License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/DagSemProc.06271.12
URN: urn:nbn:de:0030-drops-7763
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2006/776/
Go to the corresponding Portal |
Storjohann, Arne
Notes on computing minimal approximant bases
Abstract
We show how to transform the problem of computing solutions
to a classical Hermite Pade approximation problem for an input
vector of dimension $m imes 1$, arbitrary degree constraints
$(n_1,n_2,ldots,n_m)$, and order $N := (n_1 + 1) + cdots +
(n_m + 1) - 1$, to that of computing a minimal approximant
basis for a matrix of dimension $O(m) imes O(m)$, uniform
degree constraint $Theta(N/m)$, and order $Theta(N/m)$.
BibTeX - Entry
@InProceedings{storjohann:DagSemProc.06271.12,
author = {Storjohann, Arne},
title = {{Notes on computing minimal approximant bases}},
booktitle = {Challenges in Symbolic Computation Software},
pages = {1--6},
series = {Dagstuhl Seminar Proceedings (DagSemProc)},
ISSN = {1862-4405},
year = {2006},
volume = {6271},
editor = {Wolfram Decker and Mike Dewar and Erich Kaltofen and Stephen Watt},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/opus/volltexte/2006/776},
URN = {urn:nbn:de:0030-drops-7763},
doi = {10.4230/DagSemProc.06271.12},
annote = {Keywords: Hermite Pade approximation, minimal approximant bases}
}
Keywords: |
|
Hermite Pade approximation, minimal approximant bases |
Collection: |
|
06271 - Challenges in Symbolic Computation Software |
Issue Date: |
|
2006 |
Date of publication: |
|
25.10.2006 |