License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ISAAC.2016.59
URN: urn:nbn:de:0030-drops-68283
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2016/6828/
Go to the corresponding LIPIcs Volume Portal


Oh, Eunjin ; Ahn, Hee-Kap

A Near-Optimal Algorithm for Finding an Optimal Shortcut of a Tree

pdf-format:
LIPIcs-ISAAC-2016-59.pdf (0.6 MB)


Abstract

We consider the problem of finding a shortcut connecting two vertices of a graph that minimizes the diameter of the resulting graph. We present an O(n^2 log^3 n)-time algorithm using linear space for the case that the input graph is a tree consisting of n vertices. Additionally, we present an O(n^2 log^3 n)-time algorithm using linear space for a continuous version of this problem.

BibTeX - Entry

@InProceedings{oh_et_al:LIPIcs:2016:6828,
  author =	{Eunjin Oh and Hee-Kap Ahn},
  title =	{{A Near-Optimal Algorithm for Finding an Optimal Shortcut of a Tree}},
  booktitle =	{27th International Symposium on Algorithms and Computation (ISAAC 2016)},
  pages =	{59:1--59:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-026-2},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{64},
  editor =	{Seok-Hee Hong},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2016/6828},
  URN =		{urn:nbn:de:0030-drops-68283},
  doi =		{10.4230/LIPIcs.ISAAC.2016.59},
  annote =	{Keywords: Network Augmentation, Shortcuts, Diameter, Trees}
}

Keywords: Network Augmentation, Shortcuts, Diameter, Trees
Collection: 27th International Symposium on Algorithms and Computation (ISAAC 2016)
Issue Date: 2016
Date of publication: 07.12.2016


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI