License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.SoCG.2018.62
URN: urn:nbn:de:0030-drops-87755
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2018/8775/
Oh, Eunjin ;
Ahn, Hee-Kap
Approximate Range Queries for Clustering
Abstract
We study the approximate range searching for three variants of the clustering problem with a set P of n points in d-dimensional Euclidean space and axis-parallel rectangular range queries: the k-median, k-means, and k-center range-clustering query problems. We present data structures and query algorithms that compute (1+epsilon)-approximations to the optimal clusterings of P cap Q efficiently for a query consisting of an orthogonal range Q, an integer k, and a value epsilon>0.
BibTeX - Entry
@InProceedings{oh_et_al:LIPIcs:2018:8775,
author = {Eunjin Oh and Hee-Kap Ahn},
title = {{Approximate Range Queries for Clustering}},
booktitle = {34th International Symposium on Computational Geometry (SoCG 2018)},
pages = {62:1--62:14},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-066-8},
ISSN = {1868-8969},
year = {2018},
volume = {99},
editor = {Bettina Speckmann and Csaba D. T{\'o}th},
publisher = {Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
address = {Dagstuhl, Germany},
URL = {http://drops.dagstuhl.de/opus/volltexte/2018/8775},
URN = {urn:nbn:de:0030-drops-87755},
doi = {10.4230/LIPIcs.SoCG.2018.62},
annote = {Keywords: Approximate clustering, orthogonal range queries}
}
Keywords: |
|
Approximate clustering, orthogonal range queries |
Collection: |
|
34th International Symposium on Computational Geometry (SoCG 2018) |
Issue Date: |
|
2018 |
Date of publication: |
|
08.06.2018 |