License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.STACS.2017.24
URN: urn:nbn:de:0030-drops-70091
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2017/7009/
Go to the corresponding LIPIcs Volume Portal


Clemente, Lorenzo ; Czerwinski, Wojciech ; Lasota, Slawomir ; Paperman, Charles

Separability of Reachability Sets of Vector Addition Systems

pdf-format:
LIPIcs-STACS-2017-24.pdf (0.5 MB)


Abstract

Given two families of sets F and G, the F-separability problem for G asks whether for two given sets U, V in G there exists a set S in F, such that U is included in S and V is disjoint with S. We consider two families of sets F: modular sets S which are subsets of N^d, defined as unions of equivalence classes modulo some natural number n in N, and unary sets, which extend modular sets by requiring equality below a threshold n, and equivalence modulo n above n. Our main result is decidability of modular- and unary-separability for the class G of reachability sets of Vector Addition Systems, Petri Nets, Vector Addition Systems with States, and for sections thereof.

BibTeX - Entry

@InProceedings{clemente_et_al:LIPIcs:2017:7009,
  author =	{Lorenzo Clemente and Wojciech Czerwinski and Slawomir Lasota and Charles Paperman},
  title =	{{Separability of Reachability Sets of Vector Addition Systems}},
  booktitle =	{34th Symposium on Theoretical Aspects of Computer Science (STACS 2017)},
  pages =	{24:1--24:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-028-6},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{66},
  editor =	{Heribert Vollmer and Brigitte ValleĢe},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2017/7009},
  URN =		{urn:nbn:de:0030-drops-70091},
  doi =		{10.4230/LIPIcs.STACS.2017.24},
  annote =	{Keywords: separability, Petri nets, modular sets, unary sets, decidability}
}

Keywords: separability, Petri nets, modular sets, unary sets, decidability
Collection: 34th Symposium on Theoretical Aspects of Computer Science (STACS 2017)
Issue Date: 2017
Date of publication: 06.03.2017


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI