License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.OPODIS.2015.24
URN: urn:nbn:de:0030-drops-66135
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2016/6613/
Go to the corresponding LIPIcs Volume Portal


Scheideler, Christian ; Setzer, Alexander ; Strothmann, Thim

Towards Establishing Monotonic Searchability in Self-Stabilizing Data Structures

pdf-format:
LIPIcs-OPODIS-2015-24.pdf (0.5 MB)


Abstract

Distributed applications are commonly based on overlay networks interconnecting their sites so that they can exchange information. For these overlay networks to preserve their functionality, they should be able to recover from various problems like membership changes or faults. Various self-stabilizing overlay networks have already been proposed in recent years, which have the advantage of being able to recover from any illegal state, but none of these networks can give any guarantees on its functionality while the recovery process is going on. We initiate research on overlay networks that are not only self-stabilizing but that also ensure that searchability is maintained while the recovery process is going on, as long as there are no corrupted messages in the system. More precisely, once a search message from node u to another node v is successfully delivered, all future search messages from u to v succeed as well. We call this property monotonic searchability. We show that in general it is impossible to provide monotonic searchability if corrupted messages are present in the system, which justifies the restriction to system states without corrupted messages. Furthermore, we provide a self-stabilizing protocol for the line for which we can also show monotonic searchability. It turns out that even for the line it is non-trivial to achieve this property. Additionally, we extend our protocol to deal with node departures in terms of the Finite Departure Problem of Foreback et al. (SSS 2014). This makes our protocol even capable of handling node dynamics.

BibTeX - Entry

@InProceedings{scheideler_et_al:LIPIcs:2016:6613,
  author =	{Christian Scheideler and Alexander Setzer and Thim Strothmann},
  title =	{{Towards Establishing Monotonic Searchability in Self-Stabilizing Data Structures}},
  booktitle =	{19th International Conference on Principles of Distributed Systems (OPODIS 2015)},
  pages =	{1--17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-98-9},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{46},
  editor =	{Emmanuelle Anceaume and Christian Cachin and Maria Potop-Butucaru},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2016/6613},
  URN =		{urn:nbn:de:0030-drops-66135},
  doi =		{10.4230/LIPIcs.OPODIS.2015.24},
  annote =	{Keywords: Topological Self-Stabilization, Monotonic Searchability, Node Departures}
}

Keywords: Topological Self-Stabilization, Monotonic Searchability, Node Departures
Collection: 19th International Conference on Principles of Distributed Systems (OPODIS 2015)
Issue Date: 2016
Date of publication: 13.10.2016


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI