License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.IPEC.2016.12
URN: urn:nbn:de:0030-drops-69444
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2017/6944/
Go to the corresponding LIPIcs Volume Portal


Elbassioni, Khaled

Exact Algorithms for List-Coloring of Intersecting Hypergraphs

pdf-format:
LIPIcs-IPEC-2016-12.pdf (0.6 MB)


Abstract

We show that list-coloring for any intersecting hypergraph of m edges on n vertices, and lists drawn from a set of size at most k, can be checked in quasi-polynomial time (mn)^{o(k^2*log(mn))}.

BibTeX - Entry

@InProceedings{elbassioni:LIPIcs:2017:6944,
  author =	{Khaled Elbassioni},
  title =	{{Exact Algorithms for List-Coloring of Intersecting Hypergraphs}},
  booktitle =	{11th International Symposium on Parameterized and Exact Computation (IPEC 2016)},
  pages =	{12:1--12:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-023-1},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{63},
  editor =	{Jiong Guo and Danny Hermelin},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2017/6944},
  URN =		{urn:nbn:de:0030-drops-69444},
  doi =		{10.4230/LIPIcs.IPEC.2016.12},
  annote =	{Keywords: Hypergraph coloring, monotone Boolean duality, list coloring, exact algorithms, quasi-polynomial time}
}

Keywords: Hypergraph coloring, monotone Boolean duality, list coloring, exact algorithms, quasi-polynomial time
Collection: 11th International Symposium on Parameterized and Exact Computation (IPEC 2016)
Issue Date: 2017
Date of publication: 09.02.2017


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI