License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ICALP.2018.109
URN: urn:nbn:de:0030-drops-91134
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2018/9113/
Go to the corresponding LIPIcs Volume Portal


Graf, Daniel ; Labib, Karim ; Uznanski, Przemyslaw

Brief Announcement: Hamming Distance Completeness and Sparse Matrix Multiplication

pdf-format:
LIPIcs-ICALP-2018-109.pdf (0.4 MB)


Abstract

We show that a broad class of (+, diamond) vector products (for binary integer functions diamond) are equivalent under one-to-polylog reductions to the computation of the Hamming distance. Examples include: the dominance product, the threshold product and l_{2p+1} distances for constant p. Our results imply equivalence (up to poly log n factors) between complexity of computation of All Pairs: Hamming Distances, l_{2p+1} Distances, Dominance Products and Threshold Products. As a consequence, Yuster's (SODA'09) algorithm improves not only Matousek's (IPL'91), but also the results of Indyk, Lewenstein, Lipsky and Porat (ICALP'04) and Min, Kao and Zhu (COCOON'09). Furthermore, our reductions apply to the pattern matching setting, showing equivalence (up to poly log n factors) between pattern matching under Hamming Distance, l_{2p+1} Distance, Dominance Product and Threshold Product, with current best upperbounds due to results of Abrahamson (SICOMP'87), Amir and Farach (Ann. Math. Artif. Intell.'91), Atallah and Duket (IPL'11), Clifford, Clifford and Iliopoulous (CPM'05) and Amir, Lipsky, Porat and Umanski (CPM'05). The resulting algorithms for l_{2p+1} Pattern Matching and All Pairs l_{2p+1}, for 2p+1 = 3,5,7,... are new.
Additionally, we show that the complexity of AllPairsHammingDistances (and thus of other aforementioned AllPairs- problems) is within poly log n from the time it takes to multiply matrices n x (n * d) and (n * d) x n, each with (n * d) non-zero entries. This means that the current upperbounds by Yuster (SODA'09) cannot be improved without improving the sparse matrix multiplication algorithm by Yuster and Zwick (ACM TALG'05) and vice versa.

BibTeX - Entry

@InProceedings{graf_et_al:LIPIcs:2018:9113,
  author =	{Daniel Graf and Karim Labib and Przemyslaw Uznanski},
  title =	{{Brief Announcement: Hamming Distance Completeness and Sparse Matrix Multiplication}},
  booktitle =	{45th International Colloquium on Automata, Languages, and  Programming (ICALP 2018)},
  pages =	{109:1--109:4},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-076-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{107},
  editor =	{Ioannis Chatzigiannakis and Christos Kaklamanis and D{\'a}niel Marx and Donald Sannella},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2018/9113},
  URN =		{urn:nbn:de:0030-drops-91134},
  doi =		{10.4230/LIPIcs.ICALP.2018.109},
  annote =	{Keywords: fine-grained complexity, matrix multiplication, high dimensional geometry, pattern matching}
}

Keywords: fine-grained complexity, matrix multiplication, high dimensional geometry, pattern matching
Collection: 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)
Issue Date: 2018
Date of publication: 04.07.2018


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI