License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ECRTS.2017.19
URN: urn:nbn:de:0030-drops-71579
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2017/7157/
Go to the corresponding LIPIcs Volume Portal


Pathan, Risat Mahmud

Improving the Quality-of-Service for Scheduling Mixed-Criticality Systems on Multiprocessors

pdf-format:
LIPIcs-ECRTS-2017-19.pdf (0.6 MB)


Abstract

The traditional Vestal's model of Mixed-Criticality (MC) systems was recently extended to Imprecise Mixed-Critical task model (IMC) to guarantee some minimum level of (degraded) service to the low-critical tasks even after the system switches to the high-critical behavior. This paper extends the IMC task model by associating specific Quality-of-Service (QoS) values with the low-critical tasks and proposes a fluid-based scheduling algorithm, called MCFQ, for such task model. The MCFQ algorithm allows some low-critical tasks to provide full service even during the high-critical behavior so that the QoS of the overall system is increased. To the best of our knowledge MCFQ is the first algorithm for IMC task sets considering multiprocessor platform and QoS values.


By extending the recently proposed MC-Fluid and MCF fluid-based multiprocessor scheduling algorithms for IMC task model, empirical results show that MCFQ algorithm can significantly improve the QoS of the system in comparison to that of both MC-Fluid and MCF. In addition, the schedulability performance of MCFQ is very close to the optimal MC-Fluid algorithm. Finally, we prove that the MCFQ algorithm has a speedup bound of 4/3, which is optimal for IMC tasks.

BibTeX - Entry

@InProceedings{pathan:LIPIcs:2017:7157,
  author =	{Risat Mahmud Pathan},
  title =	{{Improving the Quality-of-Service for Scheduling Mixed-Criticality Systems on Multiprocessors}},
  booktitle =	{29th Euromicro Conference on Real-Time Systems (ECRTS 2017)},
  pages =	{19:1--19:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-037-8},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{76},
  editor =	{Marko Bertogna},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2017/7157},
  URN =		{urn:nbn:de:0030-drops-71579},
  doi =		{10.4230/LIPIcs.ECRTS.2017.19},
  annote =	{Keywords: Mixed-Criticality Systems, Real-Time Systems, Multiprocessor Scheduling, Quality of Service, Imprecise Computation}
}

Keywords: Mixed-Criticality Systems, Real-Time Systems, Multiprocessor Scheduling, Quality of Service, Imprecise Computation
Collection: 29th Euromicro Conference on Real-Time Systems (ECRTS 2017)
Issue Date: 2017
Date of publication: 23.06.2017


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI