License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.APPROX-RANDOM.2016.15
URN: urn:nbn:de:0030-drops-66388
Go to the corresponding LIPIcs Volume Portal

Manurangsi, Pasin ; Nakkiran, Preetum ; Trevisan, Luca

Near-Optimal UGC-hardness of Approximating Max k-CSP_R

LIPIcs-APPROX-RANDOM-2016-15.pdf (0.6 MB)


In this paper, we prove an almost-optimal hardness for Max k-CSP_R based on Khot's Unique Games Conjecture (UGC). In Max k-CSP_R, we are given a set of predicates each of which depends on exactly k variables. Each variable can take any value from 1, 2, ..., R. The goal is to find an assignment to variables that maximizes the number of satisfied predicates.

Assuming the Unique Games Conjecture, we show that it is NP-hard to approximate Max k-CSP_R to within factor 2^{O(k log k)}(log R)^{k/2}/R^{k - 1} for any k, R.
To the best of our knowledge, this result improves on all the known hardness of approximation results when 3 <= k = o(log R/log log R). In this case, the previous best hardness result was NP-hardness of approximating within a factor O(k/R^{k-2}) by Chan. When k = 2, our result matches the best known UGC-hardness result of Khot, Kindler, Mossel and O'Donnell.

In addition, by extending an algorithm for Max 2-CSP_R by Kindler, Kolla and Trevisan, we provide an Omega(log R/R^{k - 1})-approximation algorithm for Max k-CSP_R. This algorithm implies that our inapproximability result is tight up to a factor of 2^{O(k \log k)}(\log R)^{k/2 - 1}. In comparison, when 3 <= k is a constant, the previously known gap was $O(R)$, which is significantly larger than our gap of O(polylog R).

Finally, we show that we can replace the Unique Games Conjecture assumption with Khot's d-to-1 Conjecture and still get asymptotically the same hardness of approximation.

BibTeX - Entry

  author =	{Pasin Manurangsi and Preetum Nakkiran and Luca Trevisan},
  title =	{{Near-Optimal UGC-hardness of Approximating Max k-CSP_R}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2016)},
  pages =	{15:1--15:28},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-018-7},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{60},
  editor =	{Klaus Jansen and Claire Mathieu and Jos{\'e} D. P. Rolim and Chris Umans},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-66388},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2016.15},
  annote =	{Keywords: inapproximability, unique games conjecture, constraint satisfaction problem, invariance principle}

Keywords: inapproximability, unique games conjecture, constraint satisfaction problem, invariance principle
Collection: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2016)
Issue Date: 2016
Date of publication: 06.09.2016

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI