License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ECRTS.2018.16
URN: urn:nbn:de:0030-drops-89884
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2018/8988/
Go to the corresponding LIPIcs Volume Portal


Gujarati, Arpan ; Nasri, Mitra ; Brandenburg, Björn B.

Quantifying the Resiliency of Fail-Operational Real-Time Networked Control Systems

pdf-format:
LIPIcs-ECRTS-2018-16.pdf (0.9 MB)


Abstract

In time-sensitive, safety-critical systems that must be fail-operational, active replication is commonly used to mitigate transient faults that arise due to electromagnetic interference (EMI). However, designing an effective and well-performing active replication scheme is challenging since replication conflicts with the size, weight, power, and cost constraints of embedded applications. To enable a systematic and rigorous exploration of the resulting tradeoffs, we present an analysis to quantify the resiliency of fail-operational networked control systems against EMI-induced memory corruption, host crashes, and retransmission delays. Since control systems are typically robust to a few failed iterations, e.g., one missed actuation does not crash an inverted pendulum, traditional solutions based on hard real-time assumptions are often too pessimistic. Our analysis reduces this pessimism by modeling a control system's inherent robustness as an (m,k)-firm specification. A case study with an active suspension workload indicates that the analytical bounds closely predict the failure rate estimates obtained through simulation, thereby enabling a meaningful design-space exploration, and also demonstrates the utility of the analysis in identifying non-trivial and non-obvious reliability tradeoffs.

BibTeX - Entry

@InProceedings{gujarati_et_al:LIPIcs:2018:8988,
  author =	{Arpan Gujarati and Mitra Nasri and Bj{\"o}rn B. Brandenburg},
  title =	{{Quantifying the Resiliency of Fail-Operational Real-Time Networked Control Systems}},
  booktitle =	{30th Euromicro Conference on Real-Time Systems (ECRTS 2018)},
  pages =	{16:1--16:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-075-0},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{106},
  editor =	{Sebastian Altmeyer},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2018/8988},
  URN =		{urn:nbn:de:0030-drops-89884},
  doi =		{10.4230/LIPIcs.ECRTS.2018.16},
  annote =	{Keywords: probabilistic analysis, reliability analysis, networked control systems}
}

Keywords: probabilistic analysis, reliability analysis, networked control systems
Collection: 30th Euromicro Conference on Real-Time Systems (ECRTS 2018)
Issue Date: 2018
Date of publication: 22.06.2018


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI