License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.FSTTCS.2017.33
URN: urn:nbn:de:0030-drops-83905
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2018/8390/
Guruswami, Venkatesan ;
Saket, Rishi
Hardness of Rainbow Coloring Hypergraphs
Abstract
A hypergraph is k-rainbow colorable if there exists a vertex coloring using k colors such that each hyperedge has all the k colors. Unlike usual hypergraph coloring, rainbow coloring becomes harder as the number of colors increases. This work studies the rainbow colorability of hypergraphs which are guaranteed to be nearly balanced rainbow colorable. Specifically, we show that for any Q,k >= 2 and \ell <= k/2, given a Qk-uniform hypergraph which admits a k-rainbow coloring satisfying:
- in each hyperedge e, for some \ell_e <= \ell all but 2\ell_e colors occur exactly Q times and the rest (Q +/- 1) times,
it is NP-hard to compute an independent set of (1 - (\ell+1)/k + \eps)-fraction of vertices, for any constant \eps > 0. In particular, this implies the hardness of even (k/\ell)-rainbow coloring such hypergraphs.
The result is based on a novel long code PCP test that ensures the strong balancedness property desired of the k-rainbow coloring in the completeness case. The soundness analysis relies on a mixing bound based on uniform reverse hypercontractivity due to Mossel, Oleszkiewicz, and Sen, which was also used in earlier proofs of the hardness of \omega(1)-coloring 2-colorable 4-uniform hypergraphs due to Saket, and k-rainbow colorable 2k-uniform hypergraphs due to Guruswami and Lee.
BibTeX - Entry
@InProceedings{guruswami_et_al:LIPIcs:2018:8390,
author = {Venkatesan Guruswami and Rishi Saket},
title = {{Hardness of Rainbow Coloring Hypergraphs}},
booktitle = {37th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2017)},
pages = {33:33--33:15},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-055-2},
ISSN = {1868-8969},
year = {2018},
volume = {93},
editor = {Satya Lokam and R. Ramanujam},
publisher = {Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
address = {Dagstuhl, Germany},
URL = {http://drops.dagstuhl.de/opus/volltexte/2018/8390},
URN = {urn:nbn:de:0030-drops-83905},
doi = {10.4230/LIPIcs.FSTTCS.2017.33},
annote = {Keywords: Fourier analysis of Boolean functions, hypergraph coloring, Inapproximability, Label Cover, PCP}
}
Keywords: |
|
Fourier analysis of Boolean functions, hypergraph coloring, Inapproximability, Label Cover, PCP |
Collection: |
|
37th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2017) |
Issue Date: |
|
2018 |
Date of publication: |
|
12.02.2018 |