License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.OPODIS.2016.10
URN: urn:nbn:de:0030-drops-70792
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2017/7079/
Go to the corresponding LIPIcs Volume Portal


Devismes, Stéphane ; Ilcinkas, David ; Johnen, Colette

Self-Stabilizing Disconnected Components Detection and Rooted Shortest-Path Tree Maintenance in Polynomial Steps

pdf-format:
LIPIcs-OPODIS-2016-10.pdf (0.6 MB)


Abstract

We deal with the problem of maintaining a shortest-path tree rooted at some process r in a network that may be disconnected after topological changes. The goal is then to maintain a shortest-path tree rooted at r in its connected component, V_r, and make all processes of other components detecting that r is not part of their connected component. We propose, in the composite atomicity model, a silent self-stabilizing algorithm for this problem working in semi-anonymous networks under the distributed unfair daemon (the most general daemon) without requiring any a priori knowledge about global parameters of the network. This is the first algorithm for this problem that is proven to achieve a polynomial stabilization time in steps. Namely, we exhibit a bound in O(W_{max} * n_{maxCC}^3 * n), where W_{max} is the maximum weight of an edge, n_{maxCC} is the maximum number of non-root processes in a connected component, and n is the number of processes. The stabilization time in rounds is at most 3n_{maxCC} + D, where D is the hop-diameter of V_r.

BibTeX - Entry

@InProceedings{devismes_et_al:LIPIcs:2017:7079,
  author =	{St{\'e}phane Devismes and David Ilcinkas and Colette Johnen},
  title =	{{Self-Stabilizing Disconnected Components Detection and Rooted Shortest-Path Tree Maintenance in Polynomial Steps}},
  booktitle =	{20th International Conference on Principles of Distributed Systems (OPODIS 2016)},
  pages =	{10:1--10:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-031-6},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{70},
  editor =	{Panagiota Fatourou and Ernesto Jim{\'e}nez and Fernando Pedone},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2017/7079},
  URN =		{urn:nbn:de:0030-drops-70792},
  doi =		{10.4230/LIPIcs.OPODIS.2016.10},
  annote =	{Keywords: distributed algorithm, self-stabilization, routing algorithm, shortest path, disconnected network, shortest-path tree}
}

Keywords: distributed algorithm, self-stabilization, routing algorithm, shortest path, disconnected network, shortest-path tree
Collection: 20th International Conference on Principles of Distributed Systems (OPODIS 2016)
Issue Date: 2017
Date of publication: 06.04.2017


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI