License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ESA.2018.3
URN: urn:nbn:de:0030-drops-94664
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2018/9466/
Go to the corresponding LIPIcs Volume Portal


Arya, Sunil ; da Fonseca, Guilherme D. ; Mount, David M.

Approximate Convex Intersection Detection with Applications to Width and Minkowski Sums

pdf-format:
LIPIcs-ESA-2018-3.pdf (0.6 MB)


Abstract

Approximation problems involving a single convex body in R^d have received a great deal of attention in the computational geometry community. In contrast, works involving multiple convex bodies are generally limited to dimensions d <= 3 and/or do not consider approximation. In this paper, we consider approximations to two natural problems involving multiple convex bodies: detecting whether two polytopes intersect and computing their Minkowski sum. Given an approximation parameter epsilon > 0, we show how to independently preprocess two polytopes A,B subset R^d into data structures of size O(1/epsilon^{(d-1)/2}) such that we can answer in polylogarithmic time whether A and B intersect approximately. More generally, we can answer this for the images of A and B under affine transformations. Next, we show how to epsilon-approximate the Minkowski sum of two given polytopes defined as the intersection of n halfspaces in O(n log(1/epsilon) + 1/epsilon^{(d-1)/2 + alpha}) time, for any constant alpha > 0. Finally, we present a surprising impact of these results to a well studied problem that considers a single convex body. We show how to epsilon-approximate the width of a set of n points in O(n log(1/epsilon) + 1/epsilon^{(d-1)/2 + alpha}) time, for any constant alpha > 0, a major improvement over the previous bound of roughly O(n + 1/epsilon^{d-1}) time.

BibTeX - Entry

@InProceedings{arya_et_al:LIPIcs:2018:9466,
  author =	{Sunil Arya and Guilherme D. da Fonseca and David M. Mount},
  title =	{{Approximate Convex Intersection Detection with Applications to Width and Minkowski Sums}},
  booktitle =	{26th Annual European Symposium on Algorithms (ESA 2018)},
  pages =	{3:1--3:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-081-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{112},
  editor =	{Yossi Azar and Hannah Bast and Grzegorz Herman},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2018/9466},
  URN =		{urn:nbn:de:0030-drops-94664},
  doi =		{10.4230/LIPIcs.ESA.2018.3},
  annote =	{Keywords: Minkowski sum, convex intersection, width, approximation}
}

Keywords: Minkowski sum, convex intersection, width, approximation
Collection: 26th Annual European Symposium on Algorithms (ESA 2018)
Issue Date: 2018
Date of publication: 14.08.2018


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI