License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ECRTS.2017.11
URN: urn:nbn:de:0030-drops-71598
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2017/7159/
Go to the corresponding LIPIcs Volume Portal


Mohaqeqi, Morteza ; Abdullah, Jakaria ; Ekberg, Pontus ; Yi, Wang

Refinement of Workload Models for Engine Controllers by State Space Partitioning

pdf-format:
LIPIcs-ECRTS-2017-11.pdf (0.7 MB)


Abstract

We study an engine control application where the behavior of engine controllers depends on the engine's rotational speed. For efficient and precise timing analysis, we use the Digraph Real-Time (DRT) task model to specify the workload of control tasks where we employ optimal control theory to faithfully calculate the respective minimum inter-release times. We show how DRT models can be refined by finer grained partitioning of the state space of the engine up to a model which enables an exact timing analysis. Compared to previously proposed methods which are either unsafe or pessimistic, our work provides both abstract and tight characterizations of the corresponding workload.

BibTeX - Entry

@InProceedings{mohaqeqi_et_al:LIPIcs:2017:7159,
  author =	{Morteza Mohaqeqi and Jakaria Abdullah and Pontus Ekberg and Wang Yi},
  title =	{{Refinement of Workload Models for Engine Controllers by State Space Partitioning}},
  booktitle =	{29th Euromicro Conference on Real-Time Systems (ECRTS 2017)},
  pages =	{11:1--11:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-037-8},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{76},
  editor =	{Marko Bertogna},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2017/7159},
  URN =		{urn:nbn:de:0030-drops-71598},
  doi =		{10.4230/LIPIcs.ECRTS.2017.11},
  annote =	{Keywords: Engine Control Tasks, Schedulability Analysis, Minimum-Time Problem, DRT Task Model}
}

Keywords: Engine Control Tasks, Schedulability Analysis, Minimum-Time Problem, DRT Task Model
Collection: 29th Euromicro Conference on Real-Time Systems (ECRTS 2017)
Issue Date: 2017
Date of publication: 23.06.2017


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI