License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.APPROX-RANDOM.2018.26
URN: urn:nbn:de:0030-drops-94309
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2018/9430/
Swernofsky, Joseph
Tensor Rank is Hard to Approximate
Abstract
We prove that approximating the rank of a 3-tensor to within a factor of 1 + 1/1852 - delta, for any delta > 0, is NP-hard over any field. We do this via reduction from bounded occurrence 2-SAT.
BibTeX - Entry
@InProceedings{swernofsky:LIPIcs:2018:9430,
author = {Joseph Swernofsky},
title = {{Tensor Rank is Hard to Approximate}},
booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)},
pages = {26:1--26:9},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-085-9},
ISSN = {1868-8969},
year = {2018},
volume = {116},
editor = {Eric Blais and Klaus Jansen and Jos{\'e} D. P. Rolim and David Steurer},
publisher = {Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
address = {Dagstuhl, Germany},
URL = {http://drops.dagstuhl.de/opus/volltexte/2018/9430},
URN = {urn:nbn:de:0030-drops-94309},
doi = {10.4230/LIPIcs.APPROX-RANDOM.2018.26},
annote = {Keywords: tensor rank, high rank tensor, slice elimination, approximation algorithm, hardness of approximation}
}
Keywords: |
|
tensor rank, high rank tensor, slice elimination, approximation algorithm, hardness of approximation |
Collection: |
|
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018) |
Issue Date: |
|
2018 |
Date of publication: |
|
13.08.2018 |