License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.SoCG.2017.41
URN: urn:nbn:de:0030-drops-71853
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2017/7185/
Go to the corresponding LIPIcs Volume Portal


Ezra, Esther ; Sharir, Micha

A Nearly Quadratic Bound for the Decision Tree Complexity of k-SUM

pdf-format:
LIPIcs-SoCG-2017-41.pdf (0.5 MB)


Abstract

We show that the k-SUM problem can be solved by a linear decision tree of depth O(n^2 log^2 n),improving the recent bound O(n^3 log^3 n) of Cardinal et al. Our bound depends linearly on k, and allows us to conclude that the number of linear queries required to decide the n-dimensional Knapsack or SubsetSum problems is only O(n^3 log n), improving the currently best known bounds by a factor of n. Our algorithm extends to the RAM model, showing that the k-SUM problem can be solved in expected polynomial time, for any fixed k, with the above bound on the number of linear queries. Our approach relies on a new point-location mechanism, exploiting "Epsilon-cuttings" that are based on vertical decompositions in hyperplane arrangements in high dimensions.
A major side result of the analysis in this paper is a sharper bound on the complexity of the vertical decomposition of such an arrangement (in terms of its dependence on the dimension). We hope that this study will reveal further structural properties of vertical decompositions in hyperplane arrangements.

BibTeX - Entry

@InProceedings{ezra_et_al:LIPIcs:2017:7185,
  author =	{Esther Ezra and Micha Sharir},
  title =	{{A Nearly Quadratic Bound for the Decision Tree Complexity of k-SUM}},
  booktitle =	{33rd International Symposium on Computational Geometry (SoCG 2017)},
  pages =	{41:1--41:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-038-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{77},
  editor =	{Boris Aronov and Matthew J. Katz},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2017/7185},
  URN =		{urn:nbn:de:0030-drops-71853},
  doi =		{10.4230/LIPIcs.SoCG.2017.41},
  annote =	{Keywords: k-SUM and k-LDT, linear decision tree, hyperplane arrangements, point-location, vertical decompositions, Epsilon-cuttings}
}

Keywords: k-SUM and k-LDT, linear decision tree, hyperplane arrangements, point-location, vertical decompositions, Epsilon-cuttings
Collection: 33rd International Symposium on Computational Geometry (SoCG 2017)
Issue Date: 2017
Date of publication: 20.06.2017


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI