License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.MFCS.2017.39
URN: urn:nbn:de:0030-drops-80809
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2017/8080/
Go to the corresponding LIPIcs Volume Portal


Chatterjee, Krishnendu ; Henzinger, Monika ; Svozil, Alexander

Faster Algorithms for Mean-Payoff Parity Games

pdf-format:
LIPIcs-MFCS-2017-39.pdf (0.6 MB)


Abstract

Graph games provide the foundation for modeling and synthesis of reactive processes. Such games are played over graphs where the vertices are controlled by two adversarial players. We consider graph games where the objective of the first player is the
conjunction of a qualitative objective (specified as a parity condition) and a quantitative objective (specified as a mean-payoff condition). There are two variants of the problem, namely, the threshold problem where the quantitative goal is to ensure that the mean-payoff value is above a threshold, and the value problem where the quantitative goal is to ensure the optimal mean-payoff value; in both cases ensuring the qualitative parity objective. The previous best-known algorithms for game graphs with n vertices, m edges,
parity objectives with d priorities, and maximal absolute reward value W for mean-payoff objectives, are as follows: O(n^(d+1)·m·W) for the threshold problem, and O(n^(d+2)·m·W) for the value problem.
Our main contributions are faster algorithms, and the running times of our algorithms are as follows: O(n^(d-1)·m·W) for the threshold problem, and O(n^d·m·W·log(n·W)) for the value problem. For mean-payoff parity objectives with two priorities, our algorithms match the best-known bounds of the algorithms for mean-payoff games (without conjunction with parity objectives). Our results are relevant in synthesis of reactive systems with both functional
requirement (given as a qualitative objective) and performance requirement (given as a quantitative objective).

BibTeX - Entry

@InProceedings{chatterjee_et_al:LIPIcs:2017:8080,
  author =	{Krishnendu Chatterjee and Monika Henzinger and Alexander Svozil},
  title =	{{Faster Algorithms for Mean-Payoff Parity Games}},
  booktitle =	{42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)},
  pages =	{39:1--39:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-046-0},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{83},
  editor =	{Kim G. Larsen and Hans L. Bodlaender and Jean-Francois Raskin},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2017/8080},
  URN =		{urn:nbn:de:0030-drops-80809},
  doi =		{10.4230/LIPIcs.MFCS.2017.39},
  annote =	{Keywords: graph games, mean-payoff parity games}
}

Keywords: graph games, mean-payoff parity games
Collection: 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)
Issue Date: 2017
Date of publication: 01.12.2017


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI