/3-Approximation for Feedback Vertex Sets in Tournaments
Abstract
We consider the minimum-weight feedback vertex set problem in tournaments: given a tournament with non-negative vertex weights, remove a minimum-weight set of vertices that intersects all cycles. This problem is NP-hard to solve exactly, and Unique Games-hard to approximate by a factor better than 2. We present the first 7/3 approximation algorithm for this problem, improving on the previously best known ratio 5/2 given by Cai et al. [FOCS 1998, SICOMP 2001].
BibTeX - Entry
@InProceedings{mnich_et_al:LIPIcs:2016:6409,
author = {Matthias Mnich and Virginia Vassilevska Williams and L{\'a}szl{\'o} A. V{\'e}gh},
title = {{A 7/3-Approximation for Feedback Vertex Sets in Tournaments}},
booktitle = {24th Annual European Symposium on Algorithms (ESA 2016)},
pages = {67:1--67:14},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-015-6},
ISSN = {1868-8969},
year = {2016},
volume = {57},
editor = {Piotr Sankowski and Christos Zaroliagis},
publisher = {Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
address = {Dagstuhl, Germany},
URL = {http://drops.dagstuhl.de/opus/volltexte/2016/6409},
URN = {urn:nbn:de:0030-drops-64098},
doi = {10.4230/LIPIcs.ESA.2016.67},
annote = {Keywords: Approximation algorithms, feedback vertex sets, tournaments}
}
Keywords: |
|
Approximation algorithms, feedback vertex sets, tournaments |
Collection: |
|
24th Annual European Symposium on Algorithms (ESA 2016) |
Issue Date: |
|
2016 |
Date of publication: |
|
18.08.2016 |