Abstract
We study the structure of bounded degree polynomials over finite fields. Haramaty and Shpilka [STOC 2010] showed that biased degree three or four polynomials admit a strong structural property. We confirm that this is the case for degree five polynomials also. Let F=F_q be a prime field. Suppose f:F^n to F is a degree five polynomial with bias(f)=delta. We prove the following two structural properties for such f.
1. We have f= sum_{i=1}^{c} G_i H_i + Q, where G_i and H_is are nonconstant polynomials satisfying deg(G_i)+deg(H_i)<= 5 and Q is a degree <5 polynomial. Moreover, c does not depend on n.
2. There exists an Omega_{delta,q}(n) dimensional affine subspace V subseteq F^n such that f_V is a constant.
Cohen and Tal [Random 2015] proved that biased polynomials of degree at most four are constant on a subspace of dimension Omega(n). Item 2.]extends this to degree five polynomials. A corollary to Item 2. is that any degree five affine disperser for dimension k is also an affine extractor for dimension O(k). We note that Item 2. cannot hold for degrees six or higher.
We obtain our results for degree five polynomials as a special case of structure theorems that we prove for biased degree d polynomials when d<\F+4. While the d<F+4 assumption seems very restrictive, we note that prior to our work such structure theorems were only known for d<\F by Green and Tao [Contrib. Discrete Math. 2009] and Bhowmick and Lovett [arXiv:1506.02047]. Using algorithmic regularity lemmas for polynomials developed by Bhattacharyya, et al. [SODA 2015], we show that whenever such a strong structure exists, it can be found algorithmically in time polynomial in n.
BibTeX  Entry
@InProceedings{hatami:LIPIcs:2016:6656,
author = {Pooya Hatami},
title = {{On the Structure of Quintic Polynomials}},
booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2016)},
pages = {33:133:18},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {9783959770187},
ISSN = {18688969},
year = {2016},
volume = {60},
editor = {Klaus Jansen and Claire Mathieu and Jos{\'e} D. P. Rolim and Chris Umans},
publisher = {Schloss DagstuhlLeibnizZentrum fuer Informatik},
address = {Dagstuhl, Germany},
URL = {http://drops.dagstuhl.de/opus/volltexte/2016/6656},
URN = {urn:nbn:de:0030drops66569},
doi = {10.4230/LIPIcs.APPROXRANDOM.2016.33},
annote = {Keywords: Higherorder Fourier analysis, Structure Theorem, Polynomials, Regularity lemmas}
}
Keywords: 

Higherorder Fourier analysis, Structure Theorem, Polynomials, Regularity lemmas 
Collection: 

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2016) 
Issue Date: 

2016 
Date of publication: 

06.09.2016 