License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.CSL.2018.34
URN: urn:nbn:de:0030-drops-97010
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2018/9701/
Go to the corresponding LIPIcs Volume Portal


Neider, Daniel ; Weinert, Alexander ; Zimmermann, Martin

Synthesizing Optimally Resilient Controllers

pdf-format:
LIPIcs-CSL-2018-34.pdf (0.5 MB)


Abstract

Recently, Dallal, Neider, and Tabuada studied a generalization of the classical game-theoretic model used in program synthesis, which additionally accounts for unmodeled intermittent disturbances. In this extended framework, one is interested in computing optimally resilient strategies, i.e., strategies that are resilient against as many disturbances as possible. Dallal, Neider, and Tabuada showed how to compute such strategies for safety specifications.
In this work, we compute optimally resilient strategies for a much wider range of winning conditions and show that they do not require more memory than winning strategies in the classical model. Our algorithms only have a polynomial overhead in comparison to the ones computing winning strategies. In particular, for parity conditions optimally resilient strategies are positional and can be computed in quasipolynomial time.

BibTeX - Entry

@InProceedings{neider_et_al:LIPIcs:2018:9701,
  author =	{Daniel Neider and Alexander Weinert and Martin Zimmermann},
  title =	{{Synthesizing Optimally Resilient Controllers}},
  booktitle =	{27th EACSL Annual Conference on Computer Science Logic  (CSL 2018)},
  pages =	{34:1--34:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-088-0},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{119},
  editor =	{Dan Ghica and Achim Jung},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2018/9701},
  URN =		{urn:nbn:de:0030-drops-97010},
  doi =		{10.4230/LIPIcs.CSL.2018.34},
  annote =	{Keywords: Controller Synthesis, Infinite Games, Resilient Strategies, Disturbances}
}

Keywords: Controller Synthesis, Infinite Games, Resilient Strategies, Disturbances
Collection: 27th EACSL Annual Conference on Computer Science Logic (CSL 2018)
Issue Date: 2018
Date of publication: 29.08.2018


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI