License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.MFCS.2018.33
URN: urn:nbn:de:0030-drops-96150
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2018/9615/
Go to the corresponding LIPIcs Volume Portal


Bodirsky, Manuel ; Martin, Barnaby ; Mamino, Marcello ; Mottet, Antoine

The Complexity of Disjunctive Linear Diophantine Constraints

pdf-format:
LIPIcs-MFCS-2018-33.pdf (0.5 MB)


Abstract

We study the Constraint Satisfaction Problem CSP( A), where A is first-order definable in (Z;+,1) and contains +. We prove such problems are either in P or NP-complete.

BibTeX - Entry

@InProceedings{bodirsky_et_al:LIPIcs:2018:9615,
  author =	{Manuel Bodirsky and Barnaby Martin and Marcello Mamino and Antoine Mottet},
  title =	{{The Complexity of Disjunctive Linear Diophantine Constraints}},
  booktitle =	{43rd International Symposium on Mathematical Foundations  of Computer Science (MFCS 2018)},
  pages =	{33:1--33:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-086-6},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{117},
  editor =	{Igor Potapov and Paul Spirakis and James Worrell},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2018/9615},
  URN =		{urn:nbn:de:0030-drops-96150},
  doi =		{10.4230/LIPIcs.MFCS.2018.33},
  annote =	{Keywords: Constraint Satisfaction, Presburger Arithmetic, Computational Complexity}
}

Keywords: Constraint Satisfaction, Presburger Arithmetic, Computational Complexity
Collection: 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)
Issue Date: 2018
Date of publication: 27.08.2018


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI