License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ICALP.2017.86
URN: urn:nbn:de:0030-drops-73712
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2017/7371/
Go to the corresponding LIPIcs Volume Portal


Guruswami, Venkatesan ; Xing, Chaoping ; Yuan, Chen

Subspace Designs Based on Algebraic Function Fields

pdf-format:
LIPIcs-ICALP-2017-86.pdf (0.5 MB)


Abstract

Subspace designs are a (large) collection of high-dimensional subspaces {H_i} of F_q^m such that for any low-dimensional subspace W, only a small number of subspaces from the collection have non-trivial intersection with W; more precisely, the sum of dimensions of W cap H_i is at most some parameter L. The notion was put forth by Guruswami and Xing (STOC'13) with applications to list decoding variants of Reed-Solomon and algebraic-geometric codes, and later also used for explicit rank-metric codes with optimal list decoding radius.

Guruswami and Kopparty (FOCS'13, Combinatorica'16) gave an explicit construction of subspace designs with near-optimal parameters. This construction was based on polynomials and has close connections to folded Reed-Solomon codes, and required large field size (specifically q >= m). Forbes and Guruswami (RANDOM'15) used this construction to give explicit constant degree "dimension expanders" over large fields, and noted that subspace designs are a powerful tool in linear-algebraic pseudorandomness.

Here, we construct subspace designs over any field, at the expense of a modest worsening of the bound $L$ on total intersection dimension. Our approach is based on a (non-trivial) extension of the polynomial-based construction to algebraic function fields, and instantiating the approach with cyclotomic function fields. Plugging in our new subspace designs in the construction of Forbes and Guruswami yields dimension expanders over F^n for any field F, with logarithmic degree and expansion guarantee for subspaces of dimension Omega(n/(log(log(n)))).

BibTeX - Entry

@InProceedings{guruswami_et_al:LIPIcs:2017:7371,
  author =	{Venkatesan Guruswami and Chaoping Xing and Chen Yuan},
  title =	{{Subspace Designs Based on Algebraic Function Fields}},
  booktitle =	{44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)},
  pages =	{86:1--86:10},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-041-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{80},
  editor =	{Ioannis Chatzigiannakis and Piotr Indyk and Fabian Kuhn and Anca Muscholl},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2017/7371},
  URN =		{urn:nbn:de:0030-drops-73712},
  doi =		{10.4230/LIPIcs.ICALP.2017.86},
  annote =	{Keywords: Subspace Design, Dimension Expander, List Decoding}
}

Keywords: Subspace Design, Dimension Expander, List Decoding
Collection: 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)
Issue Date: 2017
Date of publication: 07.07.2017


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI