License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/OASIcs.CMN.2016.7
URN: urn:nbn:de:0030-drops-67088
Go to the corresponding OASIcs Volume Portal

Yarlott, W. Victor H. ; Finlayson, Mark A.

Learning a Better Motif Index: Toward Automated Motif Extraction

OASIcs-CMN-2016-7.pdf (0.4 MB)


Motifs are distinctive recurring elements found in folklore, and are used by folklorists to categorize and find tales across cultures and track the genetic relationships of tales over time. Motifs have significance beyond folklore as communicative devices found in news, literature, press releases, and propaganda that concisely imply a large constellation of culturally-relevant information. Until now, folklorists have only extracted motifs from narratives manually, and the conceptual structure of motifs has not been formally laid out. In this short paper we propose that it is possible to automate the extraction of both existing and new motifs from narratives using supervised learning techniques and thereby possible to learn a computational model of how folklorists determine motifs. Automatic extraction would enable the construction of a truly comprehensive motif index, which does not yet exist, as well as the automatic detection of motifs in cultural materials, opening up a new world of narrative information for analysis by anyone interested in narrative and culture. We outline an experimental design, and report on our efforts to produce a structured form of Thompson's motif index, as well as a development annotation of motifs in a small collection of Russian folklore. We propose several initial computational, supervised approaches, and describe several possible metrics of success. We describe lessons learned and difficulties encountered so far, and outline our plan going forward.

BibTeX - Entry

  author =	{W. Victor H. Yarlott and Mark A. Finlayson},
  title =	{{Learning a Better Motif Index: Toward Automated Motif Extraction}},
  booktitle =	{7th Workshop on Computational Models of Narrative (CMN 2016)},
  pages =	{7:1--7:10},
  series =	{OpenAccess Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-020-0},
  ISSN =	{2190-6807},
  year =	{2016},
  volume =	{53},
  editor =	{Ben Miller and Antonio Lieto and R{\'e}mi Ronfard and Stephen G. Ware and Mark A. Finlayson},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-67088},
  doi =		{10.4230/OASIcs.CMN.2016.7},
  annote =	{Keywords: Text analysis, automated feature extraction, folklore, narrative, Russian folktales}

Keywords: Text analysis, automated feature extraction, folklore, narrative, Russian folktales
Collection: 7th Workshop on Computational Models of Narrative (CMN 2016)
Issue Date: 2016
Date of publication: 25.10.2016

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI