License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.SoCG.2017.27
URN: urn:nbn:de:0030-drops-72262
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2017/7226/
Go to the corresponding LIPIcs Volume Portal


Chan, Timothy M.

Orthogonal Range Searching in Moderate Dimensions: k-d Trees and Range Trees Strike Back

pdf-format:
LIPIcs-SoCG-2017-27.pdf (0.5 MB)


Abstract

We revisit the orthogonal range searching problem and the exact l_infinity nearest neighbor searching problem for a static set of n points when the dimension d is moderately large. We give the first data structure with near linear space that achieves truly sublinear query time when the dimension is any constant multiple of log n. Specifically, the preprocessing time and space are O(n^{1+delta}) for any constant delta>0, and the expected query time is n^{1-1/O(c log c)} for d = c log n. The data structure is simple and is based on a new "augmented, randomized, lopsided" variant of k-d trees. It matches (in fact, slightly improves) the performance of previous combinatorial algorithms that work only in the case of offline queries [Impagliazzo, Lovett, Paturi, and Schneider (2014) and Chan (SODA'15)]. It leads to slightly faster combinatorial algorithms for all-pairs shortest paths in general real-weighted graphs and rectangular Boolean matrix multiplication.

In the offline case, we show that the problem can be reduced to the Boolean orthogonal vectors problem and thus admits an n^{2-1/O(log c)}-time non-combinatorial algorithm [Abboud, Williams, and Yu (SODA'15)]. This reduction is also simple and is based on range trees.

Finally, we use a similar approach to obtain a small improvement to Indyk's data structure [FOCS'98] for approximate l_infinity nearest neighbor search when d = c log n.

BibTeX - Entry

@InProceedings{chan:LIPIcs:2017:7226,
  author =	{Timothy M. Chan},
  title =	{{Orthogonal Range Searching in Moderate Dimensions: k-d Trees and Range Trees Strike Back}},
  booktitle =	{33rd International Symposium on Computational Geometry (SoCG 2017)},
  pages =	{27:1--27:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-038-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{77},
  editor =	{Boris Aronov and Matthew J. Katz},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2017/7226},
  URN =		{urn:nbn:de:0030-drops-72262},
  doi =		{10.4230/LIPIcs.SoCG.2017.27},
  annote =	{Keywords: computational geometry, data structures, range searching, nearest neighbor searching}
}

Keywords: computational geometry, data structures, range searching, nearest neighbor searching
Collection: 33rd International Symposium on Computational Geometry (SoCG 2017)
Issue Date: 2017
Date of publication: 20.06.2017


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI