License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.CCC.2017.19
URN: urn:nbn:de:0030-drops-75134
Go to the corresponding LIPIcs Volume Portal

Kumar, Mrinal

A Quadratic Lower Bound for Homogeneous Algebraic Branching Programs

LIPIcs-CCC-2017-19.pdf (0.5 MB)


An algebraic branching program (ABP) is a directed acyclic graph, with a start vertex s, and end vertex t and each edge having a weight which is an affine form in variables x_1, x_2, ..., x_n over an underlying field. An ABP computes a polynomial in a natural way, as the sum of weights of all paths from s to t, where the weight of a path is the product of the weights of the edges in the path. An ABP is said to be homogeneous if the polynomial computed at every vertex is homogeneous. In this paper, we show that any homogeneous algebraic branching program which computes the polynomial x_1^n + x_2^n + ... + x_n^n has at least Omega(n^2) vertices (and edges).

To the best of our knowledge, this seems to be the first non-trivial super-linear lower bound on the number of vertices for a general homogeneous ABP and slightly improves the known lower bound of Omega(n log n) on the number of edges in a general (possibly non-homogeneous) ABP, which follows from the classical results of Strassen (1973) and Baur--Strassen (1983).

On the way, we also get an alternate and unified proof of an Omega(n log n) lower bound on the size of a homogeneous arithmetic circuit (follows from [Strassen, 1973] and [Baur-Strassen, 1983]), and an n/2 lower bound (n over reals) on the determinantal complexity of an explicit polynomial [Mignon-Ressayre, 2004], [Cai, Chen, Li, 2010], [Yabe, 2015]. These are currently the best lower bounds known for these problems for any explicit polynomial, and were originally proved nearly two decades apart using seemingly different proof techniques.

BibTeX - Entry

  author =	{Mrinal Kumar},
  title =	{{A Quadratic Lower Bound for Homogeneous Algebraic Branching Programs}},
  booktitle =	{32nd Computational Complexity Conference (CCC 2017)},
  pages =	{19:1--19:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-040-8},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{79},
  editor =	{Ryan O'Donnell},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-75134},
  doi =		{10.4230/LIPIcs.CCC.2017.19},
  annote =	{Keywords: algebraic branching programs, arithmetic circuits, determinantal complexity, lower bounds}

Keywords: algebraic branching programs, arithmetic circuits, determinantal complexity, lower bounds
Collection: 32nd Computational Complexity Conference (CCC 2017)
Issue Date: 2017
Date of publication: 01.08.2017

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI