License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.IPEC.2016.17
URN: urn:nbn:de:0030-drops-69275
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2017/6927/
Jansen, Bart M. P. ;
Wulms, Jules J. H. M.
Lower Bounds for Protrusion Replacement by Counting Equivalence Classes
Abstract
Garnero et al. [SIAM J. Discrete Math. 2015, 29(4):1864-1894] recently introduced a framework based on dynamic programming to make applications of the protrusion replacement technique constructive and to obtain explicit upper bounds on the involved constants. They show that for several graph problems, for every boundary size t one can find an explicit set R_t of representatives. Any subgraph H with a boundary of size t can be replaced with a representative H' in R_t such that the effect of this replacement on the optimum can be deduced from H and H' alone. Their upper bounds on the size of the graphs in R_t grow triple-exponentially with t. In this paper we complement their results by lower bounds on the sizes of representatives, in terms of the boundary size t. For example, we show that each set of planar representatives R_t for the Independent Set problem contains a graph with Omega(2^t / sqrt{4t}) vertices. This lower bound even holds for sets that only represent the planar subgraphs of bounded pathwidth. To obtain our results we provide a lower bound on the number of equivalence classes of the canonical equivalence relation for Independent Set on t-boundaried graphs. We also find an elegant characterization of the number of equivalence classes in general graphs, in terms of the number of monotone functions of a certain kind. Our results show that the number of equivalence classes is at most 2^{2^t}, improving on earlier bounds of the form (t+1)^{2^t}.
BibTeX - Entry
@InProceedings{jansen_et_al:LIPIcs:2017:6927,
author = {Bart M. P. Jansen and Jules J. H. M. Wulms},
title = {{Lower Bounds for Protrusion Replacement by Counting Equivalence Classes}},
booktitle = {11th International Symposium on Parameterized and Exact Computation (IPEC 2016)},
pages = {17:1--17:12},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-023-1},
ISSN = {1868-8969},
year = {2017},
volume = {63},
editor = {Jiong Guo and Danny Hermelin},
publisher = {Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
address = {Dagstuhl, Germany},
URL = {http://drops.dagstuhl.de/opus/volltexte/2017/6927},
URN = {urn:nbn:de:0030-drops-69275},
doi = {10.4230/LIPIcs.IPEC.2016.17},
annote = {Keywords: protrusions, boundaried graphs, independent set, equivalence classes, finite integer index}
}
Keywords: |
|
protrusions, boundaried graphs, independent set, equivalence classes, finite integer index |
Collection: |
|
11th International Symposium on Parameterized and Exact Computation (IPEC 2016) |
Issue Date: |
|
2017 |
Date of publication: |
|
09.02.2017 |