License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ITCS.2018.27
URN: urn:nbn:de:0030-drops-83154
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2018/8315/
Go to the corresponding LIPIcs Volume Portal


Gur, Tom ; Ramnarayan, Govind ; Rothblum, Ron D.

Relaxed Locally Correctable Codes

pdf-format:
LIPIcs-ITCS-2018-27.pdf (0.5 MB)


Abstract

Locally decodable codes (LDCs) and locally correctable codes (LCCs) are error-correcting codes in which individual bits of the message and codeword, respectively, can be recovered by querying only few bits from a noisy codeword. These codes have found numerous applications both in theory and in practice.

A natural relaxation of LDCs, introduced by Ben-Sasson et al. (SICOMP, 2006), allows the decoder to reject (i.e., refuse to answer) in case it detects that the codeword is corrupt. They call such a decoder a relaxed decoder and construct a constant-query relaxed LDC with almost-linear blocklength, which is sub-exponentially better than what is known for (full-fledged) LDCs in the constant-query regime.

We consider an analogous relaxation for local correction. Thus, a relaxed local corrector reads only few bits from a (possibly) corrupt codeword and either recovers the desired bit of the codeword, or rejects in case it detects a corruption.

We give two constructions of relaxed LCCs in two regimes, where the first optimizes the query complexity and the second optimizes the rate:

1. Constant Query Complexity: A relaxed LCC with polynomial blocklength whose corrector only reads a constant number of bits of the codeword. This is a sub-exponential improvement over the best constant query (full-fledged) LCCs that are known.

2. Constant Rate: A relaxed LCC with constant rate (i.e., linear blocklength) with quasi-polylogarithmic query complexity. This is a nearly sub-exponential improvement over the query complexity of a recent (full-fledged) constant-rate LCC of Kopparty et al. (STOC, 2016).

BibTeX - Entry

@InProceedings{gur_et_al:LIPIcs:2018:8315,
  author =	{Tom Gur and Govind Ramnarayan and Ron D. Rothblum},
  title =	{{Relaxed Locally Correctable Codes}},
  booktitle =	{9th Innovations in Theoretical Computer Science Conference (ITCS 2018)},
  pages =	{27:1--27:11},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-060-6},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{94},
  editor =	{Anna R. Karlin},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2018/8315},
  URN =		{urn:nbn:de:0030-drops-83154},
  doi =		{10.4230/LIPIcs.ITCS.2018.27},
  annote =	{Keywords:  Keywords and phrases Coding Theory, Locally Correctable Codes, Probabilistically Checkable Proofs}
}

Keywords: Keywords and phrases Coding Theory, Locally Correctable Codes, Probabilistically Checkable Proofs
Collection: 9th Innovations in Theoretical Computer Science Conference (ITCS 2018)
Issue Date: 2018
Date of publication: 12.01.2018


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI