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Abstract. From 15.03. to 20.03.2009, the Dagstuhl Seminar 09121 �Nor-

mative Multi-Agent Systems � was held in Schloss Dagstuhl � Leibniz

Center for Informatics. During the seminar, several participants pre-

sented their current research, and ongoing work and open problems were

discussed. Abstracts of the presentations given during the seminar as well

as abstracts of seminar results and ideas are put together in this paper.

The �rst section describes the seminar topics and goals in general. Links

to extended abstracts or full papers are provided, if available.

Keywords. Similarity-based clustering and classi�cation, metric adap-

tation and kernel design, learning on graphs, spatiotemporal data

Robust Normative Systems

Thomas Agotnes (Bergen University College, NO)

Although normative systems, or social laws, have proved to be a highly in�uen-
tial approach to coordination in multi-agent systems, the issue of compliance to
such normative systems remains problematic. In all real systems, it is possible
that some members of an agent population will not comply with the rules of
a normative system, even if it is in their interests to do so. It is therefore im-
portant to consider the extent to which a normative system is robust, i.e., the
extent to which it remains e�ective even if some agents do not comply with it.
We formalise and investigate three di�erent notions of robustness and related
decision problems.

We begin by considering sets of agents whose compliance is necessary and/or
su�cient to guarantee the e�ectiveness of a normative system; we then consider
quantitative approaches to robustness, where we try to identify the proportion

Dagstuhl Seminar Proceedings 09121
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2 Guido Boella, Pablo Noriega, Gabriella Pigozzi and Harko Verhagen

of an agent population that must comply in order to ensure success, and �nally,
we consider a more general approach, where we characterise the compliance
conditions required for success as a logical formula.

Keywords: Normative systems, robustness, fault tolerance, complexity

Joint work of: Agotnes, Thomas; van der Hoek, Wiebe; Wooldridge, Michael

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2009/1897

What do Agent-Based and Equation-Based Modelling Tell
us about Social Conventions?

Giulia Andrighetto (ISTC - CNR - Rome, IT)

Ten years ago, during MABS'98, H. Van Dyke Parunak, Robert Savit and Rick
L. Riolo discussed the similarities and di�erences between the Agent-Based Mod-
elling (ABM) and the Equation-Based Modelling (EBM), developing criteria for
selecting one or the other approach. The authors concluded that a distinction
between them must be made case by case on the basis of practical considerations.
In this work we will present and confront some simulation-based and analytical
results on the emergence of steady states in a class of coordination games, the
congestion games. In particular, our study focuses on the emergence of steady
states in tra�c-like interactions, drawing on Sen and Airiau's study of the emer-
gence of the precedence rule. We show that, in contrast with Parunak-Savit-Riolo
conclusions, in congestion games we should use an integrated approach, mixing
the ABM and the EBM frameworks. A crucial feature concerns organization:
simulation results are organized in some hierarchical structure since they are
generated by our algorithms. For example, in our model, results incorporate pe-
culiar symmetries: i.e. equivalent strategies cannot coexist, while non-equivalent
ones can. We endeavor to explicate these symmetric results using EBM.

Keywords: Agent based modelling, conventions, equation based modelling

Joint work of: Andrighetto, Giulia; Cecconi, Federico; Campennì, Marco;
Conte, Rosaria

Normal = Normative? The Role of Intelligent Agents in
Norm Innovation

Giulia Andrighetto (ISTC - CNR - Rome, IT)

In this paper the results of several agent-based simulations, aiming to test the
role of normative beliefs in the emergence and inno- vation of social norms, are
presented and discussed.

http://drops.dagstuhl.de/opus/volltexte/2009/1897


Normative Multi-Agent Systems 3

Rather than mere behavioral regularities, norms are here seen as behaviors
spreading to the extent that and because the corresponding commands and be-
liefs do spread as well. On the grounds of such a view, the present work will
endeavour to show that a sudden external constraint (e.g. a barrier preventing
agents from moving among social settings) facilitates norm innovation: under
such a condition, agents provided with a module for telling what a norm is can
generate new (social) norms by forming new normative beliefs, irrespective of
the most frequent actions.

Keywords: Norm emergence, agent based simulation

Joint work of: Andrighetto, Giulia; Cecconi, Federico; Campennì, Marco;
Conte, Rosaria

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2009/1898

Dynamic Context Logic and its Application to Norm

Guillaume Aucher (University of Luxembourg, LU)

Building on a simple modal logic of context, the paper presents a dynamic logic
characterizing operations of contraction and expansion on theories.

We investigate the mathematical properties of the logic, and use it to develop
an axiomatic and semantic analysis of norm change in normative systems. The
proposed analysis advances the state of the art by providing a formal semantics
of norm-change which, at the same time, takes into account several di�erent
aspects of the phenomenon, such as permission and obligation dynamics, as well
as the dynamics of classi�catory rules.

Keywords: Context logic, norm change, deontic logic

Joint work of: Aucher, Guillaume; Grossi, Davide; Herzig, Andreas; Lorini,
Emiliano

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2009/1900

A Taxonomy for Ensuring Institutional Compliance in
Utility Computing

Tina Balke (Universität Bayreuth, DE)

With the ongoing evolution from closed to open distributed systems and the
lifting of the assumption that agents acting in such a system do not pursue own
goals and act in the best interest of the society, new problems arise. One of
them is that compliance cannot be assumed necessarily and consequently trust
issues arise. One way of tackling this problem is by regulating the behavior of the

http://drops.dagstuhl.de/opus/volltexte/2009/1898
http://drops.dagstuhl.de/opus/volltexte/2009/1900
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agents with the help of institutions. However for institutions to function e�ec-
tively their compliance needs to be ensured. Using a utility computing scenario
as sample application, this paper presents a general applicable taxonomy for
ensuring compliance that can be consulted for analyzing, comparing and devel-
oping enforcement strategies and hopefully will stimulate research in this area.

Keywords: Institutions, Compliance, Enforcement, Regimentation, Norms,
Sanctions, Utility Computing

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2009/1901

Normative Systems in Computer Science - Ten Guidelines
for Normative Multiagent Systems

Guido Boella (University of Torino, IT)

In this paper we introduce and discuss ten guidelines for the use of normative sys-
tems in computer science. We adopt a multiagent systems perspective, because
norms are used to coordinate, organize, guide, regulate or control interaction
among distributed autonomous systems.

The �rst six guidelines are derived from the computer science literature.
From the so-called 'normchange' de�nition of the �rst workshop on normative

multiagent systems in 2005 we derive the guidelines to motivate which de�ni-
tion of normative multiagent system is used, to make explicit why norms are
a kind of (soft) constraints deserving special analysis, and to explain why and
how norms can be changed at runtime. From the so-called 'mechanism design'
de�nition of the second workshop on normative multiagent systems in 2007 we
derive the guidelines to discuss the use and role of norms as a mechanism in a
game-theoretic setting, clarify the role of norms in the multiagent system, and
to relate the notion of "norm" to the legal, social, or moral literature. The re-
maining four guidelines follow from the philosophical literature: use norms also
to resolve dilemmas, and in general to coordinate, organize, guide, regulate or
control interaction among agents, distinguish norms from obligations, prohibi-
tions and permissions, use the deontic paradoxes only to illustrate the normative
multiagent system, and consider regulative norms in relation to other kinds of
norms and other social-cognitive computer science concepts.

Keywords: Normative systems, Guidelines, Norms, Multiagent systems, Deontic
logic

Joint work of: Boella, Guido; Pigozzi, Gabriella; van der Torre, Leendert

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2009/1902

http://drops.dagstuhl.de/opus/volltexte/2009/1901
http://drops.dagstuhl.de/opus/volltexte/2009/1902
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A Framework for Normative MultiAgent Organisations

Olivier Boissier (Ecole des Mines - St. Etienne, FR)

The social and organisational aspects of agency have led to a good amount of
theoretical work in terms of formal models and theories. From these di�erent
works normative multiagent systems and multiagent organisations are partic-
ularily considered in this paper. Embodying such models and theories in the
conception and engineering of proper infrastructures that achieve requirements
of openness and adaptation, is still an open issue. In this direction, this pa-
per presents and discusses a framework for normative multiagent organisations.
Based on the Agents and Artifacts meta-model (A&A), it introduces organisa-
tional artifacts as �rst class entities to instrument the normative organisation
for supporting agents activities within it.

Keywords: Normative system, organisation, artifacts, norm enforcement

Joint work of: Boissier, Olivier; Hübner, Jomi Fred

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2009/1903

A Conviviality Measure for Early Requirement Phase

Patrice Caire (University of Luxembourg, L)

In this paper, we consider the design of convivial multi-agent systems. Con-
viviality has recently been proposed as a social concept to develop multi-agent
systems. In this paper we introduce temporal dependence networks to model
the evolution of dependence networks and conviviality over time, we introduce
epistemic dependence networks to combine the viewpoints of stakeholders, and
we introduce normative dependence networks to model the transformation of
social dependencies by hiding power relations and social structures to facilitate
social interactions. We show how to use these visual languages in design, and we
illustrate the design method using an example on virtual children adoptions.

Keywords: Multi-agent systems

Joint work of: Caire, Patrice; van der Torre, Leendert

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2009/1899

A modal logic for reasoning on consistency and
completeness of regulations

Laurence Cholvy (ONERA - Toulouse Research Center, FR)

In this paper, we deal with regulations that may exist in multi-agent systems in
order to regulate agent behaviour and we discuss two properties of regulations,
that is consistency and completeness.

http://drops.dagstuhl.de/opus/volltexte/2009/1903
http://drops.dagstuhl.de/opus/volltexte/2009/1899
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After de�ning what consistency and completeness mean, we propose a way
to consistently complete incomplete regulations. In this contribution, we extend
previous works and we consider that regulations are expressed in a �rst order
modal deontic logic.

Keywords: Regulations, consistency, completeness, deontic logic, default logic

Joint work of: Garion, Christophe; Roussel, Stéphanie; Cholvy, Laurence

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2009/1904

A categorization of simulation works on norms

Stephen Crane�eld (University of Otago, NZ)

In multi-agent systems, software agents are modelled to possess characteristics
and behaviour borrowed from human societies. Norms are expectations of be-
haviours of the agents in a society. Norms can be established in a society in dif-
ferent ways. In human societies, there are several types of norms such as moral
norms, social norms and legal norms (laws). In arti�cial agent societies, the de-
signers can impose these norms on the agents. Being autonomous, agents might
not always follow the norms. Monitoring and controlling mechanisms should be
in place to enforce norms. As the agents are autonomous, they themselves can
evolve new norms while adapting to changing needs. In order to design and
develop robust arti�cial agent societies, it is important to understand di�er-
ent approaches proposed by researchers by which norms can spread and emerge
within agent societies. This paper makes two contributions to the study of norms.
Firstly, based on the simulation works on norms, we propose a life-cycle model for
norms. Secondly, we discuss di�erent mechanisms used by researchers to study
norm creation, spreading, enforcement and emergence.

Keywords: Norms, creation, spreading, enforcement, emergence

Joint work of: Savarimuthu, Bastin Tony Roy; Crane�eld, Stephen

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2009/1905

Monitoring Social Expectations in Second Life

Stephen Crane�eld (University of Otago, NZ)

Online virtual worlds such as Second Life provide a rich medium for unstructured
human interaction in a shared simulated 3D environment. However, many human
interactions take place in a structured social context where participants play
particular roles and are subject to expectations governing their behaviour, and
current virtual worlds do not provide any support for this type of interaction.
There is therefore an opportunity to adapt the tools developed in the MAS

http://drops.dagstuhl.de/opus/volltexte/2009/1904
http://drops.dagstuhl.de/opus/volltexte/2009/1905
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community for structured social interactions between software agents (inspired
by human society) and adapt these for use with the computer-mediated human
communication provided by virtual worlds. This paper describes the application
of one such tool for use with Second Life. A model checker for online monitoring
of social expectations de�ned in temporal logic has been integrated with Second
Life, allowing users to be noti�ed when their expectations of others have been
ful�lled or violated. Avatar actions in the virtual world are detected by a script,
encoded as propositions and sent to the model checker, along with the social
expectation rules to be monitored. Noti�cations of expectation ful�lment and
violation are returned to the script to be displayed to the user. This utility of
this tool is reliant on the ability of the Linden scripting language (LSL) to detect
events of signi�cance in the application domain, and a discussion is presented on
how a range of monitored structured social scenarios could be realised despite
the limitations of LSL.

Keywords: Virtual worlds, Second Life, social expectations

Joint work of: Crane�eld, Stephen; Li, Guannan

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2009/1906

Normative Multi-Agent Programs and Their Logics

Mehdi Dastani (Utrecht University, NL)

Multi-agent systems are viewed as consisting of individual agents whose behav-
iors are regulated by an organization artefact. This paper presents a simpli�ed
version of a programming language that is designed to implement norm-based
artefacts. Such artefacts are speci�ed in terms of norms being enforced by mon-
itoring, regimenting and sanctioning mechanisms. The syntax and operational
semantics of the programming language are introduced and discussed. A logic is
presented that can be used to specify and verify properties of programs developed
in this language.

Keywords: Normative Multi-Agent Systems, Programming Multi-Agent Sys-
tems

Joint work of: Dastani, Mehdi; Grossi, Davide; Meyer, John-Jules; Tinnemeier,
Nick

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2009/1907

A Meta-model for the Speci�cation of Arti�cial
Institutions using the Event Calculus

Nicoletta Fornara (University of Lugano, CH)

The speci�cation of open interaction systems, which may be dynamically entered
and left by autonomous agents, is widely recognized to be a crucial issue in the
development of distributed applications on the internet.

http://drops.dagstuhl.de/opus/volltexte/2009/1906
http://drops.dagstuhl.de/opus/volltexte/2009/1907
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The speci�cation of such systems involves two main problems: the �rst is
the de�nition of a standard way of specifying a communication language for the
interacting agents and the context of the interaction; the second, which derives
from the assumption of the agents' autonomy, is �nding a way to regulate inter-
actions so that agents may have reliable expectations on the future development
of the system. A possible approach to solve those problems consists in model-
ing the interaction systems as a set of arti�cial institutions. In this chapter we
address this issue by formally de�ning, in the Event Calculus, a repertoire of ab-
stract concepts (like commitment, institutional power, role, norm) that can be
used to specify arti�cial institutions. We then show how, starting from the for-
mal speci�cation of a system and using a suitable tool, it is possible to simulate
and monitor the system�s evolution through automatic deduction.

Keywords: Arti�cial Institutions, Open Interaction Systems, Norms, Commit-
ment, Power, Event Calculus

Joint work of: Fornara, Nicoletta; Colombetti, Marco

Designing Ontologies for NMAS: Some Patterns

Aldo Gangemi (ISTC - CNR - Rome, IT)

This paper presents a more comprehensive approach to deal with NMAS on-
tology speci�cation in a computational environment. Such approach employs
semantic web languages such as OWL, RIF, SPARQL, etc., and complies to the
eXtreme Design paradigm, which is a method to build an ontology by exploiting
user requirements (in the form of competency questions,), and reusable ontology
design patterns for both ontology building and evaluation.

The patterns presented here are partly extracted from the ODP community
portal, and those that are closely related to the NMAS domain are extracted from
the NIC ontology, as well as other, related ones. Some recipes are presented which
allow di�erent reasoning styles on NMAS entities (DL classi�cation, subsumption
and realization, constructive query answering, rule engines, etc.), and a ranking
of the recipes is provided.

The ultimate suggestion is to attach an ontology reasoning component to
NMAS, which can be leveraged to perform typical reasoning tasks on the NMAS
domain, while leaving NMAS to work on such normalized knowledge, and to
concentrate on typical NMAS functionalities, such as dynamics of NMAS worlds.

A proposal to share modelling practices for NMAS on the ODP community
portal is also brie�y sketched.

Keywords: NMAS ontologies, Ontology design patterns, Collaborative design
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FSL � Fibred Security Language

Valerio Genovese (University of Torino, IT)

We develop a �bred security language capable to express statements of the form

{x}ϕ(x) says ψ

where {x}ϕ(x) is the set of all x that satisfy ϕ and ψ is any formula. ϕ and ψ
may share several free variables.

For example, we can express the following: "A member m of the Program
Committee can not accept a paper P1 in which one of its authors says that he
has published a paper with him after 2007"

¬({m}[PC(m) ∧ {y}author_of(y, P1) says ∃p(paper(p) ∧ author_of(m, p) ∧
author_of(y, p) ∧ year(p) ≥ 2007)] says accept(P1))

Keywords: Access Control, Trust Management, Fibring Logics

Joint work of: Genovese, Valerio; Boella, Guido; Gabbay, Dov M.; van der
Torre, Leendert

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2009/1908

How Do Agents Comply with Norms?

Guido Governatori (NICTA Queensland Research Laboratory, AU)

The import of the notion of institution in the design of MASs requires to de-
velop formal and e�cient methods for modeling the interaction between agents'
behaviour and normative systems. This paper discusses how to check whether
agents' behaviour is compliant with the rules regulating them. The key point of
our approach is that compliance is a relationship between two sets of speci�ca-
tions: the speci�cations for executing a process and the speci�cations regulating
it. We propose a logic-based formalism for describing both the semantics of nor-
mative speci�cations and the semantics of compliance checking procedures.

Keywords: Compliance, agents, violations, norms

Joint work of: Governatori, Guido; Rotolo, Antonino

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2009/1909

A note on brute vs. institutional facts

Davide Grossi (University of Amsterdam, NL)

The paper investigates the famous Searlean distinction between "brute" and
"institutional" concepts from a logical point of view.

http://drops.dagstuhl.de/opus/volltexte/2009/1908
http://drops.dagstuhl.de/opus/volltexte/2009/1909
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We show how the partitioning of the non-logical alphabet-e.g., into "brute"
and "institutional" atoms-gives rise to interesting modal properties. A modal
logic, called UpTo-logic, is introduced and investigated which formalizes the
notion of (propositional) logical equivalence up to a given signature.

Keywords: Modal logic, brute and institutional facts

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2009/1910

On dissemination mechanism of corporate social
responsibility (CSR): Analysis with agent simulation

Takashi Hashimoto (JAIST - Ishikawa, JP)

Corporate Social Responsibility (CSR), such as pro-environmental behaviour
and fair trade, is a kind of normative behaviour by private companies to provide
a quasi-public good.We study dissemination mechanism of CSR with a multi-
agent model in which corporation agents and consumer agents interact with each
other. We show that the mechanism to disseminate CSR is a positive feedback
between the corporations popularity seeking behaviour and the consumer social
learning in which CSR-seeking preference is evaluated according to both the local
average of the preferences of surrounding consumers and the global average of the
investment in CSR by all corporations. We also discuss an institutional design
to establish CSR from an objectionable social state.

Keywords: CSR (corporate social responsibility), Quasi-public good, Institu-
tional design, Positive Feedback, Multi-agent simulation

Joint work of: Hashimoto, Takashi; Shinohara, Naoto; Egashira, Susumu

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2009/1911

Coherence-Driven Argumentation to Norm Consensus

Sindhu Joseph (IIIA - CSIC - Barcelona, ES)

In this paper coherence-based models are proposed as an alternative to logic-
based BDI and argumentation models for the reasoning of normative agents. A
model is provided for how two coherence-based agents can deliberate on how to
regulate a domain of interest. First a deductive coherence model presented, in
which the coherence values are derived from the deduction relation of an under-
lying logic; this makes it possible to identify the reasons for why a proposition is
accepted or rejected. Then it is shown how coherence-driven agents can generate
candidate norms for deliberation, after which a dialogue protocol for such de-
liberations is proposed. The resulting model is compared to current logic-based
argumentation systems for deliberation over action.

http://drops.dagstuhl.de/opus/volltexte/2009/1910
http://drops.dagstuhl.de/opus/volltexte/2009/1911
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Keywords: Deductive coherence, norm deliberation, normative agents, argu-
mentation

Joint work of: Joseph, Sindhu; Prakken, Henry

Dynamics of acceptances in institutional contexts: a modal
logic account

Emiliano Lorini (Université Paul Sabatier (IRIT) - Toulouse, FR)

We continue the work initiated in (Lorini et al. 2009; Lorini & Longin 2008),
where the acceptance logic, a logic for modeling individual and collective ac-
ceptances was introduced. Here, we extend acceptance logic by two kinds of
dynamic modal operators. The �rst kind consists of public announcements in
institutional contexts. The second kind consists of acceptance shiftings: certain
agents shift (change) their acceptances in order to accept a certain proposition
qua members of a given institution. We show that the resulting logic has a com-
plete axiomatisation in terms of reduction axioms for both dynamic operators

Keywords: Acceptance, institutions

Argumentation based Resolution of Con�icts Between
Desires and Normative Goals

Sanjay Modgil (King's College - London, GB)

Norms represent what ought to be done, and their ful�llment can be seen as bene-
�ting the overall system, society or organisation. However, individual agent goals
(desire) may con�ict with system norms. If a decision to comply with a norm is
determined exclusively by an agent or, conversely, if norms are rigidly enforced,
then system performance may be degraded, and individual agent goals may be
inappropriately obstructed. To prevent such deleterious e�ects we propose a
general framework for argumentation-based resolution of con�icts amongst de-
sires and norms. In this framework, arguments for and against compliance are
arguments justifying rewards, respectively punishments, exacted by `enforcing'
agents. The arguments are evaluated in a recent extension to Dung's abstract
argumentation framework, in order that the agents can engage in metalevel ar-
gumentation as to whether the rewards and punishments have the required mo-
tivational force. We provide an example instantiation of the framework based on
a logic programming formalism.

Keywords: Argumentation, Norms, Desires, Con�icts

Joint work of: Modgil, Sanjay; Luck, Michael

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2009/1912

http://drops.dagstuhl.de/opus/volltexte/2009/1912
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Partially Observable Markov Decision Processes with
Behavioral Norms

Matthias Nickles (University of Bath, GB)

This extended abstract discusses various approaches to the constraining of Par-
tially Observable Markov Decision Processes (POMDPs) using social norms and
logical assertions in a dynamic logic framework. Whereas the exploitation of syn-
ergies among formal logic on the one hand and stochastic approaches and ma-
chine learning on the other is gaining signi�cantly increasing interest since several
years, most of the respective approaches fall into the category of relational learn-
ing in the widest sense, including inductive (stochastic) logic programming. In
contrast, the use of formal knowledge (including knowledge about social norms)
for the provision of hard constraints and prior knowledge for some stochastic
learning or modeling task is much less frequently approached. Although we do
not propose directly implementable technical solutions, it is hoped that this
work is a useful contribution to a discussion about the usefulness and feasibility
of approaches from norm research and formal logic in the context of stochastic
behavioral models, and vice versa.

Keywords: Norms, Partially Observable Markov Decision Processes, Deontic
Logic, Propositional Dynamic Logic

Joint work of: Nickles, Matthias; Rettinger, Achim

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2009/1913

An essay on msic-systems

Jan Odelstad (University of Gävle, SE)

A theory of many-sorted implicative conceptual systems (abbreviated msic-
systems) is outlined. Examples of msic-systems include legal systems, normative
systems, systems of rules and instructions, and systems expressing policies and
various kinds of scienti�c theories. In computer science, msic-systems can be
used in, for instance, legal information systems, decision support systems, and
multi-agent systems. In this essay, msic-systems are approached from a logical
and algebraic perspective aiming at clarifying their structure and developing ef-
fective methods for representing them. Of special interest are the most narrow
links or joinings between di�erent strata in a system, that is between subsystems
of di�erent sorts of concepts, and the intermediate concepts intervening between
such strata. Special emphasis is put on normative systems, and the role that
intermediate concepts play in such systems, with an eye on knowledge represen-
tation issues. In this essay, normative concepts are constructed out of descrip-
tive concepts using operators based on the Kanger-Lindahl theory of normative
positions. An abstract architecture for a norm-regulated multi-agent system is
suggested, containing a scheme for how normative positions will restrict the set
of actions that the agents are permitted to choose from.

http://drops.dagstuhl.de/opus/volltexte/2009/1913
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Keywords: Concept formation, Intermediary, Intermediate concept, Legal con-
cept, Normative system, Normative position, Norm-regulated system, Agent ar-
chitecture

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2009/1914

Distrust is not Always the Complement of Trust (Position
Paper)

Celia Costa Pereira (University of Milan, IT)

We believe that distrust can be as important as trust when agents are making a
decision. An agent may not trust a source because of lack of positive evidence,
but this does not necessarily mean the agent distrusts the source. Trust and
distrust have to be considered as two separate concepts which can coexist.

We are aware that an adequate way to take this fact into account is by
considering explicitly not only the agent's degree of trust in a source but also
its independent degree of distrust. Explicitly taking distrust into account allows
us to mark a clear di�erence between the distinct notions of negative trust and
insu�cient trust. More precisely, it is possible, unlike in approaches where only
trust is explicitly accounted for, to "weigh" di�erently information from helpful,
malicious, unknown, or neutral sources.

Keywords: Trust, Distrust, Decision Making

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2009/1915

Early requirements engineering for e-customs decision
support: Assessing overlap in mental models

Yao-Hua Tan (VU University Amsterdam, NL)

Developing decision support systems is a complex process. It involves stakehold-
ers with diverging interpretations of the task and domain. In this paper, we
propose to use ontology mapping to make a detailed analysis of the overlaps and
di�erences between mental models of stakeholders. The technique is applied to
an extensive case study about EU customs regulations. Companies which can
demonstrate to be 'in control' of the safety and security in the supply chain,
may become 'Authorized Economic Operator' (AEO), and avoid inspections by
customs. We focus on a decision support tool, AEO Digiscan, developed to as-
sist companies with an AEO self-assessment. We compared the mental models
of customs o�cials, with mental models of the developers of the tool. The re-
sults highlight important di�erences in the interpretation of the new regulations,
which will lead to adaptations of the tool.

Keywords: E-government, shared mental models, decision support systems
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Joint work of: Burgemeestre, Brigitte; Liu, Jianwei; Hulstijn, Joris; Tan, Yao-
Hua

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2009/1916

Re�ection and Norms: Towards a Model for Dynamic
Adaptation for MAS

Ingo Timm (Goethe-Universität Frankfurt am Main, DE)

The design of self-organizing systems and particular multiagent systems (MAS)
is a non trivial task. On the one hand the particular system should show a
dynamic behavior according to its environment, to gain a central advantage of
distributed systems, on the other hand it has to act on behalf of its user and
the �nal results have to possess acceptable quality. Especially the quality of the
overall system's behavior can become a critical issue, if the subsystems have
their own objectives they have to optimize. In this paper we present a methodol-
ogy that can be integrated into MAS for adapting their behavior allowing local
optimization while respecting an acceptable level of the system's global goals.

Keywords: Balancing autonomy, multiagent simulation, manufacturing

Joint work of: Timm, Ingo J.; Lattner, Andreas D.; Schumann, Rene

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2009/1917

Modeling and Validating Norms

Viviane Torres da Silva (University of Rio de Janeiro, BR)

Norms describe the permissions, prohibitions and obligations of agents in multi-
agent systems in order to regulate their behavior. In this paper we propose a
normative modeling language that makes possible the modeling of norms mo-
tivating the modeling of such norms together with the non-normative part of
the system. In addition, we also propose a mechanism to validate the norms at
design time, i.e., to check if the norms respect the constraints de�ned by the
language and also their possible con�icts.

Keywords: Norm, modeling, validation, con�ict, metamodel

Joint work of: Torres da Silva, Viviane; Braga, Christiano

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2009/1918

http://drops.dagstuhl.de/opus/volltexte/2009/1916
http://drops.dagstuhl.de/opus/volltexte/2009/1917
http://drops.dagstuhl.de/opus/volltexte/2009/1918


Normative Multi-Agent Systems 15

A convention or (tacit) agreement betwixt us

Luca Tummolini (ISTC - CNR - Rome, IT)

The aim of this paper is to show that conventions are sources of tacit agree-
ments. Such agreements are tacit in the sense that they are implicated by what
the agents do (or forbear to do) though without that any communication be-
tween them be necessary. Conventions are sources of tacit agreements under two
substantial assumptions: (1) that there is a salient interpretation, in some con-
texts, of every-one's silence as con�rmatory of the others' expectations, and (2)
that the agents share a value of not hostility. To characterize the normativity of
agreements the Principle of Reliability is introduced.

Keywords: Agreement, convention, norm, pragmatics

Joint work of: Andrighetto, Giulia; Tummolini, Luca; Castelfranchi, Cristiano;
Conte, Rosaria

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2009/1919

Contract Formation through Preemptive Normative
Con�ict Resolution

Wamberto Vasconcelos (University of Aberdeen, GB)

We explore a rule-based formalisation for contracts: the rules capture conditional
norms, that is, they describe situations arising during the enactment of a multi-
agent system, and norms that arise from these situations. However, such rules
may establish con�icting norms, that is, norms which simultaneously prohibit
and oblige (or prohibit and permit) agents to perform particular actions. We
propose to use a mechanism to detect and resolve normative con�icts in a pre-
emptive fashion: these mechanisms are used to analyse a contract and suggest
"amendments" to the clauses of the contract. These amendments narrow down
the scope of in�uence of norms and avoid normative con�icts. Agents propose
rules and their amendments, leading to a contract in which no con�icts may
arise.

Keywords: Normative Con�ict, Contracts

Joint work of: Vasconcelos, Wamberto; Norman, Timothy J.

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2009/1920
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Massively multiple online role playing games as normative
multiagent systems

Harko Verhagen (Stockholm University, SE)

The latest advancements in computer games o�er a domain of human and arti�-
cial agent behaviour well suited for analysis and development based on normative
multi agent systems research. One of the most in�uential gaming trends today,
Massively Multi Online Role Playing Games (MMORPG), poses new questions
about the interaction between the players in the game. If we model the players
and groups of players in these games as multiagent systems with the possibility
to create norms and sanction norm violations we have to create a way to de-
scribe the di�erent kind of norms that may appear in these situations. Certain
situations in MMORPG are subject to discussions about how norms are cre-
ated and propagated in a group, one such example involves the sleeper in the
game Everquest, from Sony Online Entertainment (SOE). The Sleeper was at
�rst designed to be unkillable, but after some events and some considerations
from SOE the sleeper was �nally killed. The most interesting aspect of the story
about the sleeper is how we can interpret the norms being created in this exam-
ple. We propose a framework to analyse the norms involved in the interaction
between players and groups in MMORPG. We argue that our model adds com-
plexity where we �nd earlier norm typologies lacking some descriptive power of
this phenomenon, and we can even describe and understand the confusing event
with the sleeper in Everquest.

Keywords: Norms, MMORPG

Joint work of: Magnus, Johansson; Verhagen, Harko

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2009/1895

NorMAS-RE: a Normative Multiagent Approach to
Requirements Engineering

Serena Villata (University of Torino, IT)

In this paper we present a new model, called NorMAS-RE, for the requirements
analysis of a system. NorMAS-RE is a new model based on the multiagent sys-
tems paradigm with the aim to support the requirements analysis phase of sys-
tems design. This model o�ers a structured approach to requirements analysis,
based on conceptual models de�ned following a visual modeling language, called
dependence networks. The main elements of this visual language are the agents
with their goals, capabilities and facts, similarly to the TROPOS methodology
[10]. The normative component is present both in the ontology and in the con-
ceptual metamodel, associating agents to roles they play inside the systems and
a set of goals, capabilities and facts proper of these roles. This improvement

http://drops.dagstuhl.de/opus/volltexte/2009/1895
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allows to de�ne di�erent types of dependence networks, called dynamic depen-
dence networks and conditional dependence networks, representing the di�erent
phases of the requirements analysis of the system. This paper presents a re-
quirements analysis model based on normative concepts such as obligation and
institution.

The NorMAS-RE model is a model of semiformal speci�cation featured by an
ontology, a meta-model, a graphical notation and a set of constraints. Our model,
moreover, allows the de�nition of the notion of coalition for the di�erent kinds of
network. We present our model using the scenario of virtual organizations based
on a Grid network.

Keywords: Conditional dependence networks, obligations, sanctions, contrary
to duty, requirements analysis

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2009/1896
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Normative Systems in Computer Science
Ten Guidelines for Normative Multiagent Systems

Guido Boella1,2, Gabriella Pigozzi2, and Leendert van der Torre2

1 Department of Computer Science, University of Torino
2 Computer Science and Communication, University of Luxembourg

Abstract. In this paper we introduce and discuss ten guidelines for the
use of normative systems in computer science. We adopt a multiagent sys-
tems perspective, because norms are used to coordinate, organize, guide,
regulate or control interaction among distributed autonomous systems.
The first six guidelines are derived from the computer science literature.
From the so-called ‘normchange’ definition of the first workshop on nor-
mative multiagent systems in 2005 we derive the guidelines to motivate
which definition of normative multiagent system is used, to make explicit
why norms are a kind of (soft) constraints deserving special analysis, and
to explain why and how norms can be changed at runtime. From the
so-called ‘mechanism design’ definition of the second workshop on nor-
mative multiagent systems in 2007 we derive the guidelines to discuss
the use and role of norms as a mechanism in a game-theoretic setting,
clarify the role of norms in the multiagent system, and to relate the no-
tion of “norm” to the legal, social, or moral literature. The remaining
four guidelines follow from the philosophical literature: use norms also to
resolve dilemmas, and in general to coordinate, organize, guide, regulate
or control interaction among agents, distinguish norms from obligations,
prohibitions and permissions, use the deontic paradoxes only to illustrate
the normative multiagent system, and consider regulative norms in rela-
tion to other kinds of norms and other social-cognitive computer science
concepts.

1 Introduction

Normative systems are “systems in the behavior of which norms play a role
and which need normative concepts in order to be described or specified” [36,
preface]. There is an increasing interest in normative systems in the computer sci-
ence community, due to the observation five years ago in the so-called AgentLink
Roadmap [33, Fig. 7.1], a consensus document on the future of multiagent sys-
tems research, that norms must be introduced in agent technology in the medium
term (i.e., now!) for infrastructure for open communities, reasoning in open en-
vironments and trust and reputation. However, there is no consensus yet in the
emerging research area of normative multiagent systems on the kind of norms to
be used, or the way to use them. Consider the following lines taken from a paper
review report. A norm like “You should empty your plate” may be criticized,
because it is not a (generic) norm but an obligation, or a sentence not presented
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as a norm, such as an imperative or command like “Empty your plate!”, may be
criticized because it is a norm. Alternatively, a proposed normative multiagent
systems may be criticized by a reviewer, because, for example, norms cannot
be violated, norms cannot be changed, and so on. These criticisms suggest that
more agreement on the use of norms and normative systems in computer science
would be useful.

The research question of this paper is to give general guidelines for the use
of “norms” and “normative systems” in computer science. During the past two
decades normative systems have been studied in a research field called deontic
logic in computer science (∆EON), and normative multiagent systems may be
seen as the research field where the traditional normative systems and ∆EON
meet agent research. In these areas, the following two related challenges emerged
to a common use of “norms” and “normative systems” in computer science.

There are many distinct notions of “normative systems” in the litera-
ture due to the use of the concept “norm” in distinct disciplines, just like
there are many definitions of “agent” or “actor” due to its use across dis-
ciplines. Traditionally normative systems have been studied in philosophy,
sociology, law, and ethics, and “norms” can therefore be, for example, social
expectations, legal laws or linguistic imperatives or commands.

The role of norms in computer science is changing and solutions based
on multiagent systems are increasing. The seventh ∆EON conference [31,
32] in 2004 in Madeira, Portugal, had as special theme “deontic logic and
multiagent systems,” the eighth ∆EON conference in 2006 in Utrecht, the
Netherlands, had as special focus “artificial normative systems” [22, 21], and
the ninth ∆EON conference [22, 43] in Luxembourg in 2008 was co-located
with the third workshop on normative multiagent systems NorMAS. Grad-
ually the ∆EON research focus changes from logical relations among norms
to, for example, agent decision making, and to systems in which norms are
created and in which agents can play the role of legislators.

We approach this question of defining guidelines for normative multiagent
system research by first considering two consensus definitions in the computer
science literature of previous normative multiagent systems NorMAS workshops,
from which we derive our first six guidelines. The remaining four guidelines follow
from a short survey of the philosophical literature.

2 Normative multiagent systems

Before we consider the ‘normchange’ and ‘mechanism design’ definition of nor-
mative multiagent systems, we start with a dictionary definition of normative
systems. With ‘normative’ we mean ‘conforming to or based on norms’, as in
normative behavior or normative judgments. According to the Merriam-Webster
Online [35] Dictionary, other meanings of normative not considered here are ‘of,
relating to, or determining norms or standards’, as in normative tests, or ‘pre-
scribing norms’, as in normative rules of ethics or normative grammar. With
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‘norm’ we mean ‘a principle of right action binding upon the members of a
group and serving to guide, control, or regulate proper and acceptable behav-
ior’. Other meanings of ‘norm’ given by the Merriam-Webster Online Dictionary
but not considered here are ‘an authoritative standard or model’, ‘an average
like a standard, typical pattern, widespread practice or rule in a group’, and
various definitions used in mathematics.

2.1 The normchange definition

The first definition of a normative multiagent system emerged after two days of
discussion at the first workshop on normative multiagent systems NorMAS held
in 2005 as a symposium of the Artificial Intelligence and Simulation of Behaviour
convention (AISB) in Hatfield, United Kingdom:

The normchange definition. “A normative multiagent system is a multia-
gent system together with normative systems in which agents on the one
hand can decide whether to follow the explicitly represented norms, and on
the other the normative systems specify how and in which extent the agents
can modify the norms” [8].

The first three guidelines are derived from this definition. The first one con-
cerns the explicit representation of norms, which has been interpreted either
that norms must be explicitly represented in the system (the ‘strong’ interpre-
tation) or that norms must be explicitly represented in the system specification
(the ‘weak’ interpretation). The first guideline is to make explicit and motivate
which interpretation is used, the strong one, the weak one, or none of them.

Guideline 1 Motivate which definition of normative multiagent system is used.

The motivation for the strong interpretation of the explicit representation is
to prevent a too general notion of norms. Any requirement can be seen as a norm
the system has to comply with; but why should we do so? Calling every require-
ment a norm makes the concept empty and useless. The weak interpretation is
used to study the following two important problems in normative multiagent
systems.

Norm compliance. How to decide whether systems or organizations comply
with relevant laws and regulations? For example, is a hospital organized
according to medical regulations? Does a bank comply with Basel 2 regula-
tions?

Norm implementation. How can we design a system such that it complies
with a given set of norms? For example, how to design an auction such that
agents cannot cooperate?

The second guideline follows from the fact that agents can decide whether
to follow the norms. This part of the definition is borrowed from the ∆EON
tradition, whose founding fathers Meyer and Wieringa observe that “until re-
cently in specifications of systems in computational environments the distinction

3



between normative behavior (as it should be) and actual behavior (as it is) has
been disregarded: mostly it is not possible to specify that some system behavior
is non-normative (illegal) but nevertheless possible. Often illegal behavior is just
ruled out by specification, although it is very important to be able to specify
what should happen if such illegal but possible behaviors occurs!” [36, preface].
However, constraints are well studied and well understood concepts, so if a norm
is a kind of constraint, the question immediately is raised what is special about
them.

Guideline 2 Make explicit why your norms are a kind of (soft) constraints that
deserve special analysis.

Examples of issues which have been analyzed for norms but to a less degree
for other kinds of constraints are ways to deal with violations, representation of
permissive norms, the evolution of norms over time (in deontic logic), the relation
between the cognitive abilities of agents and the global properties of norms, how
agents can acquire norms, how agents can violate norms, how an agent can be
autonomous [17] (in normative agent architectures and decision making), how
norms are created by a legislator, emerge spontaneously or are negotiated among
the agents, how norms are enforced, how constitutive or counts-as norms are used
to describe institutions, how norms are related to other social and legal concepts,
how norms structure organizations, how norms coordinate groups and societies,
how contracts are related to contract frames and contract law, how legal courts
are related, and how normative systems interact?

For example, the norms of global policies may be represented as soft con-
straints, which are used in detective control systems where violations can be
detected, instead of hard constraints restricted to preventative control systems
in which violations are impossible. The typical example of the former is that
you can enter a train without a ticket, but you may be checked and sanctioned,
and an example of the latter is that you cannot enter a metro station without
a ticket. However, if the norms are represented as constraints, then how to ana-
lyze that detective control is the result of actions of agents and therefore subject
to errors and influenceable by actions of other agents? For example, it may be
the case that violations are not often enough detected, that law enforcement is
lazy or can be bribed, there are conflicting obligations in the normative system,
that agents are able to block the sanction, block the prosecution, update the
normative system, etc.

The third guideline follows from the fact that norms can be changed by the
agents or the system, which distinguished this definition of normative multiagent
system from the common framework used in the ∆EON community, and led to
the identification of this definition as the “normchange” definition of normative
multiagent systems.

Guideline 3 Explain why and how norms can be changed at runtime.

For example, a norm can be made by an agent, as legislators do in a legal
system, or there can be an algorithm that observes agent behavior, and suggests
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a norm when it observes a pattern. The agents can vote on the acceptance of
the norm. Likewise, if the system observes that a norm is often violated, then
apparently the norm does not work as desired, and it undermines the trust of
the agents in the normative system, so the system can suggest that the agents
can vote whether to retract or change the norm.

2.2 The mechanism design definition

The fourth, fifth and sixth guideline follow from the consensus definition of the
second workshop on normative multiagent systems NorMAS held as Dagstuhl
Seminar 07122 in 2007. After four days of discussion, the participants agreed to
the following consensus definition:

The mechanism design definition. “A normative multiagent system is a mul-
tiagent system organized by means of mechanisms to represent, communi-
cate, distribute, detect, create, modify, and enforce norms, and mechanisms
to deliberate about norms and detect norm violation and fulfilment.” [10]

The fourth guideline emphasizes the game-theoretic model and the notion of a
norm as a mechanism. According to Boella et al., “the emphasis has shifted from
representation issues to the mechanisms used by agents to coordinate themselves,
and in general to organize the multiagent system. Norms are communicated, for
example, since agents in open systems can join a multiagent system whose norms
are not known. Norms are distributed among agents, for example, since when new
norms emerge the agent could find a new coalition to achieve its goals. Norm
violations and norm compliance are detected, for example, since spontaneous
emergence norms of among agents implies that norm enforcement cannot be
delegated to the multiagent infrastructure.” [10]

Guideline 4 Discuss the use and role of norms always as a mechanism in a
game-theoretic setting.

Here we refer to game theory in a very liberal sense, not only to classical
game theory studied in economics, which has been criticized for its ideality as-
sumptions. Of particular interest are alternatives taking the limited or bounded
rationality of decision makers into account. For example, Newell [37] and others
develop theories in artificial intelligence and agent theory, replace probabilities
and utilities by informational (knowledge, belief) and motivational attitudes
(goal, desire), and the decision rule by a process of deliberation. Bratman [11]
further extends such theories with intentions for sequential decisions and norms
for multiagent decision making. Alternatively, Gmytrasiewitcz and Durfee [19]
replace the equilibria analysis in game theory by recursive modelling, which con-
siders the practical limitations of agents in realistic settings such as acquiring
knowledge and reasoning so that an agent can build only a finite nesting of
models about other agents’ decisions.

Games can explain that norms should satisfy various properties to be effective
as a mechanism to obtain desirable behavior. For example, the system should
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not sanction without reason, as for example Caligula or Nero did in the ancient
Roman times, as the norms would loose their force to motivate agents. Moreover,
sanctions should not be too low, but they also should not be too high, as shown
by argument of Beccaria. Otherwise, once a norm is violated, there is no way to
prevent further norm violations.

Games can explain also the role of various kinds of norms in a system. For
example, assume that norms are added to the system one after the other and
this operation is performed by different authorities at different levels of the hier-
archy. Lewis “master and slave” game [30] shows that the notion of permission
alone is not enough to build a normative system, because only obligations divide
the possible actions into two categories or spheres: the sphere of prohibited ac-
tions and the sphere of permitted (i.e., not forbidden) actions or “the sphere of
permissibility”. More importantly, Bulygin [13] explains why permissive norms
are needed in normative systems using his “Rex, Minister and Subject” game.
“Suppose that Rex, tired of governing alone, decides one day to appoint a Min-
ister and to endow him with legislative power. [...] an action commanded by
Minister becomes as obligatory as if it would have been commanded by Rex.
But Minister has no competence to alter the commands and permissions given
by Rex.” If Rex permits hunting on Saturday and then Minister prohibits it for
the whole week, its prohibition on Saturday remains with no effect.

As another example, in our game theoretic approach to normative systems [9]
we study the following kind of normative games.

Violation games: interacting with normative systems, obligation mechanism,
with applications in trust, fraud and deception.

Institutionalized games: counts-as mechanism, with applications in distributed
systems, grid, p2p, virtual communities.

Negotiation games: MAS interaction in a normative system, norm creation
action mechanism, with applications in electronic commerce and contracting.

Norm creation games: multiagent system structure of a normative system,
permission mechanism, with applications in legal theory.

Control games: interaction among normative systems, nested norms mecha-
nism, with applications in security and secure knowledge management sys-
tems.

The fifth guideline follows from the introduction of organizational issues in
the definition of normative multiagent systems. Norms are no longer seen as
the mechanism to regulate behavior of the system, but part of a larger insti-
tution. This raises the question what precisely the role of norms is in such an
organization.

Guideline 5 Clarify the role of norms in your system.

Norms are rules used to guide, control, or regulate desired system behavior.
However, this is not unproblematic. For example, consider solving traffic prob-
lems by introducing norms, as a cheap alternative to building new roads. It does
not work, for the following two reasons. The first reason is that if you change
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the system by building new norms or introducing new norms, then people will
adjust their behavior. For example, when roads improve, people tend to live fur-
ther away from their work. In other words, a normative multiagent system is a
self-organizing system. Moreover, the second problem with norm design is that
norms can be violated. For example, most traffic is short distance, for which we
could forbid using the car. However, it is hard to enforce such a norm, since peo-
ple will always claim to have come from long distance, even if they live around
the corner.

Norms can also be seen as one of the possible incentives to motivate agents,
which brings us again back to economics.

“Economics is, at root, the study of incentives: how people get what
they want, or need, especially when other people want or need the same
thing. Economists love incentives. They love to dream them up and enact
them, study them and tinker with them. The typical economist believes
the world has not yet invented a problem that he cannot fix if given a
free hand to design the proper incentive scheme. His solution may not
always be pretty–but the original problem, rest assured, will be fixed. An
incentive is a bullet, a lever, a key: an often tiny object with astonishing
power to change a situation.
. . .
There are three basic flavors of incentive: economic, social, and moral.
Very often a single incentive scheme will include all three varieties. Think
about the anti-smoking campaign of recent years. The addition of $3-per-
pack “sin tax” is a strong economic incentive against buying cigarettes.
The banning of cigarettes in restaurants and bars is a powerful social
incentive. And when the U.S. government asserts that terrorists raise
money by selling black-market cigarettes, that acts as a rather jarring
moral incentive.’ [29]

Here it is important to see that moral incentives are very different from
financial incentives. For example, Levitt [29, p.18-20], discussing an example of
Gneezy and Rustichini [20], explains that the number of violations may increase
when financial sanctions are imposed, because the moral incentive to comply
with the norm is destroyed. The fact that norms can be used as a mechanism to
obtain desirable system behavior, i.e. that norms can be used as incentives for
agents, implies that in some circumstances economic incentives are not sufficient
to obtain such behavior. For example, in a widely discussed example of the so-
called centipede game, there is a pile of thousand pennies, and two agents can in
turn either take one or two pennies. If an agent takes one then the other agent
takes turn, if it takes two then the game ends. A backward induction argument
implies that it is rational only to take two at the first turn. Norms and trust
have been discussed to analyze this behavior, see [28] for a discussion.

A rather different role of norms is to organize systems. To manage properly
complex systems like multiagent systems, it is necessary that they have a mod-
ular design. While in traditional software systems, modularity is addressed via
the notions of class and object, in multiagent systems the notion of organization
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is borrowed from the ontology of social systems. Organizing a multiagent system
allows to decompose it and defining different levels of abstraction when design-
ing it. Norms are another answer to the question of how to model organizations
as first class citizens in multiagent systems. Norms are not usually addressed to
individual agents, but rather they are addressed to roles played by agents [6]. In
this way, norms from a mechanism to obtain the behavior of agents, also become
a mechanism to create the organizational structure of multiagent systems. The
aim of an organizational structure is to coordinate the behavior of agents so to
perform complex tasks which cannot be done by individual agents. In organiz-
ing a system all types of norms are necessary, in particular, constitutive norms,
which are used to assign powers to agents playing roles inside the organization.
Such powers allow to give commands to other agents, make formal communica-
tions and to restructure the organization itself, for example, by managing the
assignment of agents to roles. Moreover, normative systems allow to model also
the structure of an organization and not only the interdependencies among the
agents of an organization. Consider a simple example from organizational theory
in Economics: an enterprise which is composed by a direction area and a produc-
tion area. The direction area is composed by the CEO and the board. The board
is composed by a set of administrators. The production area is composed by two
production units; each production unit by a set of workers. The direction area,
the board, the production area and the production units are functional areas. In
particular, the direction area and the production areas belong to the organiza-
tion, the board to the direction area, etc. The CEO, the administrators and the
members of the production units are roles, each one belonging to a functional
area, e.g., the CEO is part of the direction area. This recursive decomposition
terminates with roles: roles, unlike organizations and functional areas, are not
composed by further social entities. Rather, roles are played by other agents, real
agents (human or software) who have to act as expected by their role. Each of
these elements can be seen as an institution in a normative system, where legal
institutions are defined by Ruiter [39] as “systems of [regulative and constitu-
tive] rules that provide frameworks for social action within larger rule-governed
settings”. They are “relatively independent institutional legal orders within the
comprehensive legal orders”.

The sixth guideline follows from the trend towards a more dynamic interac-
tionist view identified at the second NorMAS workshop. “This shift of interest
marks the passage of focus from the more static legalistic view of norms (where
power structures are fixed) to the more dynamic interactionist view of norms
(where agent interaction is the base for norm related regulation).” This ties in
to what Strauss [42] called “negotiated order”, Goffman’s [23] view on institu-
tions, and Giddens’ [18] structuration theory. The two views are summarized in
Table 1. For example, if in a normative system the norms are created by agents
it is more a legalistic view, but if there is an algorithm that observes behavior
and proposes norms, it is more an interactionist view. The latter procedure can
still be put up to vote for the agents, and being accepted or rejected. As another
example, suppose a monitoring system observes that some norms are violated
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frequently, then it can propose to delete the norms, for example because the
violations decrease the trust of the agents in the system.

Legalistic view Interactionist view

top-down view bottom-up view

normative
system

autonomous individually
oriented view

regulatory instrument regularities of behavior

to regulate emerging
behavior of open systems

emerge without any
enforcement system

compliance sanctions

sharing of the norms

their goals happen to
coincide

they feel themselves as
part of the group

they share the same
values

sanctions are not always
necessary

social blame and
spontaneous exclusion

freedom to
create norms

restricted to contracts
emergence of norms

Table 1. Two views on normative multiagent systems

Guideline 6 Relate the notion of “norm” to the legal, social, or moral litera-
ture.

Boella et al. put the legalistic and interactionist view in the context of five
levels in the development of normative multiagent systems, summarized in Table
2. They observe that “for each level the development of the normative multiagent
system will take a much larger effort than the development of similar systems
at lower levels.” For example, if norms are explicitly represented (level 2) rather
than built into the system (level 1), then the system has to be much more flexible
to deal with the variety of normative systems that may emerge. However, it may
be expected that normative multiagent systems realized at higher levels will have
a huge effect on social interaction, in particular on the web” [10]. We illustrate the
more dynamic interactionist viewpoint on normative multiagent systems using
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virtual communities in virtual reality settings like Second Life. In these virtual
communities, human agents interact with artificial agents in a virtual world.
This interactionist view, which has been promoted in the multiagent systems
community by Cristiano Castelfranchi [14], becomes essential in applications
related to virtual communities. In Second Life, for example, communities emerge
in which the behavior of its members show increasing homogeneity.

level

1 off-line norm
design [41]

norms are imposed by the designer and
automatically enforced, agents cannot organize

themselves by means of norms

2
norm representation

norms are explicitly represented

they can be used in agent communication and
negotiation

a simple kind of organizations and institutions can
be created

3 norm manipulation

a legal reality is created

agents can add and remove norms following the
rules of the normative system

4 social reality the ten challenges discussed Table 3

5 moral reality This goes beyond present studies in machine ethics [4]

Table 2. Five levels in the development of normative multiagent systems. [10]

Boella et al. also mention ten challenges posed by the interactionist view-
point: They “take the perspective from an agent programmer, and consider which
kinds of tools like programming primitives, infrastructures, protocols, and mech-
anisms she needs to deal with norms in the example scenario. Similar needs exist
at the requirements analysis level, or the design level, but we have chosen for the
programming level since it makes the discussion more concrete, and this level is
often ignored when norms are discussed. The list is not exhaustive, and there is
some overlap between the challenges. Our aim is to illustrate the range of topics
which have to be studied, and we therefore do not attempt to be complete” [10].
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Challenge Tool

1
Tools for agents supporting communities in their task of recognizing, creating,

and communicating norms to agents

2
Tools for agents to simplify normative systems, recognize when norms have

become redundant, and to remove norms

3 Tools for agents to enforce norms

4 Tools for agents to preserve their autonomy

5 Tools for agents to construct organizations

6

Tools for agents to create intermediate concepts and normative ontology, for
example to decide about normative gaps

7 Tools for agents to decide about norm conflicts

8

Tools for agents to voluntarily give up some norm autonomy by allowing
automated norm processing in agent acting and decision making

9 Tools for conviviality

10 Tools for legal responsibility of the agents and their principals

Table 3. Ten challenges posed by the interactionist viewpoint. [10]

3 Philosophical foundations

We consider only four guidelines from the rich history of deontic logic in philo-
sophical logic. The first two guidelines follow from the history of deontic logic,
the third guideline from the methodology in deontic logic based on deontic para-
doxes, and the fourth guideline from the deontic logic in computer science to
study norms in the way they interact with other concepts. We believe philo-
sophical logic has much more to offer for computer scientists, but we restrict
ourselves to the most important issues.

3.1 Deontic logic

In 1951, the philosopher and logician Von Wright wrote a paper called “deontic
logic” [45], which subsequently became the name of the research area concerned
with normative concepts such as obligation, prohibition and permission. The
term deontic is derived from the ancient Greek déon, meaning that which is
binding or proper. The basis of his formal system was an observed relation
between obligation and permission. For example, he defined the obligation to
tell the truth by interpreting that it is good to tell the truth, and therefore it
is bad to lie. If it is bad to lie then it is forbidden to lie, and therefore it is not
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permitted to lie. Summarizing, something is obligatory when its absence is not
permitted. This logical relation is based on the binary distinction between good
and bad, as illustrated by its possible worlds semantics distinguishing between
good and bad worlds.

The relation between obligation and violation was given by Anderson seven
years later in 1958, in a paper called “A Reduction of Deontic Logic to Alethic
Modal Logic” [3]. In this paper, he proposed a reduction of obligation to viola-
tion. For example, the obligation to tell the truth means that a lie necessarily
implies a violation. In general, and in its simplest form, something is obliged if
and only if its absence necessarily leads to a violation.

The problems of these early approaches were illustrated in 1963 in a paper by
Chisholm called “Contrary-to-duty imperatives and deontic logic” [16]. Consider
a pregnant woman going to the hospital. The shortest way to go to the hospital
is turning left, which obviously is what the driver is doing. However, there is
a norm that it is forbidden to go to the left, so she is violating the obligation
to go to the right. Now, the problem is due to two additional norms. One says
that if she goes to the left she has to signal that she is going to the left, and
one says that if she goes to the right she has to signal that she is going to the
right. The problem here is how to explain that given that she is going to the
left, she is obliged to signal that she is going to the left. This obligation cannot
be explained by the basic distinction between good and bad, because the good
thing here is to go to the right and signaling that she is going to the right at
least from the perspective of traffic law.

Modern deontic logic started with a paper by Bengt Hansson in 1969, called
“An Analysis of some Deontic Logics” [27]. In this paper he introduced a se-
mantics based on a betterness relation for conditional obligations (it was ax-
iomatized only six years later). With his paper he started modern deontic logic.
The pregnant woman example can be represented by an ideal situation from the
perspective of traffic law – in which the car goes to the right and signals that
it will go to the right, but the situation in which the car goes to the left and
signals that it will go to the left is better to the one in which the car goes to
the left but signals that it will go to the right. As mentioned in the previous
section, it is precisely the possibility of violation, that led Meyer and Wieringa
to introduce the use of norms and deontic logic in computer science. Moreover,
the formalism has become popular also in other areas of computer science too,
such as non-monotonic logic and qualitative decision theory.

The seventh guideline says not to use the prehistory of deontic logic in the
fifties and sixties of the previous century, but adapt to modern deontic logic
as studied since the seventies. To say it crudely, Von Wright’s and Anderson’s
systems have not been in the philosophical literature for forty years, so there
seems little reason for computer scientists to return to these forgotten theories.

Guideline 7 Use norms not only to distinguish right from wrong, but also to
resolve dilemmas, and use norms not only describe violations, but in general to
coordinate, organize, guide, regulate or control interaction among agents.
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Von Wright’s system became known as the ‘Old System’, since he developed
many modern systems too. Whereas the old system was based on monadic modal
logic, the new systems were based on dyadic modal logics, just like Hansson’s
peference-based deontic logic. However, some people started to call the old sys-
tem ‘Standard Deontic Logic’ or SDL, and this led to a lot of confusion. Some
people in computer science, maybe due to the important role of standards in this
research field, believed that a system called Standard Deontic Logic has to be
a common reference for future explorations. To emphasize this misconception,
let us consider some more examples. Remember that SDL sees norms just as
being good and bad, or right and wrong. For example, it is right to obey your
parents, it is wrong to hijack a plane, it is good to finish in time, and it is bad to
write a computer virus. Though this is one way to look at norms, it is often not
sufficient. Consider the following example. Suppose there is a plane hijacked by
terrorists heading towards some high towers. There is a moral dilemma whether
we may or should shoot down this plane. It is a dilemma, because if we shoot
down the plane there will be a lot of innocent people killed, but if we don’t shoot
down the plane, then the plane will crash into these buildings. So it is a moral
dilemma, and just thinking about right and wrong is not sufficient to solve it.
People have been thinking about this kind of problems in ethics, and there are
different theories. For example, a utilitarian theory says that you should mini-
mize the damage. So what you should do is shoot down this plane, you may do it,
you are obliged to do it, because if you don’t do it, then the number of casualties
will be higher than if you don’t shoot it down. However, another ethical theory
says that we may not shoot down the plane, because it is active involvement
of ourselves, and if we do this, then we are responsible for killing the people
in the plane. So it is forbidden to shoot down the plane. If we represent norms
in computer systems, as we are now starting to do, then we can expect to find
conflicts, and we therefore need to have a way to resolve these conflicts.

Anderson’s reduction suggests that a norm is in the end just a description of
violations. In the previous example of hijacking a plane, a norm says what counts
as hijacking a plane, we call it a legal ontology, there is a norm telling us that
it is a violation to hijack a plane, and there is a sanction associated when you
do this. This is also very popular in computer science, but it is also insufficient.
One indication of the problems related to this kind of reduction, is that people
have not been able to give a reduction from Hansson’s dyadic deontic logic to
violations. Another conceptual problem is that violation is associated with norms
and imperatives instead of obligations and prohibitions studied in deontic logic,
an issue we discuss further below. But there are also practical problems. Consider
for example the much discussed European Constitution. The question is, can we
look at this text only as a set of descriptions of norm violations? There is an
organizational structure, distribution of powers, there are several norms, there
are several sanctions, and it seems, at least at first sight, that we can try to
represent it as a set of norm violations. The problem with this constitution is
that it has been rejected, we will never know what it really means. What we can
do is look at the rules that are in force in the European Union, of which one says
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that the national deficit of a country should be below 3% of the national gross
product. However, there were various countries who broke this norm, France
and Germany in particular. However, the violation was not recognized, and the
countries were not sanctioned.

The latter point is a little more subtle, because there are systems with vi-
olation predicates which are useful to reason about normative systems, namely
diagnostic theories. Such theories have been developed in the eighties in artificial
intelligence and computer science, and have been applied to a wide variety of
domains, such as fault diagnosis of systems, or medical diagnosis. They can also
be used to diagnose a court case, and determine whether someone is guilty or
not (well, in principle, there are some more issues in legal reasoning which we
will not consider here). However, as is well-known in ∆EON community, such
a system is neither a deontic logic, nor a normative system. The main problem
of such a formal system is that it does not deal easily with consequences of vi-
olations, so-called contrary-to-duty reasoning. For example, agent A should do
α, and if he does not do so, then police agent B should punish him (a standard
example in which norms regulate interaction between two agents). For a further
discussion on this approach and its limitations, see [44].

The seventh guideline follows from the more recent literature on deontic logic,
of which we have given a very sketchy overview in Table 4. In the beginning de-
ontic logic was syntax based, and semantics came later. Modal semantics became
very popular for some time, but during the past twenty years approaches based
on non-monotonic logic and imperatives have become more and more popular.
Nowadays, we can no longer say that deontic logic is a branch of modal logic.
The use of possible worlds (Kripke) semantics is useful to distinguish good from
bad, but less useful to represent dilemmas, or imperatives.

period tradition main issue

50s monadic modal logic relation O and P
60s dyadic modal logic relation O and facts, violations,

sub-ideality and optimality, CTD
70s temporal deontic logic relation O and time
80s action deontic logic relation O and actions
90s defeasible deontic logic dilemmas, CTD
00s imperatives, normative systems Jorgensen’s dilemma

Table 4. A schematic reconstruction of deontic logic

In particular, the seventh guideline follows from attempts during the past
decade to base the semantics of deontic logic on imperatives. Deontic logic de-
scribes logical relations between obligations, prohibitions and permissions, but
it is conditional on a normative system, which is typically left implicit. More
precisely, there are two distinct philosophical traditions, the one of deontic logic
discussed thus far, and another one of normative systems. The main challenge
during the past ten years in deontic logic is how these two traditions can be

14



merged. This story is explained in [25], which at this moment is the best in-
troduction to current research in deontic logic. The most famous proponents of
normative systems are Alchourrón and Bulygin [1], who argue in 1971 that a
normative system should not be defined as a set of norms, as is commonly done,
but in terms of consequences:

“When a deductive correlation is such that the first sentence of the or-
dered pair is a case and the second is a solution, it will be called norma-
tive. If among the deductive correlations of the set α there is at least one
normative correlation, we shall say that the set α has normative conse-
quences. A system of sentences which has some normative consequences
will be called a normative system.” [1, p.55].

All the famous deontic logicians have discussed this subtle issue, often introduc-
ing new terminology. For example, Von Wright distinguished norms and nor-
mative propositions, and Alchourrón distinguished prescriptive and descriptive
obligations.

Guideline 8 Distinguish norms from obligations, prohibitions and permissions.

As an example, consider the input/output logic framework introduced by
Makinson and van der Torre [34]. The first input/output logic principle is that
norms are not represented by propositional sentences, as in AGM framework
for theory change [2], or as modal formulas, as in deontic logic, but as pairs of
formulas of an arbitrary logic. The pair of propositional formulas represents a
rule, and the two propositional formulas are called the antecedent and consequent
of the rule. The second principle of the input/output logic framework is that the
primary role of norms in a normative system is the derivation of obligations
and prohibitions. Which obligations and prohibitions can be derived from a
normative system depends on the factual situation, which we call the context
or input and represent by a propositional formula. The function that associates
with each context the set of obligations describes the meaning of the normative
system, because it is a kind of ‘operational semantics’ of the normative system.
An input/output operation out : (2L×L) × L → 2L is a function from the set
of normative systems and contexts, to a set of sentences of L. We say that x is
obligatory in normative system N and context a if x ∈ out(N, a). The simplest
input/output logic defined by Makinson and van der Torre is so-called simple-
minded output. x is in the simple-minded output of N in context a, written as
x ∈ out1(N, a), if there is a set of norms (a1, x1), . . . , (an, xn) ∈ N such that
ai ∈ Cn(a) and x ∈ Cn(x1 ∧ . . . ∧ xn), where Cn(S) is the consequence set of
S in L. Such an operational semantics can be axiomatized as follows. out1(N)
is the minimal set that contains N ∪ {(>,>)}, is closed under replacement of
logical equivalents in antecedent and consequent, and the following proof rules
strengthening of the input SI, weakening of the output WO, and conjunction
rule AND.

(a, x)
(a ∧ b, x)

SI
(a, x ∧ y)

(a, x)
WO

(a, x), (a, y)
(a, x ∧ y)

AND
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Ten philosophical problems on deontic logic are given by Hansen et al. [26]
and listed in Table 5. Of this list, we observe that constitutive norms and inter-
mediate concepts are often seen as the same problem (though constitutive norms
can be used also for other problems than intermediate concepts), and that there
are other problems not listed in this paper, such as the equivalence of normative
systems, or redundancy of a norm in a normative system [12, 5].

1. How can deontic logic be reconstructed in accord with the philosophical position
that norms are neither true nor false?

2. When is a set of norms to be termed ‘coherent’?
3. How can deontic logic accommodate possible conflicts of norms? How can the

resolution of apparent conflicts be semantically modeled?
4. How do we reason with contrary-to-duty obligations which are in force only in case

of norm violations?
5. How to define dyadic deontic operators with regard to given sets of norms and

facts?
6. How to distinguish various kinds of permissions and relate them to obligations?
7. How can meaning postulates and intermediate terms be modeled in semantics for

deontic logic reasoning?
8. How to define counts-as conditionals and relate them to obligations and permis-

sions?
9. How to revise a set of regulations or obligations? Does belief revision offer a satis-

factory framework for norm revision? Can the belief merging framework deal with
the problem of merging sets of norms?

Table 5. Ten philosophical problems. “We argue that norms, not ideality, should take
the central position in deontic semantics, and that a semantics that represents norms,
as input/output logic does, provides helpful tools for analyzing, clarifying and solving
the problems of deontic logic.” [26]

3.2 Methodology

Not surprisingly for such a highly simplified theory like Von Wright’s Old System,
also know as SDL, there are many features of actual normative reasoning that
SDL does not capture. Notorious are the so-called ‘paradoxes of deontic logic’,
which are usually dismissed as consequences of the simplifications of SDL. For
example, Ross’s paradox [38], the counterintuitive derivation of “you ought to
mail or burn the letter” from “you ought to mail the letter”, is typically viewed
as a side effect of the interpretation of ‘or’ in natural language.

Guideline 9 Don’t motivate your new theory by toy “paradoxical” examples,
but use the deontic paradoxes to illustrate basic properties of your system.

Computer scientists are usually surprised when they read the philosophical
literature, because the posed problems seem to have a trivial solution. For ex-
ample, the most famous deontic paradox of all, is often posed as the problem to
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give a consistent representation such that none of the sentences can be derived
from the others:

1. A certain man should go to the assistance of his neighbors,
2. If he goes, he should tell them he is coming
3. If he does not go, he should not tell them that he is coming
4. He does not go.

In SDL the set {Oa, O(a → t),¬a → O(¬t),¬a} is inconsistent, and in {Oa, a →
O(t),¬a → O(¬t),¬a} the sentences are not logically independent. However,
this problem is trivially solved by replacing the material implication by a strict
implication, or a relevant implication, or a defeasible implication. This has been
known since the early days of deontic logic, as may be expected since both deontic
logic and conditional logic were major branches of philosophical logic. In general,
any paradoxical consequence can be solved by simply weakening the logic (e.g.,
solve Ross’ paradox by replacing standard deontic logic by a non-normal modal
logic). The misconception is simply due to the fact that the deontic paradoxes
do not work the same way as experiments in engineering or the sciences. They
are just used to illustrate the formal system, not to guide research in the area. A
similar phenomena and misconception has been present in the field of defeasible
reasoning and deontic logic, where the use of the infamous Tweety example has
been criticized for similar reasons. The reason why contrary-to-duty paradoxes
have been discussed for fifty years in deontic logic is that a lot of normative
reasoning is directly or indirectly related to violations, just like in defeasible
reasoning a lot of reasoning is directly or indirectly related to exceptions.

3.3 From philosophy to computer science

Most of the confusions in deontic logic are due to the abstract nature of the
formal systems. In areas of computer science like multiagent systems or knowl-
edge representation we need to be more detailed, and most of the problems then
disappear.

Guideline 10 Regulative norms should not be considered by themselves, but
in relation to permissive norms, constitutive norms, procedural norms, agents,
roles, groups, societies, rights, duties, obligations, time, beliefs, desires, inten-
tions, goals, roles, and other kinds of norms and other social-cognitive computer
science concepts.

Regulative norms specify the ideal and varying degrees of sub-ideal behavior
of a system by means of obligations, prohibitions and permissions. Constitutive
norms are based on the notion that “X counts-as Y in context C” and are used
to support regulative norms by introducing institutional facts in the representa-
tion of legal reality. The notion of counts-as introduced by Searle [40] has been
interpreted in deontic logic in different ways and it seems to refer to different
albeit related phenomena [24]. Substantive norms define the legal relationships
of people with other people and the state in terms of regulative and constitutive
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norms, where regulative norms are obligations, prohibitions and permissions,
and constitutive norms state what counts as institutional facts in a normative
system. Procedural norms are instrumental norms, addressed to agents playing
roles in the normative system, which aim at achieving the social order specified
in terms of substantive norms [7].

4 Summary

Next generation normative multiagent systems contain general and domain inde-
pendent norms by combining three existing representations of normative multia-
gent systems. First, theories of normative systems and deontic logic, the logic of
obligations and permissions, for the explicit representation of norms as rules, the
application of such rules, contrary-to-duty reasoning and the relation to permis-
sions. Second, agent architecture for software engineering of agents and a model
of normative decision making. Third, a game-theoretic approach for model of
interaction explaining the relation among social norms and obligations, relat-
ing regulative norms to constitutive norms, the evolution of normative systems,
and much more. In this paper, we introduce and discuss ten guidelines for the
development of normative multiagent systems.

1. Motivate which definition of normative multiagent system is used.
2. Make explicit why norms are a kind of (soft) constraints deserving special analysis.
3. Explain why and how norms can be changed at runtime.
4. Discuss the use and role of norms as a mechanism in a game-theoretic setting.
5. Clarify the role of norms in the multiagent system.
6. Relate the notion of “norm” to the legal, social, or moral literature.
7. Use norms not only to distinguish right from wrong, but also to resolve dilemmas,

and use norms not only describe violations, but in general to coordinate, organize,
guide, regulate or control interaction among agents.

8. Distinguish norms from obligations, prohibitions and permissions.
9. Use the deontic paradoxes only to illustrate the normative multiagent system.

10. Consider regulative norms in relation to other kinds of norms and concepts.

Table 6. Ten guidelines for the development of normative multiagent systems

The use of norms and normative systems in computer science are examples of
the use of social concepts in computer science, which is now so well-established
that the original meaning of some of these concepts in the social sciences is some-
times forgotten. For example, the original meaning of a “service” in business
economics is rarely considered by computer scientists working on service ori-
ented architectures or web services, and likewise for service level agreements and
contracts, or quality of service. some social concepts have various new meanings.
For example, before its use in service level agreements, the notion of “contract”
was introduced in software engineering in Meyer’s design by contract, a well
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known software design methodology that views software construction as based
on contracts between clients (callers) and suppliers (routines), assertions, that
has been developed in the context of object oriented and the basis of the pro-
gramming language Eiffel. “Coordination” is emerging as an interdisciplinary
concept to deal with the complexity of compositionality and interaction, and
has been used from coordination languages in software engineering to a general
interaction concept in multiagent systems. In the context of information secu-
rity and access control “roles” became popular, with the popularity of eBay, the
social concepts of “trust” and “reputation” have become popular, and with the
emergence of social interaction sites like FaceBook or Second Life, new social
concepts like societies, coalitions, organizations, institutions, norms, power, and
trust are emerging [15]. In multiagent systems, social ability as the interaction
with other agents and co-operation is one of the three meanings of flexibility in
flexible autonomous action in Wooldridge and Jennings’ weak notion of agency
[46]; the other two are reactivity as interaction with the environment, and pro-
activeness as taking the initiative.

The main open question is whether “norms” could (or should) play a similar
role in computer science like “service”, “contract” or “trust”? One suggestion
comes from human computer interaction. Since the use of norms is a key element
of human social intelligence, norms may be essential too for artificial agents that
collaborate with humans, or that are to display behavior comparable to human
intelligent behavior. By integrating norms and individual intelligence normative
multiagent systems provide a promising model for human and artificial agent
cooperation and co-ordination, group decision making, multiagent organizations,
regulated societies, electronic institutions, secure multiagent systems, and so on.
Another suggestion comes from the shared interest of multiagent system research
and sociology in the relation between micro-level agent behaviour and macro-
level system effects. Norms are thought to ensure efficiency at the level of the
multiagent system whilst respecting individual autonomy. However, all these and
other suggestions bring circumstantial evidence at best. We have to build more
flexible normative multiagent systems, and test them in practice, before we know
where they can be used best.

For further reading on the use of normative systems in computer science,
we recommend the proceedings of the ∆EON conferences and the normative
multiagent systems workshops. The abstracts of all papers that appeared at
DLCS conferences can be searched on the deontic logic website:

http:\\deonticlogic.org
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Abstract. In multi-agent systems, software agents are modelled to pos-
sess characteristics and behaviour borrowed from human societies. Norms
are expectations of behaviours of the agents in a society. Norms can be
established in a society in different ways. In human societies, there are
several types of norms such as moral norms, social norms and legal norms
(laws). In artificial agent societies, the designers can impose these norms
on the agents. Being autonomous, agents might not always follow the
norms. Monitoring and controlling mechanisms should be in place to en-
force norms. As the agents are autonomous, they themselves can evolve
new norms while adapting to changing needs. In order to design and
develop robust artificial agent societies, it is important to understand
different approaches proposed by researchers by which norms can spread
and emerge within agent societies. This paper makes two contributions
to the study of norms. Firstly, based on the simulation works on norms,
we propose a life-cycle model for norms. Secondly, we discuss different
mechanisms used by researchers to study norm creation, spreading, en-
forcement and emergence.

1 Introduction

In human societies, norms have played an important role in governing behaviour
of the individuals in a society. Norms are the societal rules that govern the
prescription and proscription of certain behaviour . Norms improve cooperation
[1] and coordination among agents [2]. Norms reduce the amount of computation
required by the agents [3] as the agents do not have to search their entire state
space if they were to follow norms.

Artificial agent societies are societies in a networked environment where var-
ious agents share a virtual space and perform certain actions in a particular
context (e.g. auctions). These agent societies are modelled using some of the
social constructs borrowed from the human society. There have been two ap-
proaches for building normative behaviour in an agent. The first approach is the
prescriptive approach where an institutional mechanism specifies how the agents
should behave. The second approach is the bottom-up approach that could be
used in open environments by employing mechanisms that can help a norm to
emerge and govern the behaviour of an agent.

The advent of digital virtual environments such as Second Life [4] call for
a distributed approach to norm spreading and emergence. Centralized policing
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mechanism for such digital societies would be expensive from the view point
of computation required due to the explosion of the states of the agents. It is
impossible to monitor and control millions of agents assuming numerous roles
through a centralized enforcer. A distributed approach to norms addresses these
problems. Both of these approaches have been addressed by researchers and the
current works focus on the issues associated with the distributed approach.

A “norm capable” agent society is the one that is able to generate, distribute,
enforce and modify norms. Building robust agent societies that can create and
evolve norms is important because the framework that helps in recognizing these
norms will also be helpful for the agents to dynamically change these norms if
situations warrant it. A good approach to test models of norm capable societies
are simulations. So, a first step towards building such norm capable societies is
to understand the existing simulation works on norms. To that extent, based on
the simulation works on norms, we propose a life-cycle model for norms in the
first part of the paper and in the second part of the paper we categorize the
research works on norms based on the mechanisms employed by each of works.

2 What are norms?

Norms are expectations of an agent about the behaviour of other agents in the
society. The human society follows norms such as tipping in restaurants and
exchange of gifts at Christmas. Norms have been so much a part of different
cultures, it is not surprising that it is an active area of research in a variety
of fields including Sociology, Economics, Biology and Computer Science. Social
norms have been of interest to multi-agent researchers since the early nineties.
Norms are of interest to multi-agent system (MAS) researchers as they help in
sustaining social order and increase the predictability of behaviour in the society.
However, software agents tend to deviate from these norms due to their auton-
omy. So, the study of norms has become crucial to MAS researchers as they can
build robust multi-agent systems using the concept of norms and also experiment
with how norms evolve and adapt in response to environmental changes.

Due to multi-disciplinary interest in norms, several definitions for norms ex-
ist. Habermas [5], a renowned sociologist, identified norm-regulated actions as
one of the four action patterns in human behaviour. A norm to him means fulfill-
ing a generalized expectation of behaviour, which is a widely accepted definition
for social norms. Ullman-Margalit [6] describes a social norm as a prescribed
guide for conduct or action which is generally complied with by the members of
the society. She states that norms are the resultant of complex patterns of be-
haviour of a large number of people over a protracted period of time. Coleman [7]
describes “I will say that a norm concerning a specific action exists when the
socially defined right to control the action is held not by the actor but by others”.
Elster notes the following about social norms [1]. “For norms to be social, they
must be shared by other people and partly sustained by their approval and dis-
approval. They are sustained by the feelings of embarrassment,anxiety, guilt and
shame that a person suffers at the prospect of violating them. A person obeying
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a norm may also be propelled by positive emotions like anger and indignation ...
social norms have a grip on the mind that is due to the strong emotions they can
trigger”.

Researchers have divided norms into different categories. Tuomela [8] has
grouped norms into the following categories.

– r-norms (rule norms)
– s-norms (social norms)
– m-norms (moral norms)
– p-norms (prudential norms)

Rule norms are imposed by an authority based on an agreement between the
members (e.g. one has to pay taxes). Social norms apply to large groups such
as a whole society (e.g. one should not litter). Moral norms appeal to one’s
conscience (e.g. one should not steal or accept bribes). Prudential norms are
based on rationality (e.g one ought to maximize one’s expected utility). When
members of a society violate the societal norms, they may be punished.

Many social scientists have studied why norms are adhered to. Some of the
reasons for norm adherence include:

– fear of authority or power
– rational appeal of the norms
– emotions such as shame, guilt and embarrassment that arise because of non-

adherence.
– willingness to follow the crowd

Elster [1] categorizes norms into consumption norms (e.g. manners of dress),
behaviour norms (e.g. the norm against cannibalism), norms of reciprocity (e.g.
gift-giving norms), norms of cooperation (e.g. voting and tax compliance) etc.

For the purpose of this paper, we focus on social norms because the agents
in multi-agent systems have been modelled using ideas borrowed from sociology
such as speech act theory and autonomy. Software agents are the proxies for
human agents and possess these human-like attributes. Agents acting on behalf
of humans (e.g. in virtual worlds) or as independent entities (bots) will need this
notion of social norms that regulate their behaviour. Based on the definitions
provided by various researchers, we note that the notion of a norm is generally
made up of the following two aspects.

– Normative expectation of a behavioural regularity: There is a general agree-
ment within the society that a behaviour is expected on the part of an agent
(or actor) by others in a society, in a given circumstance.

– A norm spreading factor : Examples of norm spreading factors include the
notion of advice from powerful leaders and the sanctioning mechanism. When
an agent does not follow the norm, it could be subjected to a sanction.
The sanction could include monetary or physical punishment in the real
world which can trigger emotions (embarrassment, guilt etc.) or direct loss
of utility. Other kind of sanctions could include agents not being willing to
interact with an agent that violated the norm or the decrease of its reputation
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score. Other norm spreading factors include imitation and learning on the
part of an agent.

It should be noted that researchers are divided on what the differences be-
tween a norm and a convention are. Our belief is that convention is a common
expectation amongst (most) others that an agent adopts a particular action or
behaviour (e.g. the convention in ancient Rome was to drive on the left). In this
paper we do not distinguish conventions from norms. Both of them have been
incorporated under the umbrella of norms.

2.1 Normative multi-agent systems

Research on norms in multi-agent systems is about two decades old. [9–11].
Norms in multi-agent systems are treated as constraints on behaviour, goals to
be achieved or as obligations [12].

The definition of normative multi-agent systems as described by the re-
searchers involved in the NorMAS 2007 workshop is as follows [13]. A normative
multi-agent system is a multi-agent system organized by means of mechanism
to represent, communicate, distribute, detect, create, modify and enforce norms,
and mechanisms to deliberate about norms and detect norm violation and fulfill-
ment.

The research in normative multi-agent systems can be categorized into two
branches. The first branch focuses on normative system architectures, norm rep-
resentations, norm adherence and the associated punitive or incentive measures.
Lopez et al. [14] have designed an architecture for normative BDI agents and [15]
have proposed a distributed architecture for normative agents. Some researchers
are working on using deontic logic to define and represent norms [15, 16]. Sev-
eral researchers have worked on mechanisms for norm compliance and enforce-
ment [17–19]. A recent development is the research on emotion based mechanisms
for norm enforcement [20, 21]. Conte and Castelfranchi [22] have worked on an
integrated view of norms. Their work tries to bridge the gap between the pre-
scriptive view of norms and the emergence of conventions from mere regularities
using cognitive abilities of an agent. For a comparison of normative architectures
refer to Neumann’s article [23].

The second branch of research is related to emergence of norms. Neumann
has presented a case study of four research works on the simulation models of
norms from the perspective of foundations of social theory [24]. In this work, the
four papers were investigated in detail for identifying three methodological core
problems which are norm transmission, norm transformation and the function
of the norm. The first two problems correspond to the causal aspect of the norm
(i.e. what causes the norm to spread). The last problem deals with the purpose
of the norm. The author concludes that no model has been able to fully explain
both the causal and functional reasons behind norm emergence, however, the
current trend is towards bridging this gap.
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3 Phases of norm life-cycle

Researchers interested in norms have experimented with several mechanisms
associated with norms. Firstly we identify four phases of the norm life-cycle.
Secondly, we categorize the simulation mechanisms into 10 categories and have
assigned each category to a particular phase of the norm life-cycle.

In the body of research literature on social norms there isn’t a unified view
on how norms are created and spread in a society. Several researchers have
proposed models of norms [1,7,25–28]. In this paper we refer to four important
phases of norm life-cycle which are norm creation, spreading, enforcement and
emergence. Even though there hasn’t been any agreement on these phases by
social researchers, we use these four phases as they broadly capture the processes
associated with the norm life-cycle. Figure 1 shows the four phases of norm life-
cycle (in the left) and the categories of mechanisms (in the right).

Fig. 1: Phases of norm life-cycle and categories of simulation models

The first phase of the life-cycle model is that of norm creation. A norm
can be created by a designer of the system or a powerful leader. The designer
and leadership approaches are top-down authoritarian approaches. The other
approach for norm creation is the entrepreneurial approach where an agent might
come up with a norm and can recommend the norm to other agents. These norms
when created are the ”proposed norms”. Once such a proposed norm is created
by a designer, leader or entrepreuneur, it spreads through the society by one of
the spreading mechanisms such as advice about a norm by powerful members
of the society, imitation, learning on the part of the agents, cultural inheritance
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and evolutionary inheritance. Thus, norm spreading forms the second phase of
the norm life-cycle. When norms have spread and are internalized, agents may
expect other agents to follow the norm that they have subscribed to and may
sanction those agents that do not follow the norm. The third phase of the life-
cycle is the enforcement of norms where norm violators may be punished, their
utility might be reduced, their reputation impacted or emotions such as shame
and guilt being stirred which help in the regulation of normative behaviour. The
fourth phase is the norm emergence phase. A norm can be said to have emerged
if it has spread (i.e. it is followed by a considerable proportion of an agent society
and this fact is recognized by most agents). Another aspect of norm emergence is
that a norm can emerge without being explicitly created. Norms can emerge in a
bottom-up way. One or more cognitive agents, based on interactions in an agent
society can infer what the norms of the society are. We can say that these agents
derived a ”proposed norm” based on their cognitive ability (creation phase) and
then helped in the emergence of that norm (emergence phase). These cognitive
agents can also come up with an alternative norm that spreads and emerges in a
society and hence can replace an existing norm. This feedback loop is represented
as a dashed line in 1. It should be noted that not all simulation based research
on norms have considered all the 4 phases.

The life-cycle that we have presented is similar to Finnemore and Sikkink’s
model [27]. They have proposed three stages for the norm life cycle. The first
stage is the norm emergence stage which is characterized by the persuasion
by some norm entrepreneurs or norm innovators. Norm entrepreneurs are the
innovators who think about new ideas/norms in a society. Norm entrepreneurs
attempt to convince a critical mass of norm leaders to embrace new norms. The
second stage is characterized by the dynamics of imitation as the norm leaders
attempt to socialize with other people whom they might have influence over, so
they might become followers. The third stage is the norm cascade stage where
the followers take up the norm for reasons such as pressure to conform. As the
reader may observe, this model is a subset of the life-cycle model that we have
proposed. Also, this model caters for the entrepreneurial approach for norm
creation and the imitation approach for norm spreading. But, in our approach,
more mechanisms are brought under each of the phases.

3.1 Norm creation

Norm creation in multi-agent system refers to the mechanism by which an agent
in the society comes to know what the norm of the society is. There are three
approaches that simulation works have used and they are a) a designer spec-
ified norms (off-line design) b) a norm-leader specified norms and c) a norm-
entrepreneur considers that a norm is good for the society.

Off-line design approach - In this approach, norms are designed off-line,
and hardwired into agents. Walker and Wooldridge [29] note the following about
the off-line design of norms. “The off line design of norms will often be simpler
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to implement and might present the designer with a greater degree of control
over system functionality. However, there are a number of disadvantages with
this approach. First, it is not always the case that all the characteristics of a
system are known at design time; this is most obviously true of open systems
Secondly, in complex system the goals of agents might be constantly changing. To
keep reprogramming agents in such circumstances would be costly and inefficient.
Finally, the more complex the a system becomes, the less likely it is that system
designers will be able to design effective social laws”.

Some researchers have used this approach to compare the performance of a
normative system with a non normative one [30].This approach is only suitable
for top-down norm prescription that is a characteristic of closed and centralized
institutions.

Leadership approach - In this approach, some powerful agents in the society
(the norm-leaders) come up with a norm. The leader can provide these norms
to the follower agents [10,31].

Entrepreneurial approach - In agent societies, there might be some norm-
entrepreneurs who come up with a norm. When an agent comes up with a new
norm it tries to convince other agents [32].

Cognitive approach - One or more cognitive agents in a society can come
up with norms based on the deliberative processes that they employ [33]. In
this approach the agents have the cognitive ability to recognize what the norms
of a society are based on the observations of interactions. It should be noted
that the norm inferred by each agent might be different (which is based on the
observations that an agent has made). Thus, an agent in this model creates its
notion of what the norm is based on inference.

3.2 Norm spreading

Norm spreading relates to the distribution of a norm among a group. Mirriam-
Webster’s dictionary [34] defines spreading as to become dispersed, distributed,
or scattered or to become known or disseminated. There are several mechanisms
that help in spreading the norms such as leadership, imitation , machine learning,
cultural and evolutionary mechanisms. These mechanisms are discussed in detail
in the next section.

3.3 Norm enforcement

Norm enforcement refers to the process by which norm violators are discouraged
through some form of sanctioning. A widely used sanctioning mechanism is the
punishment of a norm violator (e.g. monetary punishment which reduces the
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agents fitness or a punishment that invokes emotions such as guilt and embar-
rassment). Reputation mechanisms have also been used as sanctions where an
agent is black-listed for not following a norm. The process of enforcement helps
to sustain norms in a society. Some researchers have considered enforcement as
a part of the spreading mechanism [19].

3.4 Norm emergence

We define norm emergence to be reaching some significant threshold in the extent
of the spread of a norm. For example, a society is said to have a norm of gift
exchange at Christmas if more than x% of the population follows such a practice.
The value of x varies from society to society and from one kind of norm to
another. The value of x has varied from 35 to 100 across different simulation
based studies of norms.

Simulation research on norms has employed two approaches to norm emer-
gence. One approach is that an agent comes to know about a norm through
mechanisms such as leadership [31, 35] or through imitation [3] and when it
accepts the norm it contributes to norm spreading and emergence. The other
way is that a cognitive agent could generate a personal norm based on observa-
tion [36]. Additionally many such cognitive agents in the society could generate
similar personal norms and for an external observer it might seem that a norm
has emerged in a society. Also, cognitive agents could communicate norms and
verify norms. The later bottom-up approach where micro interactions between
agents that lead to the macro effect of establishing a norm is more interesting
than the leadership and imitation based approaches.

4 Categorization of simulation works of norm creation,
spreading and emergence

In this section we categorize simulation work on norms into eight main categories
(shown in figure 2). Each category corresponds to a particular mechanism (e.g.
sanctioning mechanism, reputation mechanism). For each of these categories we
provide a brief description and discuss a few key papers. It should be noted
that some papers have made use of mechanisms that fall under more than one
category.

4.1 Social power

Social power plays an important role in societies in establishing order and en-
abling smoother functioning. Several researchers in normative multi-agent sys-
tems have focused on the notion of power [37–39] such as institutional power.
Lopez in her thesis on social power and norms notes that powers of an agent are
expressed through its abilities to change the beliefs, the motivations, and the
goals of other agents in such a way that its goals can be satisfied [40].
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Fig. 2: Categorization of simulation models

Sources of power could motivate, encourage or coerce their followers to take
up a particular norm (leadership approach) or force them to adopt a particular
norm based on sanctions (punishment approach). Researchers have experimented
with both types of social power approaches for norm spreading and enforcement.

Leadership mechanism - Leadership mechanisms are based on the notion
that there are certain leaders in the society. These leaders provide advice to
the agents in the society. The follower agents seek the leaders advice when de-
ciding about a norm. Verhagen [31] has used the concept of normative advice
(advice from the leader of a society) as one of the mechanisms for spreading
and internalizing norms in an agent society. However, this centralized approach
might not work well in open, flexible and dynamic societies. Savarimuthu et
al. [35] extended Verhagen’s model by adopting a distributed mechanism for
norm emergence. In their mechanism, there could be several normative advi-
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sors or role models whom other agents can request for advice. In this model, an
agent can be a leader for some agents while that agent itself can be a follower
of some other agent. Hoffmann [32] has experimented with the notion of norm
entrepreneurs who think of a norm that might be beneficial to the society. His
experiments explore the entrepreneurial norm dynamics and provide some initial
evidence for Finnemore and Sikkink’s norm life cycle model [27].

Sanction mechanism - Even though the models discussed above are based on
the notion of power and leadership, they do not include the notion of sanctioning
agents that do not follow the norm specified by a norm leader. Several works on
norms have used the notion of social power to inflict sanctions on agents that
do not follow a norm [17,19,41]. In his well known work [19], Axelrod has shown
how a meta-norm that defections should be punished can bring about the norm
of cooperation. Lopez et al. [17] have considered punishments and rewards in
their model. Their framework models agents with different personalities (social,
pressured, opportunistic, greedy, fearful, rebellious). A proper account of the
cost of punishment has not been considered in both these works. While Axelrod’s
work does not consider cost of punishment on the part of the sanctioning agent,
Lopez’s work assumes that a third party somehow bears this cost. Flentge et
al. [41] have shown how an agent comes to acquire a possession norm. They
have noted that sanctions help in the establishment of the possession norm if
the sanctioning costs are low or when there is no cost for sanctioning.

4.2 Reputation mechanism

Reputation refers to the positive or negative opinion about a person or agent
based on their interactions with others in the society. Researchers [42, 43] have
addressed how reputation models are beneficial in sustaining norms in an agent
society. They have experimented with the effect of the normative reputation on
the compliance costs of the norm. They have shown that the normative reputa-
tion of agents of the society helps in redistributing the costs of norm compliance
to both the agents that follow the norms as well as those who do not follow the
norms.

4.3 Imitation mechanism

The philosophy behind an imitation mechanism is When in Rome, do as Ro-
mans do [3]. These models are characterized by agents mimicking the behaviour
of what the majority of the agents do in a given agent society (following the
crowd). Epstein’s main argument for an imitation mechanism is that individual
thought (i.e. the amount of computing needed by a agent to infer what the norm
is) is inversely related to the strength of a social norm [3]. This implies that when
a norm becomes entrenched the agent can follow it without much thought. Ep-
stein has demonstrated this in the context of a driving scenario in which agents
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can observe each other’s driving preference (left or right) based on a certain ob-
servation radius r. If the agent sees more agents driving on the right within the
observation radius,it changes to the right. When a norm is established, the ra-
dius tends to move towards one. Other researchers have also experimented with
imitation models [36,40,44]. This might be a good mechanism when agents want
to avoid the cost of thinking about what the norm of the society is. An agent
using the imitation model is not involved in the creation of the norm, it is just
a part of the norm spreading effort. Though simple, the model can only account
for a way to spread the norm (which is blindly following it). It has been noted
that imitation approach cannot bring about the co-existence of multiple norms
in a society [45, 46]. Also, it is debatable if imitation-based behaviour (solely)
really leads to norms as there is no notion of common expectation.

4.4 Off-line design approach

Off-line design models are characterized by the agents of the society possessing
explicit knowledge of the norm. The intention of the designer specified approach
is to see how the society performs when the whole society possesses a norm.
One of the well-known works on norms specified by the designer is Shoham
and Tennenholtz [9]. They have experimented with norms associated with traf-
fic. Several other researchers [29, 43, 47] have experimented with an off-line de-
sign approach borrowing the basic experimental set-up proposed by Conte and
Castelfranchi [47]. Conte and Castelfranchi have shown using their simulation
experiments what the function of a norm is in the context of agents finding food
in a grid environment characterized by simple rules for movement and food col-
lection. They have compared the utilitarian strategy with the normative strategy.
They have shown that norms reduce the aggression level of the agent (i.e. when
a finder-keeper norm is followed) and also increase the average strength of an
agent.

4.5 Works based on machine learning

Several researchers have experimented with agents finding a norm based on learn-
ing on the part of an agent [2, 29, 48]. Shoham and Tennenholtz have used a
mechanism called co-learning which is a simple reinforcement learning mecha-
nism. They have used the “Highest Cumulative Reward (HCR)” rule to update
an agent’s strategy when playing a simple coordination game and a cooperation
game (prisoner’s dilemma). According to this rule, an agent chooses the strat-
egy that has yielded the highest reward in the past m iterations. The history of
the strategies chosen and the rewards for each strategy is stored in a memory
of a certain size (which can be varied). Walker and Wooldridge’s experimental
model [29] is based on the work done by Conte and Castelfranchi [47] where
agents move about a grid in search of food. They have experimented with 16
mechanisms for norm emergence. Their model used two parameters, the major-
ity and the strategic update function. Each of these parameters can be varied
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with four values. 16 experiments were based on size of the majority (simple, dou-
ble, quadruple, dynamic) and the nature of the update function (using majority
rule, memory restart, communication type and communication on success). Sen
and Airiau [48] have proposed a mechanism for the emergence of norms through
social learning. They have experimented with three reinforcement learning algo-
rithms and the agents learn norms based on private local interactions. They have
observed that when the population size is bigger the norm convergence is slower
and larger the set of possible action states the slower is the convergence. They
have also studied the influence of adding agents with a particular action state to
a pool of existing agents as well as norm emergence in isolated sub-populations.

Learning mechanisms employ a particular algorithm to identify a strategy
that maximizes an agent’s utility and the chosen strategy is declared as the
norm. Since all agents in the society make use of the same algorithm, the soci-
ety stabilizes to a uniform norm. Agents using this approach cannot distinguish
between a strategy and a norm. The agents do not have a notion of norma-
tive expectation (i.e. others expect certain behaviour on the part of an agent)
associated with a norm.

4.6 Cognitive approach

Researchers involved in the EMIL project [33] are working on a cognitive archi-
tecture for norm emergence. There have been some attempts to explore how the
mental capacities of agents play a role in the emergence of norms.

EMIL project aims to deliver a simulation-based theory of norm-innovation,
where norm-innovation is defined as a 2-way dynamics of inter-agent process and
intra-agent process. The inter-agent process results in the emergence of norms
where the micro interactions produce macro behaviour (norms). The intra-agent
process refers to what goes inside an agent’s mind so that they can recognize
what the norms of the society are. This approach is different from the learning
models as the agents in the cognitive approach are autonomous and have the
capability to examine interactions between agents and are able to recognize what
the norms could be. The agents in this model need not necessarily be utility
maximizing like the ones in the learning models. The agents in the model will
have the ability to filter external requests that affect normative decisions and
will also be able to communicate norms with other agents. Agents just employing
learning algorithms lack these capabilities.

Andrighetto et al. [36] have demonstrated how the norm recognition module
of the EMIL-A platform answers the question “how does a agent come to know
of what a norm is”. In particular they have experimented with an imitation ap-
proach versus the norm recognition approach that they have come up with. The
norm recognition module consists of two constructs, the normative board and a
module for storing different types of modals for norms. Each modal represents
a type of message that is exchanged between agents (e.g. deontics modal refers
to partitioning situations as either acceptable or unacceptable). The normative
board consists of normative beliefs and normative goals. They have shown that
norm recognizers perform better than social conformers (imitating agents) by
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the fact that the recognizers were able to identify a pool of potential norms
while the imitators generated only one type of norm.

The limitation of this approach is that agents just observe actions performed
by other agents. In practice they should be able to learn from their own expe-
rience as well. Perhaps, their own experience can be given a higher weight. At
present, agents in their model do not have the capability of violating the norms
and hence there are no costs associated with sanctions. The authors note this
can be a potential extension.

4.7 Emotion based works

Based on the previous work done by Scheve et al. [20], Fix et al. [21] discuss
the micro-macro linkage between emotions at the micro-level and the norm en-
forcement at the macro-level. The authors argue that emotions have a norm
regulatory function in agent societies. An agent observing a deviation of a norm
might generate emotions such as contempt or disgust which can be the motiva-
tion behind sanctions. Those agents that are sanctioned might generate emotions
such as shame, guilt or embarrassment which might lead to norm internaliza-
tion. The authors have used a Petri net model [49] to capture the micro-macro
linkage. It should be noted that the proposed model has not been implemented
in the context of a simulation experiment. Staller and Petta [50] have extended
Conte et al.’s experimental set up by including emotion based strategies.

4.8 Works using network topologies

Social networks are important for norm spreading and emergence because in the
real world, people are not related to each other by chance. They are related to
each other through the social groups that they are in, such as the work group,
church group, ethnic group and hobby group. Information tends to percolate
among the members of the group through interactions. Also, people seek advice
from a close group of friends and hence information gets transmitted between
the members of the social network.

In most simulation works, the treatment of norms has been mostly in the
context of an agent society where the agents interact with all the other agents
in the society [10, 31] in a random fashion. Few researchers have considered the
actual topologies of the social network for norm emergence [44]. We believe such
an approach is important for the study of norm spreading and emergence as
networks provide the topology and the infrastructure on which the norms can
be exchanged. Researchers have studied different kinds of network topologies and
their applications in the real world (a overview of different topologies is given
by Mitchell [51]). These application areas include opinion dynamics [52] and
the spread of diseases [53]. Researchers in normative multi-agent systems have
started to look at the role of network topologies [44,54–56]. Network topologies
have also been explored by other multi-agent system researchers in other contexts
such as reputation management [57,58].
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Research that has considered network topologies can be categorized into
static and dynamic network topology approaches. In the static approach, the
network topology is fixed. In the dynamic topology approach, the underlying
network can change when the simulation experiments are conducted.

Works using a static network topology - Kittock was the first to experi-
ment with the role of network topology in convention emergence [54]. He noted
that the choice of the global structure has a profound effect on the evolution of
the system. Pujol’s PhD thesis [44] dealt with the emergence of conventions on
top of social structures. He used the HCR mechanism proposed by Shoham and
Tennenholtz [2] to test norm emergence in connected, random, small world and
scale-free networks. He also demonstrated that the structure of the network is
crucial for norm emergence. Nakamaru and Levin [46] studied how two related
norms evolve in networked environments. Anghel et al. [59] investigated the ef-
fects of inter-agent communication across a network in the context of playing
minority game. They have shown that a scale-free leadership structure emerges
on top of a random network.

Dynamic topology works - Very few researchers have investigated the role
of dynamic network topologies on norm spreading and emergence. Savarimuthu
et al. [55] used Gonzalez et al.’s model [60] to create dynamic network topologies.
Gonzalez et al. have developed a model for constructing dynamically changing
networks. They have used the concept of agents (or particles) colliding in an
abstract social space to construct evolving networks. Savarimuthu et al. [55]
have created dynamic network topologies using Gonzalez’s model on which they
test their role model agent-based leadership mechanism. They have shown how
different types of norms emerge when societies with different norms for the same
context (playing the Ultimatum game [61]) are brought together. In particular,
they have shown that under certain conditions norms can co-exist in an agent
society.

4.9 Cultural and evolutionary mechanisms

Researchers have also proposed other mechanisms for norm spreading and emer-
gence. These include cultural and evolutionary models [62, 63]. Boyd and Rich-
erson [62] have proposed that norms can be propagated through cultural trans-
mission. According to them, there are three ways by which a social norm can be
propagated from one member of the society to another. They are

– Vertical transmission (from parents to offspring)
– Oblique transmission (from a leader of a society to the followers)
– Horizontal transmission (from peer to peer interactions)

Of these three kinds of norm transmission mechanisms, vertical and oblique
transmissions can be thought of as leadership mechanisms in which a powerful
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superior convinces the followers to adopt a norm. The horizontal transmission
is a peer-to-peer mechanism where agents learn from day-to-day interactions
from other peers. Few researchers have used this idea to experiment with norm
spreading [31,64].

A few researchers have experimented with norm spreading based on evolution
where the offsprings inherit the behaviour of the parents. One well known work
in this category is Axelrod’s [19]. Few other researchers have also experimented
with evolutionary models for norm spreading [56,63]. Chalub et al. [63] have ex-
perimented on how norms might spread in different societies (e.g. an archipelago
of islands). Agents in an island are fully connected to each other. Each agent
plays the donor-receiver game once with all other agents in the island. Then an
agent reproduces by choosing a connected agent at random and comparing the
payoff. If its payoff is higher than the other agent, then the other agent inherits
the strategy of the winning player. Each island has a Gross Domestic Product
(GDP) which is a normalized average payoff of the entire island. Islands compete
against each other. There are times of war and peace. During peace times, the
norms of the islands do not change. When the islands are at war, they play the
Hawk and Dove [65] game. The losers change their norm based on a probabilistic
norm update rule. The authors note that a meta-norm is established at the end
of each run. One limitation of this approach is that they assume that norms have
somehow been internalized by a parent/propagator.

Table 1 shows the mechanisms used by the various simulation works on norms
corresponding to each phase of the norm life-cycle. It should be noted that not
all phases of norm life-cycle have been taken into account by most works.

5 Conclusions

This paper has made two contributions to normative multi-agent system field
in the context of simulation of norms. Firstly, a four phase model of the norm
life-cycle was proposed. Secondly, various norm-based simulation works were
categorized based on the mechanisms employed by each of the works. In the
future, we intend to elaborate the research that has been carried out using each
of the mechanisms discussed in this paper and also compare their strengths
and weaknesses. We will also compare the simulation works based on the agent
characteristics employed in each of the works. We also intend to discuss the
research issues that need to be addressed.
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Simulation works Norm cre-
ation

Norm sp-
reading

Norm en-
forcement

Norm
emergence

Axelrod, 1986 - Evolutionary
approach

Sanction Yes

Shoham and Tennen-
holtz, 1992

Learning - - Yes

Kittock, 1993 - Learning, net-
work topology

- Yes

Conte and Castelfranchi,
1995

Off-line - - -

Walker and Woolridge,
1995

- Learning - Yes

Shoham and Tennen-
holtz, 1995

Off-line - - -

Castelfranchi et al., 1998 Off-line - Reputation -

Verhagen, 2000 Leadership Leadership - -

Epstein, 2001 - Imitation - Yes

Flentge et al., 2001 - Cultural
transmission

Sanction Yes

Hales, 2002 Off-line - Reputation -

Hoffmann, 2003 Entrepre-
neurship

leadership - Yes

Lopez et al., 2003 Off-line - Sanction and
reward

-

Nakamaru and Levin,
2004

Off-line Network
topology

- Yes

Chalub et al., 2006 - Evolutionary
approach

- Yes

Fix et al., 2006 - - Emotion -

Pujol, 2006 - Learning, net-
work topology

- Yes

Sen and Airiau, 2007 - Learning - Yes

Savarimuthu et al., 2007
b,c

- Leadership,
network
topology

- Yes

Andrighetto et al., 2008,
Campenni et al., 2008

Cognition Imitation - Yes

Table 1. Mechanisms employed by simulation works in each phase of the norm life-
cycle
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Abstract. The aim of this paper is to show that conventions are sources of tacit 
agreements. Such agreements are tacit in the sense that they are implicated by 
what the agents do (or forbear to do) though without that any communication 
between them be necessary. Conventions are sources of tacit agreements under 
two substantial assumptions: (1) that there is a salient interpretation, in some 
contexts, of every-one’s silence as confirmatory of the others’ expectations, and 
(2) that the agents share a value of not hostility. To characterize the normativity 
of agreements the Principle of Reliability is introduced. 

1   Introduction 

Conventions are social means for the sake of common ends. A common end needs not 
be a desire we pursue together (i.e. our joint desire to meet each other). A set of de-
sires that are jointly co-realizable may suffice (i.e. our self-regarding desires to avoid 
collisions in traffic): coincidence of interests is, at least, agreement in desires1. Con-
ventions describe a way to behave in recurrent situations, which is sufficient to obtain 
something we all want but which is at risk because of our reciprocal interference. 
Conventions are not necessary means though. They are arbitrary since some other 
way to behave might serve the same purpose. That is, our common interest (our ends 
in agreement) is to be fulfilled if our desires for the means are also in agreement, 
when at least another possible arrangement is foreseeable. To be useful, conventions 
should be stable: when established, conventions perpetuate themselves. And they are 
so because it is in the best interest of all of us to keep acting as we do, if the others do 
the same. Moreover this fact, as all the rest, is common knowledge between us, so 
much that, if one bothered enough to reason from the perspective of another fellow, it 
would discover that conformity to the convention is in the best interest of all the oth-
ers and so be assured that the regularity will keep on.  

                                                             
11 Two agents “agree in desires if exactly the same world would satisfy the desires of both; and 

a world that satisfies someone’s desires is one wherein he has all the properties that he de-
sires de se and wherein all the propositions hold the he desires de dicto. Agreement in desire 
makes for harmony” [20]. On the distinction between attitudes de dicto and attitudes de se 
see [18]. 
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The idea that conventions are a peculiar kind of regularity in behaviour along these 
lines has been forcefully defended by David Lewis [15] [17], whose theory is consid-
ered by him as analogous to the one sketched by Hume in the Treatise while discuss-
ing the origin of justice and property. 

According to this view, conventions describe a self-enforcing behavioural pattern; 
do they prescribe it too?  

Many critics of Lewis’ theory of conventions have been sceptical about his analy-
sis, precisely because it seems that Lewis has missed the normative component. One 
way to put the critique being that conventions are not mere regularities but rules, not 
only regularities de facto but also regularities de jure [24] [8] [21]. Telling the truth 
when one is speaking in English is not only something that we usually do, it is some-
thing we ought to do. And the same is true for all the conventions we are parties of. 
Conformity to our conventions is not just what we happen to do, is something that is 
“required” from us.  

Though often not acknowledged, Lewis’ theory is able to readily accommodate 
these critiques. It is explicitly stated, in fact, that: “any convention is, by definition, a 
norm which there is some presumption that one ought to conform to (…) it is also by 
definition a socially enforced norm: one is expected to conform, and failure to con-
form tends to evoke unfavourable responses from others” [15].  

What kind of norm any convention is, however, is not immediately clear.  
Lewis suggests that there may be all sorts of reasons why, for any particular con-

vention, one ought to conform to that particular regularity. If the convention origi-
nated by an exchange of promises, then one ought to act also to keep the promise; if 
the convention is also a social contract, then one ought to reciprocate the obtained 
benefit. Notwithstanding so, there are also general reasons why one ought to conform 
which are valid for any regularity that qualifies as a convention, for any population 
relative to which the convention exists, and for any situation the convention applies 
to.  

Such general reasons derive from the fact that by conforming to a convention one 
acts in one’s own best interest, and, at the same time, in a way that answers to others’ 
preferences, when they reasonably expect one to do so. Both acting in one’s own best 
interest and in the way that is in the interest of others (when they reasonably expect 
one to do so) are something that, according to Lewis, “we do presume, other things 
being equal, that one ought to do”. If the former is a requirement of instrumental ra-
tionality, the latter stems from a moral principle that is, somehow, acknowledged by 
us. But is it so? 

Alice has a good reason to expect Bob to do an action because John told her so. 
She completely trusts John; hence Alice has a reason to believe what John says. She 
really wants Bob to behave in that way and she reasonably expect him to behave so. 
Is this sufficient for Bob to be required to do the action in question? If Bob is not in 
any way responsible for what Alice believes, why ought he do that action?  

Similarly, one can be reasonable in expecting conformity to a certain convention 
given widespread conformity in the population (e.g. it is reasonable to expect the next 
driver to keep the right given one’s experience with what this population of drivers 
usually do) even without any direct experience with those of the others one is now 
dealing with (e.g. one’s expectation about what the next driver will do is not grounded 
in one’s experience with that driver). How is it, then, that such anonymous agent is 
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responsible for expectations he has not induced? Though our intuition tells us that any 
anonymous driver ought to conform to the convention that prevails in that population, 
it is not evident why he is so bound since he bears no immediate responsibility for 
what anyone reasonably expects from him.   

In order to clarify what kind of normativity characterizes any convention, in this 
paper we will argue that conventions are sources of agreements, though it is not nec-
essarily by agreement that a convention is established. That a convention is an agree-
ment is usually considered as a platitude, so much that once the notion of convention 
is understood, it is thereby clarified in which sense a behavioural regularity is also an 
agreement. Agreements however are not only agreements in desire that as a conse-
quence produce regularities in behaviour. Agreements are specific kinds of social re-
lationships between the agents, and are created with the aim to produce such agree-
ments in desires (see Sections 4 and 6). Agreements are considered by Lewis as a 
means to produce a system of mutual expectations [15], but what is important for us, 
is that the converse also holds: a system of mutual expectations of the kind presup-
posed by a convention is a source of agreements. This suggestion, however, seems to 
be counter-intuitive given that conventions are typically maintained without the need 
of any communication between the parties. If this is true, how can agreements be es-
tablished without communication? How can conventions be real agreements and not a 
way to behave as if we have agreed though we didn’t?  

It has been Hume’s suggestion that a convention is an “agreement betwixt us, 
though without the interposition of a promise”. The aim of this article is to clarify 
what kind of agreement is established, once a convention is in place. By doing this, 
the peculiar normativity of conventions will be also analysed. The normativity of 
conventions is the same normativity of agreements, because conventions become 
agreements, tacit agreements but agreements nonetheless. 

2   From preferences to reasons to conform  

Let’s first rehearse what a convention is.  
Few years after his first contribution on the topic [15], Lewis amended his original 

analysis, by offering the following definition [17]: 
 
 A regularity R, in action or in action and belief, is a convention in a popula-

tion P if and only if, within P, the following six conditions hold:  
1. Everyone conforms to R. 
2. Everyone believes that the others conform to R. 
3. This belief that the others conform to R gives everyone a good and decisive reason 

to conform to R himself.  
4. Everyone who believes that at least almost everyone conforms to R will want the 

others, as well as himself, to conform. 
5. R is not the only possible regularity meeting the last two conditions. There is at 

least one alternative R’ such that the belief the others conformed to R’ would give 
everyone a good and decisive reason to conform to R’ likewise. 
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6. Finally, the various facts listed in conditions (1) to (5) are matters of common (or 
mutual) knowledge.   
 
This definition is meant to capture the core of our common concept of convention 

whereby we are ready to acknowledge that a practiced regularity in acting or in acting 
and believing (condition 1), that everybody expects widespread conformity to (condi-
tion 2), that is arbitrary (condition 5) but serving our common ends (condition 4), and 
that perpetuate itself and it is stable because it is openly known that past conformity 
gives everyone a reason to go on conforming (condition 3 and 6), is what we would 
indeed consider one of our conventions2.  

Lewis has amended his 1969 analysis in several ways, but one change was particu-
larly relevant to his original target, that is, the explanation of what convention under-
lies the use of a certain language by a population. Since clause (3) was originally for-
mulated in terms of a conditional preference for conformity, the only acceptable 
regularities were in action alone: it makes no sense to prefer to believe something, 
since you cannot choose what to believe. As a consequence the convention governing 
the use of a language was characterized as a convention of truthfulness in that lan-
guage, whereby only speakers conform to the convention, and, by doing so, coordi-
nate with past speakers who truthfully used that language in the past [15]. Differently, 
the amended definition makes room for a regularity in action and belief to count as a 
convention since others’ conformity provides one with a reason either to do or to be-
lieve something. The formulation in terms of reasons for conformity (instead of pref-
erences for conformity) opens the way for coordination between speakers and hearers 
so that the convention whereby a population uses a language becomes a convention of 
truthfulness and trust, that is, a regularity in which conformity for speakers means to 
do something (i.e. speak truthfully) and for hearers to believe what speakers say since 
both share an interest in communicating and each other conformity is a practical or an 
epistemic reason to conform.  

3   Generalizing Lewis: trust by convention 

Once, however, convention is defined in this way it is also clear that trust, properly 
defined, is not peculiar of conventions of language alone.   

Trust, in fact, is both a state of mind and a behaviour [3] in which an agent expects 
and wants that another agent does something, relies on this agent to behave in this 
way, and does in fact delegate the fulfilment of one’s own desire to another agent. By 
trusting another agent, one makes oneself vulnerable; one exposes oneself to the risk 
that the other will not behave in the expected way and so frustrating one’s desires.  

Crucial for trusting is reliance on an agent for something, and not just reliance on 
something happening [13]. When we rely on something happening, say that the train 
will arrive on time, we assume that it will happen (usually because we believe that it 

                                                             
2 Many of course have challenged this analysis under several different aspects. Here we will 

just assume it as correct, and focus on how, within such a framework, the normativity of 
conventions can be accounted for. For a critical assessment of Lewis’ theory see [8]. For a 
recent account see [10].  
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will happen) and plan or intend accordingly.  Differently, when we trust an agent we 
rely on him as an agent, that is, as an autonomous entity driven by his own beliefs and 
desires that are his reasons either to believe or do something. That is, when we rely on 
an agent to behave in some way, we assume that such agent will behave in that way 
and we plan or intend on this basis because the agent’s behaviour is based on his rea-
sons, not just because he his coerced to behave in that way. If I coerce you into giving 
me your pocket, I rely on the fact that you will give me your pocket but I do not rely 
on you to give it to me; there’s no question of trust in coercive interactions. By the 
same token, trust also presupposes that the trustee is not motivated by a hostile atti-
tude towards the trustor, so much that the trustor at least believes or assume such non-
hostility in those the trustor rely on [3]. Trust is a fundamental non-hostile attitude3. 

Trust is relative to a desire one is pursuing and whose fulfilment depends on an-
other agent’s behaviour4. Desires can be either epistemic desires (i.e. the desire to 
know something or to know whether something is true or not) or practical ones (i.e. 
the desire that the world be in some way). Correspondently, reliance on somebody to 
behave in some way can be either for an epistemic or practical desire. That is, if I 
epistemically rely on you, I rely on you to do something in order to fulfil an epistemic 
desire of mine, something that typically happens by way of communication5. In such a 
case, epistemic reliance entails that I assume that you will truthfully communicate 
with me because you are motivated (for some reason) to so act, and, on this basis, be-
lieving what you want me to believe. This is the kind of trust that Lewis had in mind, 
where trust is coming to believe something. On the other hand, when I practically rely 
on you, I rely on you to do something in order to realize a state of affairs that I desire. 
If I rely on you to drive on the right side of the road, such practical reliance entails 
that I assume that you will so drive since you have a reason to do such an action, and I 
will behave accordingly. In both situations, by coming to believe something or by act-
ing on the basis of my expectation about you, I trust you. 

Finally, one trusts on the basis of reasons. But what are the reasons to trust an-
other? Sometimes trusting may be ‘irrational’, as when, by making oneself vulner-
able, one thereby creates a selfish reason for another to exploit such vulnerability6. 
Other times, trust is perfectly reasonable as when one relies on another to do some-
thing simply because it is also in the interest of the other agent to act in that way. 
Even if in this case trust is reasonable and more secure, it is not of course without 
risks given that the other could simply change his mind and act differently.  

What is then the relation between trust and conventions? 
According to the definition of convention given above, in any convention, the 

agents do conform to some regularity, want the others to conform, expect future con-
formity of their fellows, and this belief is a reason to conform (i.e. a practical reason 
to do an action or an epistemic reason to believe something). Given this, it is clear 
that any act of conformity to a convention is also an act of reliance on the others to 

                                                             
3 See Section 6 for the relevance of not being motivated by hostile attitudes. 
4 That is, the trusting agent believes to be dependent on another one to obtain something he de-

sires [3],[4]. 
5 Though this is not necessary, see Section 8. 
6 If one extends a loan to another assuming that the other will do his best to repay it, one also 

gives the other a selfish reason not to repay it; see [1]. 
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conform: the reason to conform is also the reason to trust, to rely upon the others and 
doing something accordingly. Since, however, by conforming one trusts in others’ 
conformity, that is, in their trust in oneself, the regularities that count as conventions 
are regularities of reciprocal trust. Moreover, since the expectation of conformity is a 
reason to conform, trust is based on trust: I have a reason to trust you if you trust me 
and you have a reason to trust me if I trust you.  

 
More precisely: a regularity R in reciprocal trust in a population P is a convention 

if and only if the following six conditions hold: 
1. Everyone conforms to R, that is, everyone reciprocally trusts each other.   
2. Everyone believes that others conform to R, that is, everyone believes that the oth-

ers trust in oneself. 
3. This belief that everyone conforms to R (i.e. rely on each other) gives everyone a 

good and decisive reason to conform to R himself (i.e. to rely on the others). That 
is, the belief that everyone reciprocally relies upon each other is a reason for eve-
ryone to rely on the others. This reason can be for practical reliance, if conforming 
to R is a matter of reliance on the others to act in a certain way and acting oneself 
accordingly. This reason can be for epistemic reliance, if conforming to R is a mat-
ter of reliance on the others to act in a certain way and believing oneself accord-
ingly. In the case of a regularity of practical reliance, some desired end may be 
reached by relying upon the others and acting accordingly, provided that the others 
also rely upon on each other; therefore he wants to rely on the others and act, if 
they so rely and act. In the case of a regularity of epistemic reliance, his beliefs to-
gether with the belief that the others practically rely upon himself are premises that 
deductively imply or inductively support a conclusion, and by believing this con-
clusion he would thereby conform to R (i.e. he would epistemically rely on the 
others).  

4. Everyone who believes that the others conform to R (reciprocally trust each other) 
will want the others, as well as himself, to conform (i.e. to trust on oneself).  

5. R is not the only regularity meeting the last two conditions. There is at least one al-
ternative regularity R’ in reciprocal reliance which would perpetuate itself instead 
of R.  

6. The various facts listed above in conditions (1) to (5) are matters of common 
knowledge.  

 
Any convention then is always a form of reciprocal trust, which is sustained by 

past reciprocal trust, and that breeds future trust. Such reciprocal trust is reasonable 
since by trusting we are able to agree in the choice of the means to fulfil each of our 
individual end. Reciprocal trust can originate in several different ways, for example 
by explicit agreement. However, a regularity of reciprocal trust qualifies as conven-
tion by the way it perpetuates itself, and not by the way it originates. There is trust by 
convention whenever it is our reciprocal trust that, together with our desires for the 
end, gives us a reason to keep on trusting. 

Generalizing the definition in this way is faithful to Lewis’ analysis because no 
modification or additional clause has been proposed. Whether it is also fruitful to un-
derstand the peculiar normativity of conventions will be explored in what follows. 
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Since we intend to argue that such normativity stems from agreements, in the next 
section we turn to this issue. 

4   Agreements without promises 

It is natural, and correct, to view the practice of promising as a social device for mak-
ing agreements. It is also natural, but wrong, to consider agreements primarily as ‘an 
exchange of conditional promises’7. Though it’s true that such an exchange creates a 
binding agreement, even my unconditional promise to you is sufficient for creating an 
agreement between us on something I will do, no matter what. Mutual conditional 
promises may be the natural model for contracts, but they hardly are the general 
analysis of agreements, at least if, as Hume has suggested, agreements might exist be-
tween us without the interposition of any promise.   

In the contract view, agreements create obligations (and rights) on the parties en-
tering into it due to such exchange of conditional promises. However it is sensible to 
consider promises just as one possible way to create agreements. Another opportunity 
is to avail oneself of a suggestion of a third party that, if it meets the interests of all, 
might be jointly accepted. However, that an agreement be mutual is also dispensable. 
Giving permission, for instance, is a way to enter in an agreement, originating only 
unilateral obligations and rights. When an agent gives the permission to another to do 
something that he has the power to prevent, there is an agreement between the two 
that enables the latter agent to do some action. In this kind of agreement, an agent be-
comes obliged not to interfere with the other one, who at the same time acquires the 
right to act as agreed upon. But given that no promise has been formulated, where 
does exactly such normative consequences come from? 

An answer to this question is postponed to the next two sections because it is use-
ful, first of all, to clarify what an agreement primarily is.  

When there is an agreement between some agents, say Alice and Bob, the consent 
of at least one of them is necessary. When one consents, one is consenting somebody 
to something. Hence consenting creates a social relation between at least two agents.  

But what one is consenting to? Sometimes Bob consents Alice to do something, 
like when he consents her to use his car. Other times, Bob consents to do something 
himself, like when he accepts to pick the children from school. Other times it happens 
both that Bob consents Alice to use his car and that he gives her the keys. In all these 
situations, by consenting an agreement is established. In any case, consenting is re-
lated to the fulfilment of another agent’s desire that one can interfere with. This de-
sire might be to do something that one may impede (negative interference). Other 
times, the desire is that one does something to favour another one (positive interfer-
ence). Or a combination of both at the same time, like when Alice’s desire to do 
something depends on Bob creating some favourable conditions, something which 
she also desires. What is common to all these cases, it that an agent has the power to 
interfere somehow with another agent’s desire, and when the former consents that the 
latter fulfils such desire, it is entailed that the former does not interfere negatively 

                                                             
7 [26], see also [15]; [9] for a critique of this view. 
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with it or that he interferes positively with it. For simplicity, from here on, we will 
just mention the negative interference situation. 

An agreement then creates a social relationship between the parties, and presup-
poses a pre-existing asymmetrical social relation of dependence between them.  When 
there is an agreement at least one agent that could (has the power to) interfere, is not 
interfering.  

However something stronger is needed to have a real agreement. Though it is true 
that a lion that is not hungry is consenting a gazelle to wander around him safely, the 
gazelle does not have the lion’s consent to do so and there is no agreement between 
them to this purpose. The gazelle does better to be ready to run as soon as the lion 
manifests any change of mind; she may exploit such temporary loss of interest but not 
rely on the lion only because the lion does not have a desire to interfere with her. Dif-
ferently, her reliance would be more justified if the lion could be able to communicate 
his decision (i.e. intention) not to interfere with the gazelle, that is, to express his con-
sent. Hence, one’s consent (not just a behaviour that happens to consent) to the ful-
filment of a desire of another agent is there when one has the intention not to interfere 
with such desire fulfilment. To be able to formulate such an intention one obviously is 
to be able and in condition to interfere, thus this condition presupposes the truth of the 
former.   

This unilateral consent, however, is still not enough. Suppose Alice and Bob live 
together, and Bob has bought a car. Though the car is legally owned by him, between 
them, Alice may not ‘acknowledge’ it as Bob’s because she does not consider the 
matter of who uses it as entirely up to him; she does not consider this choice as de-
pending on him alone. She knows that Bob has the keys, and that he has some sort of 
legal power to interfere with her free use of it (she could be charged of theft, for in-
stance). Alice also knows that she has Bob’s consent to using the car whenever she 
wanted to, but still she contests this power over her. In this case, though all the condi-
tions above might be true (i.e. Alice objectively depends on Bob, and Bob has de-
cided not to interfere with Alice), there is still no agreement between them. It might 
be said, that Alice uses the car despite the fact that Bob can (he has the power to) in-
terfere with her. To have a full agreement, then, there must be also an acknowledge-
ment of the power of interference of the agent who, in fact, has such power.   

Suppose now this variation of the example. Though the car is legally Bob’s, it is 
Bob that reject his own power over Alice, as far the use of the car is concerned. Alice 
may consider the matter of who uses the car as up to Bob, but Bob himself contests 
this fact. If Alice asks his permission to take the car, Bob replies that she does not 
have to ask for it, that it is her choice whether to take it or not. In this situation, again, 
there is no agreement between them that Alice uses the car, because, between them, 
though Bob has the power, he does not ‘value’ it. 

What is, then, to value a power, and what relation does it bear with power acknow-
ledgement?  

Valuing one’s power is not simply desiring to exercise it because it may happen 
that Bob can indeed desire to use it against Alice in a moment of sudden anger but 
then hates himself for such desire given that Bob in fact contests such an asymmetri-
cal relation between them. Bob does not desire to desire in this way towards Alice, 
that is, he does not value his power over her. One values one’s power when one de-
sires that the use of one’s power is motivated by one’s desire to do so, that is, when 
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one desires that it depends on one’s choice whether to interfere or not. Hence, in the 
latter example, despite the fact that Bob can in fact interfere with Alice and he could 
come to desire to exercise his power over her, he does not want to be so motivated, at 
least when it comes to have a power over her. This example makes clear that, to have 
an agreement, the agent values the power he has over the other one, the agent values 
the fact the he is able and in condition to interfere with the other8.  

Power acknowledgement, differently, is the acceptance of such power, that is, the 
decision to forbear to resist to the exercise of the power over oneself if the other 
wants to exercise it. Acknowledging the power of another makes manifest one’s fun-
damental non-hostility towards the other: to be prepared not to pursue something if 
this happens to be against the other’s desire. While in giving one’s consent, one ac-
cepts something one can interfere with (i.e. intends not to use a power of interference 
one has), power acknowledgement, differently, is just the acceptance of the use of 
such power, that is, the intention not to resist to the decision of the other agent. Both 
valuing one’s power of interference and the acknowledgement of another agent’s 
power of interference are necessary conditions to enter in an agreement.  

Consider now this example. Alice wants to use Bob’s car tomorrow, she has his 
consent, and she acknowledges his power on this matter. Notwithstanding so, to be 
safe in case something happens, Alice books a taxi for tomorrow morning. Suppose 
that Alice is quite sure that, intending not to interfere with her use of the car, he will 
so behave. But still she is worried that something unexpected might turn out. Assum-
ing a worst-case scenario (which she considers highly improbable anyway), Alice de-
cides not to rely on Bob. It seems that, in this situation, if Alice does not uptake Bob’s 
consent, no agreement between them has been established. And uptake precisely is 
such reliance on one’s part on another agent’s intention not to interfere with one’s 
desire fulfilment.  

Finally, even if such condition is needed, it is not in itself sufficient for creating an 
agreement. In fact, Bob may know that she has a very important meeting tomorrow 
and that she needs the car. To avoid creating any obstacle, Bob decides to refrain 
from taking the car in the morning but he does this without that she realizes this inten-
tion of not interference, hence she does not uptake his consent though she would in 
case she knew about it. While Bob’s intention of not interference is present, her igno-
rance of such intention makes it the case that they have no agreement that Alice uses 
the car today, and she may decide to call the taxi. Knowing that another agent has the 
power of interfering with oneself, and knowing that the other intends not to exercise 
such power is needed to have an agreement. But, as it is standard in many social in-
teractions, even such first-order knowledge isn’t enough to have an agreement be-
cause Alice may know this fact while Bob does not know that she knows it and, on 
this basis, Bob may think she will act otherwise and so in the end deciding to pick the 
car on the assumption that Alice may have decided to call a taxi, and so on for all the 
levels. In any agreement, then, an epistemic condition is necessary, that is, there 
should be common knowledge of the intention to not interfere. The same reasoning 
supports also other epistemic conditions. An agreement, in fact, cannot be in place un-
less the agent, who is consenting to the other’s desire fulfilment, knows about such 
desire in the first place. And again this fact must be out in the open by being common 

                                                             
8 On valuing and second-order desires see [7] and [20]; for a critique see [31]. 
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knowledge that an agent has the power to interfere with a desire of another one who 
in fact has such desire.  The acknowledgment of such power made by the other agent 
also must be matter of common knowledge, given that an agreement basically is a 
way to obtain something one wants without coercing the other to do so. And, finally, 
both the valuing of one’s power and that the uptake of the consent are again matter of 
common knowledge between the agents.  

Let’s take stock.  
 
A social relationship between at least two agents is an agreement between them if 

and only if the following five conditions hold:  
1. The agent having the power of interference intends (for some reason) not to inter-

fere with the other agent’s desire fulfilment (consent condition);  
2. The agent having the power of interference values his own power (valuing one’s 

power condition) 
3. The agent, who is subject to interference, acknowledges the power of the other 

one, that is, he intends to refrain from pursuing his desire if the other desire that he 
so behaves (no coercion condition); 

4. The agent, who is subject to interference, relies on the consent of the other one, 
that is, intends to pursue his desire on the assumption that the other one intends not 
to interfere (uptake condition); 

5. All conditions above are common knowledge.  
 

An agreement of this sort may be called unconditional, in the sense that one does 
not give one’s consent on condition of another agent’s consent. Differently, an ex-
change of conditional promises gives rise to a conditional agreement in which each 
consent is conditioned on the other. Contracts, for instance, are instances of condi-
tional agreements.   

Moreover, on this analysis, it is also evident that there can be agreements without 
promises. Agreements are particular kinds of social relations between the agents, and 
a promise is one possible way to establish such relations (see also Section 6). Other 
possibilities, such as a mere exchange of a request and an acceptance or a mere uni-
lateral permission without any request, make it clear that no promise is indeed neces-
sary.  

5   The principle of reliability 

All agreements have normative consequences, even those that are unconditional and 
established without the interposition of a promise. However, on the present analysis, 
an agreement is primarily a social relation characterized by specific motivational and 
epistemic conditions that are true of the agents entering into it, and so no normative 
relation has been so far mentioned. How, on this account, is it possible to explain the 
‘obligation’ of the consenting agent, and the corresponding ‘right’ to do or to obtain 
what an agent has been consented to? Or, differently put, what is the wrong of in-
fringing an agreement?  
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In our view, the wrong of violating an agreement not made through promises is of 
the same family of the wrong one would commit if the agreement were promise-
based. Both situations, in fact, pertain to a more general kind of social interactions 
that are wrong in relation to “what we owe to each other when we have led them to 
form expectations about our future conduct” [27].  

The moral Principle of Fidelity put forward by Thomas Scanlon in this seminal pa-
per was intended to account for the wrong of breaking a promise, and, as such, may 
be too strong for the kinds of agreement without promises we are after. However 
Scanlon has also insisted on several moral principles bearing family resemblances 
with each other given that all are related to the elicitation of expectations in others. To 
account for the normativity of agreements without promises the so-called principle of 
Loss Prevention could be enough [27]. This principle requires that one that has inten-
tionally or negligently led someone to expect that one will follow a certain course of 
action, and has reason to believe that that person will suffer significant loss as a re-
sult of this expectation if one does not fulfil it, must take reasonable steps to prevent 
that loss, that is, he ought to warn, fulfil the expectation or compensate.  

The fact that the principle is not just to prevent another agent’s desires frustration 
but losses, indicates that some form of reliance is presupposed for the principle to be 
applicable. Suppose, in fact, that Bob had, somehow, led Alice to expect that he won’t 
take the car tomorrow morning, say because he knows that she heard him accepting a 
lift from a colleague on the phone. Bob knows that she cares about this fact given that 
she needs the car.  Still Alice decides not to rely on Bob as for having the car at her 
disposal tomorrow, and, to be completely safe, she books a taxi.  Knowing this, Bob 
is under no obligation towards Alice, not even to warn her that in the end he will take 
the car.  Though taking the car might be something she desires more than just taking 
whatever means of transportation, the frustration of this desire of her is not a loss Al-
ice incurs with, it is not something she has and she wants which she is deprived of, 
hence the principle of Loss Prevention does not apply. Under this respect, even in the 
case that she had relied upon Bob and decided not to call the taxi, the very fact that 
the desire is frustrated when Bob instead took the car is not a real loss9. However in 
relying on Bob, Alice has in fact lost something she had before her. She has paid 
some costs, opportunity costs as the economists call them, which are the available al-
ternatives of actions she had and which she has renounced to pursue by counting upon 
Bob’s car being available.  

At least for the aim of this article, then, the way Judith Thomson has defended a 
similar principle seems better suited [29]. Thomson, in fact, argues for the validity of 
a Word-Giving Thesis in which, when an agent invites another one to rely on the truth 
of a certain proposition, which invitation the latter agent accepts (or uptakes), then the 
latter agent acquires a claim (i.e. a right) against the former one to its being true. This 
way of formulating the moral principle bears two main advantages over Scanlon’s: 
firstly, it makes explicit the relevance of reliance or uptake in the process, and, sec-
ondly, it generalize it towards whatever proposition one may rely upon beside those 
that refer to an action one will do in the future.   

                                                             
9 Though it can be so when I consider the desire to have the car not as something I am to 

achieve but as something already achieved and to be protected, see for this possibility and its 
psychological plausibility [22]. 
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However, though one can induce reliance, one can allow reliance as well and in 
such a way to have normative consequences.  

Consider again the example above: Alice heard Bob’s conversation with somebody 
else and, as a consequence, she comes to believe that Bob will not take the car and 
she relies on it. In this case, Bob has unintentionally induced in Alice some kind of 
reliance. We have suggested that by acting on these expectations about Bob, she will 
incur in some losses, and so the principle of Loss Prevention might apply. But is it 
so? After all, such induced reliance in this case is not intentional; can Bob be respon-
sible for Alice’s unilateral decision to rely upon him in this situation?  It seems cor-
rect to say that though her reliance has been only involuntary induced, at least Bob 
has allowed her to rely on him. More precisely, in fact, to allow a belief or an action 
is to have the power to disconfirm another’s belief (which is a reason to believe some-
thing else or to act in some way) and to forbear to disconfirm it. If hearing what Bob 
has said on the phone is a reason for Alice to believe that he will not take the car to-
morrow, then this belief is obviously something that Bob can disconfirm. By not dis-
confirming such belief, Bob is also allowing her to believe in this way. Granted this, 
as such this form of allowing is still not sufficient for an agent to acquire a claim 
against another one. Suppose in fact that, immediately after having realized her reli-
ance, Bob tells her that what is true is just that he does not confirm that he will take 
the car (which is the same of not disconfirming the belief that Bob will not take it) 
and nothing more than that. Can Alice hold him responsible for her losses if in the 
end he decides to take the car despite her unilateral reliance? It seems not. Suppose 
differently that just after his conversation on the phone and knowing that she needs 
the car, Bob turns to Alice and say ‘yes, you heard correctly. I won’t take it!’. By con-
firming a belief that he has unintentionally induced in her, Bob then become obliged 
towards her to warn in case he changed your mind, or, if it’s too late, to do as ex-
pected or to compensate. Because such confirmation of the belief logically entails the 
absence of a disconfirmation, even in this case Bob has allowed her to believe some-
thing, though not passively (i.e. by forbearing to disconfirm it) but actively (i.e. by 
confirming it). It is this form of ‘active’ allowing that is necessary for the moral prin-
ciple to apply when one does not induce intentionally reliance in others10.  

Finally, there are also cases in which one actively allows other agents’ reliance on 
oneself that one has not in any way induced.  

Suppose for example that Alice believes that Bob will not take the car tomorrow 
because John told her so, and that she relies on him for having the car. Bob knows 
about all this and he allows her to believe it (i.e. he forbears to disconfirm such be-
lief). If she just act on this basis, and she does not know that Bob knows about her re-
liance, it seems that at most Bob should warn her if the belief is false, but if this is so, 
it is just out of sheer altruism11. If, differently, Bob has confirmed this expectation of 

                                                             
10 Scanlon’s principle of Loss Prevention indeed mentions also leading expectations negli-

gently, besides doing it intentionally. However, negligence implies having not paid due care to 
avoid such reliance, and so it cannot be evoked to explain, without circularity, a principle 
which normatively demands such behaviour. Differently, our notion of active or confirmatory 
allowing has not such problem.  

11 The reason why common knowledge of another’s forbearance to disconfirm one’s beliefs 
may change the situation will be discussed in the Section 7.  
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her, for instance by nodding, Bob has actively allowed her to rely on him, and, from 
there on, he is responsible for her possible losses even if he has not induced that belief 
in the first place. Again, when it’s too late for warning, Bob ought to fulfil the expec-
tation or compensate.  

To sum up, according to the view adopted in this paper, an agreement has norma-
tive consequences because the agent consenting another one to fulfil his desire is ei-
ther intentionally inducing or actively allowing uptake on the consent is concerned 
(i.e. reliance that the former one intends not to interfere with such desire fulfilment), 
and, by doing so, undertakes a duty of reliability against the other one and creates a 
corresponding right to rely. Reliability is normatively required to prevent losses 
caused by intentionally inducing or actively allowing such reliance. One way in 
which such principle can be explicitly formulated is the following: if one intentionally 
induces or actively allows another agent to rely on the truth of a certain proposition, 
then the latter one acquires a right to reliability (i.e. to be warned if the proposition 
turns to be false, or, in case the proposition is about the future action of the former 
one and it is too late for warning, a right that the former one acts so as to make the 
proposition true or to be compensated for the incurred losses). For these reasons, we 
name such a principle: the principle of Reliability.    

6   The normativity of agreements and the value of not having 
hostile attitudes 

Thus, by establishing an agreement between the agents at least one of them intention-
ally induces or actively allows the uptake of the other one. From this it follows that 
the uptaking agent acquires a right to rely on the other one. But what exactly he has a 
right to rely on?  

We have suggested above that if there is an agreement between Alice and Bob that 
Alice will take his car tomorrow, his taking the car is doing something wrong. Under 
this perspective, by uptaking the consent, one acquires a right on a certain behaviour: 
i.e. that the other does not interfere with his desire fulfilment. But it seems even more 
than this: even if Bob does not take the car but afterwards he manifests some uneasi-
ness because she has taken it, it seems again that Bob is doing something wrong. If 
agreements were there only to rule behaviours, what Bob has done should be enough 
for complying with its terms. However it looks like that it is not.  

To understand why it is so, and what the peculiar normativity of an agreement is, 
consider the difference between the mere fact that some agents agree in their desires 
and the fact that there is a social relation of agreement between them.  

When they agree in desires “the same world would satisfies the desires of both” 
[20] possibly without any social relation between them whatsoever. Differently, when 
there is an agreement there is also a social relation between them that aims precisely 
to create such agreement in desires but facing the fact the things could have been dif-
ferent. In fact, as we have noted above, an agreement presupposes an asymmetrical 
relation of power and dependence between the agents so that one can influence the 
fulfilment of the desires of the other.   
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However by acknowledging such power, one also signals one’s basic non-hostility, 
that is, one’s desire not to be motivated to do an action against the desire of an agent 
that has and values his power of interference. Correspondently, for whatever reason 
an agent decides to do so, by giving the consent, an agent also signals that the fulfil-
ment of such desire ‘agrees’ with his own desire in the present conditions (i.e. the 
agent for some reason desires not interfere with the other). Thus, an agreement results 
in the fact that the agents mutually know that their actual desires agree: they are 
jointly co-realizable and they are so without any coercion.  

Consider now the principle of Reliability. The similar principle of Loss Prevention 
is justified for Scanlon on a contractualist basis by the fact that “it is not unreasonable 
to refuse to grant others the freedom to ignore the losses caused by the expectation 
they intentionally or negligently lead others to form” [27]. One reason to refuse such 
freedom is readily available if the agents share a value of not being motivated by hos-
tile attitudes12. In fact, ignoring such losses, when one has intentionally induced or ac-
tively confirmed an expectation on oneself, would be tantamount to be motivated by a 
hostile attitude: either one desires that the other incurs in those losses or at least lacks 
the desire that the other does not incur into them.  Let’s assume, then, that our agents 
share this value so that the principle of Reliability, as it has been here formulated, 
would just follow.  

According to Lewis’ dispositional theory [20], this would be a value de se, that is, 
a property that the agents are disposed to desire to desire (i.e. to value) under ideal 
conditions. The value of not being motivated by a hostile attitude amounts, then, to 
the fact that, if the agents are under ideal conditions, they are disposed to desire to de-
sire to have such a property. Moreover, given that being motivated by a hostile atti-
tude is being motivated to frustrate the desires of another agent, the compliance with 
such value requires them to revise their possible first-order hostile desires in a way 
that would inevitably result in the creation of harmony in the population, that is, in 
desires that agree.  

Sharing the value however does not necessarily mean that the agents will behave 
according to what is required of them in the present conditions. It would of course in 
case they were in ideal ones, but no one is a saint, that is, no one lives always up to 
one’s values. However, between agents that enter in a social interaction, such value 
can at least ground the presupposition that the other fellows will be so motivated, oth-
erwise the best one can do is to avoid any possible contact with them. 

What is then, on this basis, the peculiar normativity of agreements as social rela-
tions?  

Recall that in giving one’s consent, one induces or actively allows another agent’s 
reliance on the consent, that is, not just on the observable behaviour of not interfer-
ence but, more specifically, on the decision not to interfere. Moreover, given the de-
tails of the social interaction between the agents, it is also manifest that the decision is 
based on the fact that the desire of the consenting agent agrees with that of the other. 
It is on the decision based on this ‘agreeing’ desire that the other rely upon, if he 
wants to be non-hostile with the other. As a consequence, and given the principle of 
Reliability, those who uptake a consent acquire a right to such decision of not inter-

                                                             
12 Another reason would be available to them if they shared a value of assurance as Scanlon 

suggests [27]. 
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ference based on an agreement in desires. Thus, the consenting agent that is willing 
to enter an agreement is not only obligated not to interfere (i.e. not to take the car 
himself), he is in fact bound not to change his mind otherwise the basic non hostile at-
titude of the agent would be frustrated: he is bound not to come to desire to interfere 
with the other. When giving one’s consent, one is obliged to keep one’s desire in 
agreement with the other.  For this reason, it turns out that it is illegitimate even the 
expression of Bob’s uneasiness with what Alice has done since such reaction on his 
part would signal that Bob has indeed changed his mind.  

Is the other also bound similarly? We think so. In fact, the consent is given, and the 
decision is taken, on the assumption that the other agent has the desire in question (i.e. 
she wants to take the car): Bob relies on this fact and Alice has induced him to so 
rely. Hence Alice is bound too not to change her desire, on pain of being hostile with 
Bob, given that the opportunity costs he has paid to eventually decide not to interfere 
with her would then become just induced losses.  

Hence, even in an unconditional agreement as this one, there are reciprocal obliga-
tions and reciprocal rights. By establishing an agreement between them, the agents 
become reciprocally obligated and entitled to keep their mutually known desires in 
agreement13.  

Does this entail hence that an exchange of promises has indeed occurred? No. By 
promising one creates the expectation that the promisor will do an action in the future 
unless the other consent to not doing so [27]. When giving one’s consent without the 
interposition of a promise a timely warning can still be enough to release oneself from 
an obligation, at least when the other has not lost valuable alternatives to satisfy his 
desire. Agreements not based on promises are just weaker than agreements based on 
promises. They aim to create and protect desires that agree, and they do so for agents 
that share the value of not having hostile attitudes.  

7   The ambiguity of silence and tacit confirmation 

Now, suppose that it is common knowledge between Alice and Bob that Alice wants 
his car tomorrow morning, and that Alice believes that he will not take it because to-
morrow is Monday, and on Mondays Bob never takes it (maybe just because it is his 
habit to act in this way or because the traffic on Monday mornings is more intense 
than in the other days and Bob hates to be stuck in traffic). Given that she believes 
that he has his own reasons for not taking the car, and she knows that he usually act in 
this way on Mondays, it is reasonable for her to expect Bob to behave in this way this 
Monday too (i.e. she believes with some probability that this will happen). Alice so 
believes this that she relies on him for not taking the car, and she decides to go to the 
meeting with his car. All above being common knowledge between them, she also 
observes that Bob has kept silent about the truth of this belief until Monday morning. 
However, just when the time has come, Bob decides to take the car, say because it 

                                                             
13 More precisely, the obligation is to keep one’s first-order desires in agreement. Such an obli-

gation can be seen as a reason for all the parties to the agreement to have a second-order de-
sire that their first-order desires keep motivating their behaviour. Those second-order desires 
would motivate the agents to do whatever they can to avoid to revise their first-order desires.  
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happens that today he needs the car for some unanticipated errands. Has Bob done 
something wrong?  

It is foreseeable that having incurred in some losses, Alice may resent Bob’s late 
decision, and she may even protest about such sudden change of mind. But, is she en-
titled to anything? Is Bob under a sort of duty towards her? In case she thought that 
way, Bob could legitimately claim to have not given her any consent to use the car, 
not even acted in order to make her believe something about him, that is, not even 
implicitly consenting her to something. So why would be Bob responsible for her 
losses? In the end, he has not intentionally induced any reliance on himself nor he 
said ‘yes’ or any other kind of confirmation because, by assumption, no communica-
tion between them has occurred.   

Granted this, however something strange has indeed happened.  
The closer she come to the fulfilment of her expectation, the more she feel sure 

about such fulfilment and entitled towards the other acting as expected. It is a fact 
that, though Bob knew about her belief, he kept silent until the moment has come, that 
is, that Bob has not disconfirmed her belief.  

Suppose that Alice has interpreted this silent behaviour as a confirmation of her be-
lief that Bob won’t take the car, and then she has felt that such confirmation has 
somehow entitled her to have the car. But what kind of confirmation is this given that 
they do not communicate? Is it reasonable to read the other’s silent behaviour in this 
way? And how can the omission of a disconfirmation create duties and rights? 

To understand this issue more clearly, suppose that Alice is a Bayesian rational 
agent, that is, suppose that Hi is her hypothesis that Bob will not take the car tomor-
row that is characterized by a subjective probability p(Hi), representing her degree in 
belief in Hi. Because beliefs are represented by a well-defined additive probability 
function [27], her degree of disbelief in Hi  is given by 1- p(Hi). We can imagine such 
beliefs be warranted by inductive reasoning in which Alice has acknowledged that 
there is a pattern governing Bob’s behaviour such that, almost on every Monday Bob 
does not take his car or, simply, that not taking the car on Monday is his best choice 
given his desire not be stuck in traffic.  

Suppose that given Alice’s concern on what Bob will do this Monday, she starts 
looking for additional evidences for her belief that he won’t indeed take the car. As-
suming, as we have done above, that everything is common knowledge between 
them, she happens to notice that Bob keeps silent about the truth of this belief she has 
about him, though he knows that she has decided to rely upon him.  

The observation of silence, from a Bayesian perspective, can be treated as a ‘da-
tum’ S for determining whether Alice’s belief about Bob is true or false. Hence, by 
applying the Bayes’ theorem, the belief can be updated accordingly. Moreover, such 
update of Hi must be determined relative to its complement ¬Hi, as the usual formula 
makes clear:  

! 

p(H | S)
p(¬H | S)

=
p(S | H)

p(S |¬H)
•

p(H)
p(¬H)

 

As a Bayesian rational agent, Alice is interested in the impact of the fact that Bob 
is silent on her belief that Bob will not take the car tomorrow, which amounts to cal-
culating the probability that her belief is true, given that she has observed his silence. 
To do this, as a Bayesian rational agent, she needs to compute the posterior (i.e. the 
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odds that Hi is true in light of what is known after the observation of S) that equals the 
likelihood ratio (i.e. the second term from the right representing the information value 
of S with respect to the truth of Hi) multiplied for the priors that Hi and ¬Hi are true 
before the observation of S.  In such an inference, in case the probability of observing 
S when Hi  is true differed from when is not true, the likelihood ratio would be differ-
ent from 1, and the posterior would also differ. In particular, the datum (i.e. Bob’s si-
lence) favours the hypothesis Hi when the posterior odds are greater, and this happens 
when the conditional probability of his silence given that Alice’s belief about him is 
true is larger than the conditional probability of Bob’s silence given that her belief 
about Bob is false. In such a case, it is said that the observation of S is diagnostic of 
or confirms Hi and not ¬Hi.  

Silence clearly is ambivalent evidence in that there are both reasons for believing 
that it supports Alice’s belief about Bob (if Bob does not want to take the car, he does 
not inform Alice that he will instead take it) as well reasons to believe that it can dis-
confirm my belief: it may be possible that Bob could not reach her in time or that he 
has forgotten her desire to have the car, or that he simply does not care about Alice 
enough to let her know something relevant for her, or that Bob wants to harm her on 
purpose and so on. Whether the evidence is relatively more confirmatory than not is a 
contingent matter, and depends on the ratio between the known conditional probabili-
ties of observing silence on condition that my belief is true or false. If she is Bayesian 
rational agent, she compares these information values before updating her belief.  

There are, however, (psychological) reasons to believe that Alice, as all of us, is 
not so rational.  

It is in fact one of the “best known and most widely accepted notion of inferential 
error” [6] that human reasoning gives undue weight to evidence that supports one’s 
beliefs while discounting evidence that would tell against it, and this tendency is 
called confirmatory bias14. A confirmatory bias can be discovered in many different 
situations in which one assesses the truthfulness of one’s beliefs. However the scien-
tific evidence is particularly vivid when one is both concerned in what one believes  
(the so-called motivated confirmation bias) and the evidence one is evaluating is am-
biguous (i.e. it is partly supportive and partly not without exactly knowing how much 
it is so). In this kind of situations, there is a very strong tendency to interpret informa-
tion in ways that are partial to one’s beliefs, and in particular, in ways in which the 
positive side of the evidence is overemphasized.  

On the basis of these empirical facts, it is seems plausible to assume that there is an 
analogously strong tendency to read other’s silence, in the kind of situations we are 
interested in, as a positive evidence for one’s belief. In fact, the ambivalence of si-
lence would not be too much of a problem if silence were not often an ambiguous 
evidence in that one is not so sure on how to assess such ambivalence, whether the 
positive support to one’s hypothesis is more likely than the negative one (Ellsberg 
1961). In the case at hand, ambiguity about the evidential value of silence can be seen 
as a form of uncertainty about the relative conditional probabilities of p(S|Hi) and 
p(S|¬Hi). The agent does not know what the likelihood ratio is because it is as if he 
considered as reasonable, in the present circumstances, more than one distribution of 

                                                             
14 See [23] for a review of the relevant psychological literature; see [25] for a mathematical 

model, though focussed on a different aspect of the confirmatory bias. 
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conditional probabilities of observing silence, given that the hypothesis is true or 
false.  

If we accept the confirmatory bias, it may be suggested that, in contexts where we 
already entertain the relevant belief, we update it by adopting the best expectation that 
could be associated with the observed evidence, which is the one that would confirm 
the belief already accepted. In other words, silence regarding one’s belief, that is, the 
forbearance to disconfirm such belief means, for the agent holding the relevant belief, 
that the other one will act as expected. 

To interpret silence in this way, one must think that the other is not hostile towards 
oneself, otherwise, if this were not the case, if he believed in the other’s hostility, then 
the negative side of evidence would be maximally relevant. However, as we have as-
sumed above, such non-hostility is a reasonable presupposition for agents that interact 
with each other. Under this presupposition of non-hostility, it is reasonable to con-
sider that the ‘natural’ meaning of silence is confirmatory.  

It is then understandable why the more Alice is close to fulfil her desire that Bob 
does not take the car, the more she is sure that he will not take it. Supposing that she 
has checked upon him several times until Monday morning arrives, each time Bob’s 
silence has confirmed her belief possibly up to certainty.  

So far so good for the expectation that Bob will not take the car becoming firmer 
(i.e. confirmed). But what about the fact that she also feels entitled that he does not 
take it?  

First of all, given that the confirmatory meaning of silence is salient between them 
(Bob is a confirmatory agent just as Alice is) and he knows that he has not discon-
firmed a belief she had about him, Alice has reasons to believe that Bob cannot but 
assent to her interpretation (at least from the perspective of bounded rationality): that 
Bob’s silence means that Bob will act as expected is ‘natural’ or salient in this context 
(i.e. it is the obvious interpretation for confirmatory and non-hostile agents). If Bob 
has reasons to assent to Alice’s belief, he has reasons to believe that it is reasonable to 
believe something in those circumstances and so he has reason to believe that he has 
as a matter of fact confirmed Alice’s belief about him. If the salience of precedence 
suffices to justify the commonality of our beliefs in future conformity to a convention 
[15], the salience of silence might justify a mutual belief in the occurrence of confir-
mation. 

One relevant consequence of such common knowledge is that, though at the begin-
ning Bob were just ‘passively’ allowing Alice to believe something about him, under 
these conditions of common knowledge of his confirmation, the allowing becomes 
‘active’.  

Moreover, given what we have discussed in Section 5, this is sufficient for the 
Principle of Reliability to apply, giving rise to Bob’s duty of reliability and to Alice’s 
corresponding right to rely. And from this it follows that her possible protest or re-
sentment cannot but be entitled simply because she has a right that he does as ex-
pected, that is, that he is reliable.  
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8   Tacit agreements: when the agreement is implicated 

Even if agreements can be established without promises, usually other kinds of 
speech acts are employed to create the required epistemic conditions behind them. For 
instance, for an agent to consent another one to something that is desired, the former 
needs to know about such desire in the first place. Usually, the latter communicates 
the desire simply by informing, or by formulating a request or, sometimes, by propos-
ing an exchange, and so aiming to offer a reason to motivate the former acceptance. A 
conditional promise is first of all a way to influence such acceptance by offering some 
incentives. Similarly, the consent must be mutually known between the parties, and, 
to this end, one’s the intention not to interfere with the other’s desire fulfilment is 
usually communicated. This is often done through explicit communication, that is, by 
conventionally signalling one’s agreement through nodding or using verbal commu-
nication.  

However, I can inform you about my desire just by taking the keys of your car, 
knowing that you are looking at me, and that you will infer the desire behind my 
behaviour. Analogously, by acting in order to remove an obstacle for me or by 
avoiding creating one, you can communicate with me without language, gestures or 
other conventional means. In fact, practical actions (or forbearances) done with a 
communicative intention (i.e. practical actions done also because another agent while 
‘reading’ such behaviour will believe something) might suffice to send a message. 
Elsewhere, we have argued for the importance of this kind of communication that we 
name ‘behavioural implicit communication’ [2] [30]. Here, we just confine ourselves 
to suggest that this form of communication through practical actions and their effects 
might support the creation of agreements that can be dubbed, for this reason, implicit 
agreements. When there is an implicit agreement between some agents, the one hav-
ing the power to interfere with the other can implicitly give his consent by acting with 
the intention to refrain from interfering, knowing that the other understands what is 
happening. Those that are qualified as ‘tacit’ are often instances of agreements estab-
lished, silently, via implicit communication.  

Notwithstanding so, if there are cases in which it is already common knowledge 
between the agents that one of them wants something, even implicit communication 
may be useless; similarly for the consent, the uptake, and all the conditions that need 
to be commonly known for an agreement to be in place.  

But how is it possible that all these epistemic conditions be satisfied, without either 
promises or any other kind of communication between the parties? Or, in other words, 
how is it possible to have agreements without communication?  

Recall the necessary and sufficient conditions to have an agreement discussed in 
Section 4. One prominent clause is the so-called ‘consent condition’. In the way it has 
been formulated, such condition does not require any communication. In fact, having 
another agent’s consent just entails that the agent with the power to interfere, indeed, 
intends not to interfere. However, often, one does not only consent to something, but 
one also gives one’s consent, which necessarily is the communication of such deci-
sion of non-interference, via the usual Gricean mechanism [11]. One can give one’s 
consent without verbal or gestural communication, but at least implicit communica-
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tion is necessary. However, though one cannot be given the consent without commu-
nication, one can have the tacit consent without any communication.   

Consider again the example discussed in the previous section. 
It has been shown that when the parties consider silence as a confirmatory device 

for the beliefs on the truth of which one relies, the confirming agent becomes obliged 
to be reliable, even if no communication has occurred between them. In the example, 
Bob become obliged not to take the car tomorrow, given his tacit confirmation of a 
belief Alice had about him. However the mere fact of not taking the car, and as a con-
sequence of not interfering with her is not in itself sufficient for Alice to have his con-
sent. According to the analysis developed in Section 4, if one has a consent then the 
other agent has the intention not to interfere with him, that is, the consent implies that 
the content of the intention refers to another agent. Differently, the intention behind 
the behaviour that contingently happens not to create obstacles for another agent 
needs not be so. Indeed, in the example, the decision not to take the car on Monday is 
motivated either because that is Bob’s habit on Mondays or because it is the best op-
tion he has to avoid being stuck in traffic.  

However, as noted in Section 5, once the principle of Reliability applies, one in-
curs in a ‘directed’ obligation, rather than an unqualified one: Bob is obliged towards 
Alice not to take the car, and Alice has a right against Bob to this behaviour. There-
fore, such a directed obligation is not simply to avoid taking the car, but, more pre-
cisely, to forbear to do what would, in this context, prevent her to fulfil her desire that 
Bob does not the car, which amounts to being obliged to not interfere with such desire 
fulfilment.  

Granted this, is it true that Bob’s silence also means that he intends not to interfere 
with Alice, i.e. that she has his consent? 

Recall that Bob’s silence is confirmatory of her belief about him under the presup-
position of non-hostility; otherwise the disconfirmatory reading of the evidence 
would be maximally relevant. The presupposition that Bob desires not to be moved by 
a hostile attitude, however, amounts to assuming that the principle of Reliability is ac-
tually followed.  

To see why it is so, consider Lewis’ analysis of the kinematics of presuppositions 
in a conversation [19]. According to Lewis: “presuppositions evolves according to a 
rule of accommodation specifying that any presuppositions that are required by what 
is said straightway come into existence, provided that nobody objects” [19]. Though 
presuppositions are almost always approached in the contest of communication, the 
fact that social interaction, even tacit as in this case, may have the same properties 
and consequences of linguistic exchanges and proper conversations is explicitly en-
dorsed by some pragmatists [14]. If a presupposition of reciprocal non-hostility, pos-
sibly grounded in a shared value of not being motivated by hostile attitudes, is rea-
sonable, then what is required ‘by what is done’ when one is in a social interaction 
with another agent becomes immediately into existence. That is, it becomes common 
knowledge between the agents that both of them share a value de se not to be moti-
vated by hostile attitudes. In the present context, Bob’s violation of the principle of 
Reliability would amount to actively allowing that Alice incurred into losses, and he 
would be indeed hostile towards her. If we accept that there is such a presupposition 
of non-hostility in the background of this kind of interactions, then we are also ac-
cepting that there is a shared assumption between the agents that principle of Reliabil-
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ity is indeed followed. Under these conditions, and given that Bob’s silence con-
firmed the belief that he will not take the car, and that he is consequently obliged not 
to interfere with her, his silence also means that he intends not to interfere with Alice 
or that she has his consent that her desire is fulfilled. More precisely, if in this context 
one’s silence “naturally” means one’s confirmation [11], it also “implicates” one’s 
consent [12]: that an agent intends not to interfere with another one or that the latter 
has the consent of the former is an “implicature” of such tacit confirmation because it 
is required that the former agent has such an intention in order to preserve the shared 
assumption that he is not hostile towards the other, or, which is the same, that he is 
not violating the principle of Reliability since this is something that the latter is as-
suming the other is not doing15.  

To sum up, given a shared assumption of non-hostility and thanks to the process of 
tacit confirmation, Alice knows that Bob also has a sufficient reason, a normative rea-
son, for consenting her to something that she wants, that is, he desire that Bob does 
not take the car this Monday. Under the same assumption of non-hostility, which in 
this context amounts to the assumption that the principle of Reliability is followed, 
she also has reason to believe that Bob intends not to interfere with her since, by be-
ing silent, he implicates that she has his consent. Moreover, given that the assumption 
of non-hostility is shared by the agents, and that both the tacit confirmation and the 
normative consequences are common knowledge, it is also commonly known that 
Bob’s silence means (implicates) his consent. It is this kind of consent that we con-
sider a tacit consent, that is, consent without any communication between the parties, 
which is tacit in the sense that is implicated by something your are doing and from 
what is already commonly known and assumed by the agents. As a consequence that 
Alice has such tacit consent is also commonly known without having been manifested 
in any way, that is, without Bob giving it to her. 

Let’s now consider conditions 2 and 3: the valuing one’s power and the no coer-
cion conditions.  

An agreement between them that Bob does not take the car entails also (1), that he 
desires that it is his desire to use or not to use the power over her to move him to act 
and (2) that Alice acknowledges this power over her as far as this issue is concerned, 
that is, she intends not to oppose Bob’s decision to interfere with her desire fulfil-
ment.  

However, there has been no deliberation to consent her to something in the first 
place, and Bob’s tacit consent is just implicated by something he did. So, how can 
such consent be compatible with Bob valuing his power?   

This is the same objection put forward by Hume against Locke’s famous justifica-
tion of political authority. Hume in fact in his Of the Original Contract has resisted 
the claim that such authority is the product of a tacit consent whereby “the subjects 
have tacitly reserved the power of resisting their sovereign” on the account that, “an 

                                                             
15 ‘Implicatures’, like presuppositions, are usually approached in the context of conversation, a 

situation in which we use language for common aims in a way that, as Grice has suggested, 
is governed by a Cooperative Principle. However Grice notoriously claimed also that the 
principle and the related maxims apply to cooperative contexts that are not communicative 
[12]. The relation between Grice’s Cooperative Principle and the weaker principle of Reli-
ability exceeds the scope of this contribution and are left for future research.   
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implied consent can only have place, where a man imagines, that the matter depends 
on his choice”, that is, where a man imagines that by desiring to interfere, he would 
thereby have successfully exercised his power.  Whether this is so in relation to po-
litical authority is not of our concern here, but still for an agreement to be in place 
such condition, or better, conditions 2 and 3 of an agreement must be met.  

We have argued above that the consent is normatively required by the fact that Bob 
has actively allowed Alice’s reliance. Even if it is required, this does not mean that 
the consent has been coerced or that no other alternative was indeed possible. In fact, 
if he had not confirmed her belief, she would have accepted his decision to act in 
ways that interfered with her desire fulfilment. The truth of this counterfactual, to-
gether with the fact that Bob has indeed confirmed her belief about him are also suffi-
cient to guarantee that, though she does acknowledge his power over her in this con-
text, she is now entitled to fulfil her desire. But how can the agents mutually know 
that such a counterfactual is true of them?  

Simply because the shared assumption of non-hostility requires it too. Suppose in 
fact that Bob thought differently. Bob imagines that even in case he hastened to 
disconfirm Alice’s belief, she would have pursued her desire in any case. This belief 
is incompatible with the truth of proposition that Alice values non-hostility as much 
as Bob does. Given that there was indeed an alternative to what has happened (Bob 
could have disconfirmed her belief but he didn’t) Bob has to assume, if the shared as-
sumption is to be considered true, that she would have behaved in non-hostile way. 
Hence, both conditions 2 and 3 are also satisfied, or better implicated, by what it is al-
ready common knowledge between them.  

Moreover since both the fact that he is moved by a desire not to interfere with her 
and that she acknowledges his power are implicated on the background of what they 
already commonly know, both conditions are common knowledge, or at least poten-
tially so.  

Finally, for the social relation between the agents to qualify as an agreement, as al-
ready argued, the agent having the consent needs to uptake it (condition 4) and this 
fact must be common knowledge between the parties. 

At first glance it may seem that this condition is already established because, in the 
example, Alice is in fact already relying on Bob not taking the car tomorrow. How-
ever, the uptake of an agreement is not just reliance on another’s behaviour that hap-
pens not to interfere with one’s desire but is, more specifically, reliance on the other’s 
intention not to interfere with such desire fulfilment (see Section 4); to have an 
agreement one does not merely rely on another’s behaviour, one relies on an inten-
tion, that is, one uptakes a consent.  

Since however, in the example, condition 1 is satisfied, Alice also has the opportu-
nity to rely on his intention not to interfere with her desire fulfilment, and not simply 
on his observable behaviour.  But how can such uptake on her part be common 
knowledge between them?  

Suppose that she does not in fact uptake the tacit consent. She can do this for, at 
least, two very distinct reasons16. She can consider that he is not trustworthy enough, 
in the sense that, though he now desires not to interfere with her, she believes that he 
will indeed change his mind on this issue. Differently, despite the fact that Alice be-

                                                             
16 We thank Maria Miceli for clarifying the relevance of this distinction.  
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lieves in Bob’s trustworthiness, she simply does not want to take his car anymore: it 
is Alice who has changed her mind. Both state of affairs are however incompatible 
with the shared assumption of non-hostility. Let’s consider the latter first. If eventu-
ally Alice does not desire to take his car anymore, then, since he has decided not to 
interfere with her, Bob will in incur into losses (i.e. the opportunity costs Bob has al-
ready paid) given that he is relying on the fact that she has this desire. In fact, just as 
Bob’s silence, her silence too is a continuing confirmation of a belief of his: the ex-
pectation that she still desires something from him. Thus, she has also actively al-
lowed him to rely on something and, as a consequence, he has now acquired a right to 
the truth of this proposition, for the same reasons discussed above. If it is now too late 
for a warning, either she ought to compensate for the losses or she ought to fulfil his 
expectation, that is, Alice has to keep her desire in agreement with Bob’s. Thus, her 
silence, like his, has in this context a natural or salient meaning: it means a confirma-
tion that Alice still desires what Bob expects her to desire. On the other hand, given 
that both agents are presupposed to value non-hostility, Alice possible distrust in Bob 
is incompatible with his actual being non-hostile because by believing that he will 
change his mind, she would also believe that he will be hostile with her. And this is 
something that is ruled out by our shared assumption, or at least, it is something that 
is to be considered as false in order not to violate it. As a consequence, if Alice’s si-
lence naturally means that she still desires what he expects her to desire, and having 
common knowledge of the tacit consent, then Alice’s silence means also, or better 
implicates, that she relies on his consent. This is what is implicated in order not to 
violate the shared assumption of non-hostility. Because this fact follows from some-
thing we already commonly know and assumed, it is again something that we com-
monly know.  

Let’s take stock. Though agreements are very often based on communication, there 
is a kind of agreement that is not based on any form of communication, not even im-
plicit. It is for this kind that we reserve the name of tacit agreement. Crucial for the 
establishment of tacit agreements is the fact that there is a salient interpretation for 
one’s silence when it is common knowledge that an agent reasonably expects and 
wants something from another one or has a right to obtain. It is due to the salience of 
silence as a confirmatory device that we tacitly, and often involuntarily, become 
obliged to be reliable. To account for such normativity the prima facie plausibility of 
a principle of Reliability has been invoked. Under a presupposition that the agents 
share a value de se of not being moved by hostile attitudes, there is also an assump-
tion that the principle of Reliability is actually followed. As a consequence a tacit 
confirmation also means one’s tacit consent, or better, it ‘implicates’ such consent. 
Though implicated, such consent is not however coerced because it is also implicated 
that things could have been different, and this counterfactual possibility is matter of 
common knowledge. Finally, once an agent has another’s consent, it is again the sali-
ence of silence that guarantees that the last condition for an agreement is satisfied, 
that is, those who have the tacit consent tacitly confirm that they keep their desires in 
agreement and, on this basis, implicate their uptake. Tacit agreements are agreements 
without communication, and are established necessarily by the tacit confirmation of 
the involved parties. Tacit agreements are potential agreements in the sense that there 
are reasons to believe that all the conditions for an agreement are fulfilled and this 
fact is accessible to the parties, at least if they bothered to think hard enough. Tacit 
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agreements remain potential as long as everything goes smoothly, that is, for exam-
ple, if the agent who is in fact tacitly consenting, also acts as expected for whatever 
reason. They become actualized and operative agreements when one, willing to act 
against what the tacit agreement mandates, cannot but acknowledge that the consent, 
the uptakes and all the other conditions do in fact hold, that is, cannot but assent that a 
real agreement is in place.  Finally tacit agreements, as all agreements, create recipro-
cal obligations and rights in the parties entering into them to keep their desires in 
agreement, that is, after an agreement is in place no unilateral change of mind is le-
gitimate anymore. 

9   Conventions are tacit unconditional agreements 

If, following Hume’s suggestion, conventions are agreements, and given that conven-
tions persist without the need of communication, they are agreements without com-
munication, that is, tacit agreements.  
Consider a convention to drive on the right sustained by an interest in avoiding colli-
sions.  
As we have proposed in Section 3, conventions are regularities of reciprocal trust, 
hence, in the example, agents in the population regularly rely on the others to drive on 
the right: everyone assumes that the other will drive on the right and acts accordingly, 
that is, he himself drives on the right. Given that a convention presupposes an agree-
ment in desire for some ends (our agreement in desiring not to collide), the expecta-
tion of reciprocal reliance is a reason for everyone to rely on each other so that, in this 
way, also our desire for the means (each desire to drive on the right in order to avoid 
collisions) are in agreement too. 
Trust, as we have suggested in Section 3, is a fundamental non-hostile attitude on the 
part of the trustor: an agent relies on another to do an action that stems from his 
motivation, without any coercion. The reason why each relies on the others when they 
are parties of a convention is that each one expects the others to rely on oneself in the 
same, non-hostile, way. Moreover in order to trust everyone has to assume such non-
hostile attitudes in the trustees. Suppose, then, as we have done in Section 6 that the 
agents in the population share a value of not being motivated by hostile attitudes, 
something that, of course, would promote the disposition to trust each other. Suppose 
also, as we have done in Section 7, that the agents have a bias for confirmation.    
Under these two assumptions, and given that a convention exists in a population, each 
time two or more agents interact with each other in a situation that is governed by the 
convention, if they keep silent about the expectation of reciprocal reliance that they 
mutually know to have, each of them confirms their reasonable expectations about 
each other, even if their mutual expectations of reciprocal reliance are not grounded 
in direct experience; the agents might have never met before. By being confirmatory, 
each actively allows reliance on the truth of such expectation of reciprocal reliance. 
As a consequence, each also acquires both a right that the other rely on oneself, and 
an obligation towards the other to rely on the other one.  Each agent has now a right 
that the other drives on the right (i.e. has a right to be trusted) and an obligation to 
drive on the right himself (i.e. ought to trust the other one).  
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  Moreover, for the same reasons discussed in Section 8, on the basis of a presupposi-
tion of reciprocal non-hostility, each silence also “implicates” each consent, that is, 
that each intends not to interfere with the desire fulfilment of the other one.  Given 
that in a convention, all the agents desire conformity of all the others, the tacit consent 
is the decision not to interfere with this desire of one’s own conformity. And since 
conformity of others to a convention amounts to that fact that the others do rely on 
oneself, in the example, one’s silence implicates one’s tacit consent to all the others 
that one has decided not to interfere with their desires to rely on them. In a conven-
tion, each also tacitly consents to trust the others.  
Moreover, in any convention it is the individual interest of each agent to conform, that 
is, everyone trusts the others because it is in the interest of everyone not to collide 
with the others, and so to rely on the others by driving on the right. Everyone’s desire 
for the means stems from everyone’s motivation not to collide. This very basic capac-
ity (or power) of instrumental rationality is something that everyone values and eve-
ryone acknowledges to the others. If one had known that was not in the interest of the 
others to drive on the right, that is, to rely on oneself, one would have acted accord-
ingly. This much is granted both by the fact that the agents are in a coordination prob-
lem [15], and in order to preserve our presupposition of non-hostility.  
Finally, each uptakes such tacit consent of the other by tacitly confirming, firstly, that 
others’ trust on oneself is still something one desires, and, secondly, by implicating 
that one does rely on such trust on oneself of the others and will act accordingly. That 
the uptake holds is required again by the presupposition of non-hostility, and has the 
consequence that each does not only trust the others, but also rely on the trust of the 
others on oneself.  
Each time the agents, ignorant of each other’s identities as they may be, do meet and 
keep silent about each other mutual expectations of reciprocal reliance establish or 
implicate a tacit agreement to trust each other. Since the tacit agreement is implicated 
by one’s own silence both as a trustor and as a trustee the agreement is reciprocal: 
there is a tacit agreement between the interacting agents the both trust and are trusted 
by the other one. The tacit agreement is unconditional because the tacit consent are 
not conditioned one on the other; differently they are implicated by the presupposition 
that the agents are non-hostile, or, in the specific context, that the principle of Reli-
ability is followed. Finally, the normativity of conventions is that of the tacit or impli-
cated agreement: by tacit agreeing to trust each other everyone is obliged to keep 
one’s desires for the means in agreement with the other and has a right that the oth-
ers do the same.  

10   Why conventions are tacit agreements 

A regularity is a convention for the way it persists, not for its origins. In convention, 
one conforms if the others conform because it is in one’s interest to conform. Since 
the stability of conventions is guaranteed by this specific motivational structure (i.e. 
their pre-existing agreement in desiring some end) together with common knowledge 
of all the conditions specified in Section 2, individual instrumental rationality alone 
suffices to stabilize it. Then, why should a convention be also a tacit agreement? Isn’t 

25



is only just an additional pressure that is made redundant by the reasons the agents al-
ready have for acting as they do? What is the role of obligations and rights in conven-
tions?  

Though it is true that conventions are stable for these reasons, the fundamental 
condition that ensures stability is that the agents agree in desiring jointly co-realizable 
ends. But what is there to guarantee that they will keep doing so?  After all a common 
interest needs not be some ultimate end that we will invariably pursue forever. The 
ends we agree in desiring are often just means for some further ends we have. All in-
strumental desires cease to be motivationally effective, once the end in light of which 
we pursue the means has been either fulfilled or abandoned.  Suppose Alice and Bob 
have a common desire to meet each other one day during the week and they fulfil 
their desires following the convention to go at the movie together every Wednesday. 
Suppose also that Bob is secretly in love with Alice, and hopes that by recurrently 
meeting him she will fall in love too. Differently, for Alice, Bob is just a friend that 
she is keen to meet, and nothing more. This Wednesday, at the end, Bob realizes how 
desperate his situation is, how impossible it is that his love will be ever reciprocated, 
and he abandons his plan to seduce Alice altogether. If he suddenly revised his recur-
rent end to meet with Alice, there would no motive at all to still pursue the means of 
going to the movie with Alice that night. Still however, by not showing up, Bob 
would do something wrong and against Alice, something that, notwithstanding his 
feelings, he may wish to desire not to be moved to do.  

In other words, since all the parties to a convention conform (trust) on the assump-
tion of the trust of others, agents need protection and assurance against the mutability 
of interest that might compromise each individual project. Since the kind of common 
interest presupposed by a convention may be as volatile as any other end we pursue, 
everyone would be at risk if everyone were free to change one’s mind without taking 
into account the other in any way. Obligations act as further assurance in case one 
was to change his desires by entitling possible influencing actions (e.g. punishment 
by reproach), which can motivate the others beside their current desires.  

Conventions tend to reproduce agreement in desiring arbitrary means from agree-
ment in desires for the ends. However, by also being sources of tacit agreements be-
tween the agents, the arbitrary means are turned into ends to be pursued unless one is 
able to warn the other in time or is prepared to compensate for possible losses.  

11   Conclusion 

In his paper on causation, Lewis noted that Hume has defined a causal succession 
“twice over” [16]17. The aim of this article is to suggest that something similar has oc-
curred when Hume defined a convention as: “a general sense of common interest, 
which sense all the members of society express to one another, and which induces 
them to regulate their conduct by certain rules. […] When this common sense of in-
terest is mutually expressed, and is known to both, it produces a suitable resolution 

                                                             
17 Hume defines a causal succession both as a succession that institutes a regularity and by way 

of a counterfactual analysis. The two notions are to be kept separated, see Lewis (1973). 
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and behaviour. And this may properly enough be called a convention or agreement 
betwixt us, though without the interposition of a promise; since the actions of each of 
us have a reference to those of the other, and are performed upon the supposition, that 
something is to be performed on the other part” (Hume, A Treatise of Human Nature, 
III.ii.2, emphasis added). 

That convention can be seen as tacit agreements is often suggested, and is consid-
ered as tantamount to the analysis offered by Lewis. However, what Lewis has shown 
is that, in certain conditions, an agreement in desires for the means might stem from 
our independent agreement in desires for the ends. However an agreement in desires 
is not the same as an agreement between the agents in that the latter, but not the for-
mer, is a social relationship between the agents. The fact the there is an agreement be-
tween the agents entails that their relationship is also a normative relationship. 
Whereas their mere agreement in desires may not have such consequences.  

In this paper we have shown that the normativity of conventions is the normativity 
of tacit agreements, that is, that the agent becomes bound to keep their desires for the 
means in agreement, and by becoming so bound they are assures the other will not 
change their minds without some concern for their fellows.  

The agreements that stem from conventions are tacit in the sense that they are im-
plicated by what the agents do (or forbear to do) though without any communication 
between them is necessary. In order for this be possible we have offered two substan-
tial hypotheses: (1) that there is a salient interpretation, in some contexts, of every-
one’s silence as confirmatory of the others’ expectations, and (2) that the agents share 
a value of not being motivated by hostile attitudes, ad, on this basis that their interac-
tion are regulated by a presupposition that the principle of Reliability is followed. If 
the former hypothesis is compatible with many available empirical data about human 
decision-making (Section 7), the latter is matter of future research. 
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A Conviviality Measure for Early Requirement Phase
of Multiagent System Design
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Abstract. In this paper, we consider the design of convivial multi-agent sys-
tems. Conviviality has recently been proposed as a social concept to develop
multi-agent systems. In this paper we introduce temporal dependence networks to
model the evolution of dependence networks and conviviality over time, we intro-
duce epistemic dependence networks to combine the viewpoints of stakeholders,
and we introduce normative dependence networks to model the transformation of
social dependencies by hiding power relations and social structures to facilitate
social interactions. We show how to use these visual languages in design, and we
illustrate the design method using an example on virtual children adoptions.

1 Introduction

The focus of this paper is the social/organizational structure of a multiagent system.
In particular, we are interested in the design of convivial multiagent systems, which is
directly related to well studied issues such as groups and teams, norms and normative
behavior, and coalition formation. First, we discuss the determining factors and the de-
cisions we have to make concerning the actual convivial characteristics of the system.
Following the TROPOS methodology, this process leads us to our dependence network
model. A crucial step in this phase is to manage conflicting requirements such as recon-
ciling freedom with exclusion and missing or incomplete specifications such as implicit
agents goals. Second, we propose a representation of our model and present our formal-
ism, initially expressing dependencies with static dependence network. We then express
the sequence of different actors point of views, temporal dynamic networks. Third, we
define the actors interactions and model a protocol.

We study the following research questions:

1. How to design the evolution of convivial social relations?
2. How to combine viewpoints from stakeholders?
3. How to incorporate normative aspects of conviviality?

The description level of this paper is methodologies and languages. To answer these
questions we develop temporal dependence networks to model the evolution of depen-
dence networks and conviviality over time, we introduce epistemic dependence net-
works to combine the viewpoints of stakeholders, and we introduce normative depen-
dence networks to model the transformation of social dependencies by hiding power
relations and social structures to facilitate social interactions.
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The inspiration source of our work is political and social science. Empathy and reci-
procity were foregrounded by Polanyi in 1964. “Individual freedom realized in personal
interdependence" was tooled up by Illich in 1974 [17]. And in 1988, Putnam consid-
ered conviviality as a condition for civil society and social capital, a concept referring
to the collective values of all social networks. One of the four themes of the Euro-
pean Community fifth framework program was entitled the “societe de l’information
conviviale” (1998-2002) [25], which was translated as “the user-friendly information
society.” Today, a number of research fields such as computer supported cooperative
work and social software aim at supporting users to interact and share data. Convivial-
ity has recently been proposed also as a social concept to develop multi-agent systems
[9].

As a running example, we use the design of a virtual adoption agency for instance on
Second Life (SL). Adopting virtual children is a successful experience and a flourishing
business on SL. Parents wishing to adopt a child must pay a fee to the adoption agency.
The procedure typically involves that parents list themselves to advertise their profile
to prospective children who can select them. The agency then matches children and
parents and organizes a try-out period. There is no pressure. Once parents and children
have made their decision, they simply come back to the agency to cancel the adoption
if unhappy or otherwise to confirm it and get their adoption certificate and a ceremony.
The experience must be convivial.

The conviviality literature discusses many definitions and relations with other so-
cial concepts, which we do not introduce in the formal model in this paper, referring
to qualities such as trust, privacy and community identity. Also, in this paper we do
not consider Polanyi’s notion of empathy, which needs trust, shared commitments and
mutual efforts to build up and maintain conviviality.

The layout of this paper is as follows. In Section 2 we discuss the social focus of
this paper by explaining how the social concept “conviviality” can be used to develop
multiagent systems in general, and their design in particular. In the following four sec-
tions we answer the research questions. In Section 3 we introduce temporal dependence
networks to model the evolution of dependence networks and conviviality over time. In
Section 4 we introduce epistemic dependence networks to combine the viewpoints of
stakeholders. In section 5 we introduce normative dependence networks to model the
transformation of social dependencies.

2 Convivial multiagent systems

In this section we discuss the use of social concepts in general, and “conviviality” in
particular, for the development of multiagent systems.

2.1 Social concepts in multiagent systems

A social concept like “conviviality” can be used in multiagent systems in various ways.
Consider the following examples:

Informal requirements of decision makers: “our system should be convivial and easy
to use”
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Formal concept in an ontology for modeling multiagent systems: “system A is con-
vivial whereas system B is efficient”

Performance measures: “the conviviality is 87 on a scale from 0 to 100”
Programming constructs: “if use<10 then conviviality++”

Though the latter ones may seem farfetched at the moment, consider some of the many
other social concepts have been adopted by computer science at all these different lev-
els, from concepts in informal requirements via modeling concepts in UML to program-
ming constructs (this list is far from complete!).

“Service” is a concept from business economics which has been used in computer
science in service oriented architectures and in web services. Not only business
processes but also computer applications are modeled as service providers.

“Contract” has been introduced in Meyer’s design by contract [19, 18, 1], a well
known software design methodology that views software construction as based on
contracts between clients (callers) and suppliers (routines), relying on mutual obli-
gations and benefits made explicit by assertions.

“Coordination” is emerging as an interdisciplinary concept to deal with the complex-
ity of compositionality and interaction. Coordination languages, models and sys-
tems constitute a recent field of study in programming and software systems, with
the goal of finding solutions to the problem of managing the interaction among
concurrent programs.

“Trust” and reputation are used as fundamental concepts in security.
“Architecture” is defined as the fundamental organization of a system embodied in

its components, their relationships to each other, and to the environment, and the
principles guiding its design and evolution. The recent standard called IEEE 1471-
2000 [2] emphasizes that views on the architecture should always be considered
in the context of a viewpoint of a stakeholder (e.g., software engineer, business
manager) with a particular concern (e.g., security).

Value and quality are economic concepts. Value networks model the creation, distri-
bution, and consumption of economic value in a network of multiple enterprizes
and end-consumers.

Concepts, models and theories from the social sciences are studied in multiagent sys-
tems to regulate or control interactions among agents [3], as a theoretical basis for the
development of so-called social software [21], and to develop multi-agent systems for
computational social science [10]. Examples of social concepts studied in multi-agent
systems are societies, coalitions, organizations, institutions, norms, power, and trust
[11].

2.2 Conviviality requirements

Requirements for multiagent systems say that systems must be convivial, whereas sys-
tem researchers and developers use other concepts. To model the requirement, the de-
velopers may interpret the conviviality requirement as being autonomous to make sug-
gestions, to react the discussion in the meeting to reach their goals, being pro-active to
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take the initiative and being goal-directed, and most importantly being social by inter-
acting with others to reach their goals.

When writing down requirements for user friendly multiagent systems, it is crucial
to understand the inherent threads of conviviality, such as deception, group fragmenta-
tion and reductionism [9]. Whereas conviviality was put forward by Illich as a positive
concept, also negative aspects were discussed. People are often not rational and coop-
erative to achieve conviviality [23] and unity through diversity [16] may lead to sup-
pression of minorities. Taylor explores the contradiction that conviviality cannot exist
outside institutions: i.e., the question “whether it is possible for convivial institutions
to exist other than by simply creating another set of power relationships and social or-
ders that, during the moment of involvement, appear to allow free rein to individual
expression. Community members may experience a sense of conviviality which is de-
ceptive and which disappears as soon as the members return to the alienation of their
fragmented lives.”

2.3 Conviviality ontology

The use of conviviality as a computer science concept ensures that considerations on
the user-friendliness of multiagent systems get the same importance and considerations
on the functionality of the system. For example, our experience with the development
of a digital city in Europe is that computer engineers are focussed on filling in forms
and developing menu structures and other interface issues, and do not take into account
that a digital city should be a meeting place for human and artificial agents.

Conviviality is a useful high level modeling concept for organizations and commu-
nities, emphasizing the social side of them rather than the legal side. Erickson and Kel-
logg [14] say: “In socially translucent systems, we believe it will be easier for users
to carry on coherent discussions; to observe and imitate others’ actions; to engage
in peer pressure; to create, notice, and conform to social conventions. We see social
translucence as a fundamental requirement for supporting all types of communication
and collaboration". Taylor studies conviviality in British pantomime and observes that:
“conviviality masks the power relationships and social structures that govern societies.”

2.4 Design of convivial systems

In this paper we study how convivial multiagent systems can be designed using our
operationalized concept of conviviality. We illustrate our arguments and contributions
with a running example on multiagent systems for virtual adoptions, where typically
physical reality such as multiagent technologies interact with virtual and social realities.

The aim of social scientists to create conviviality by creating the desired conditions
for social interaction, coincides with the aim of designers of multiagent systems. For
example, Illich defines a convivial learning experience in which the teacher and the
student switch roles, such that the teacher becomes the student and the student becomes
the teacher. This role swapping emphasizes the role of reciprocity as a key component
for conviviality. Parallelely the importance of reciprocity in conviviality was shown
for instance in [15]. As a result, such role swapping scenarios can directly be used in
multi-agent systems.
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3 Temporal dependence networks

In this section, we propose a design methodology for convivial multi-agent systems
based on the agent-oriented software development process, Tropos [4]. Key ideas in
Tropos are first, that throughout the process phases, e.g. from early requirements to im-
plementation, agents are endowed with intentionality. Second, the importance of very
early phases of requirement analysis to allow for a profound understanding of the envi-
ronment and of the interactions for the software to be built. This methodology guides
designer through an incremental process, from the initial model of stakeholders, to re-
fined intermediate models that, at the end, becomes the code.

3.1 Dependence networks

Multiagent systems technology can be used to create tools for conviviality. Illich de-
fines conviviality as “individual freedom realized in personal interdependence” [17].
Dependence network is a tool that allows us to model this interdependence [11, 24]. In
a recently published paper [9] dependence networks were formally defined as in Def. 1.

Definition 1 (Dependence networks). A dependence network is a tuple 〈A,G, dep,≥〉
where:

– A is a set of agents
– G is a set of goals
– dep : A× 2A → 22G

is a function that relates with each pair of an agent and a set
of agents, all the sets of goals on which the first depends on the second.

– ≥: A → 2G × 2G is for each agent a total pre-order on goals which occur in
its dependencies: G1 ≥ (a)G2 implies that ∃B, C ⊆ A such that a ∈ B and
G1, G2 ∈ depend(B, C).

Nevertheless, this representation of conviviality is static and therefore has a limited
field of application. In the next sub-section, we present our extension to encompass the
temporal aspect of conviviality.

3.2 Temporal dependence networks

Before proposing our definition, we introduce our virtual adoption running example.
The procedure typically involves that parents list themselves to advertise their profile
to prospective children who, if they like the parents, can select them. The agency then
matches children and parents and organizes a try-out period. Once parents and children
have made their decision, they simply come back to the agency to cancel the adoption
if unhappy or otherwise to confirm it and get their adoption certificate and a ceremony.

We start by informally listing critical stakeholders. We then identify the relevant
goals and the social dependencies of the stakeholders represented as actors. In partic-
ular, the actor Parent is associated with the goal: adopt child, while the actor Child
is associated with the goal: get adopted and Virtual Agency with the goal: provide
adoption service.
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get adopted

select profile

Try out match

get certificate
plan ceremony

provide 
adoption 

service

match profiles get paid

adopt child

advertise 
profile

match profile try out match

get certificate
plan ceremony

Fig. 1. Decomposition of goals.

To enrich the model with a finer goal structure and elicit dependencies, we decom-
pose each root goal into sub-goals. For instance, Child goal: get adopted, is decomposed
into three sub-goals: select profile, try out match and get certificate - plan ceremony.
In Fig. 1, a graphical representation of goal modeling is given through a goal diagram;
AND decomposition only are shown, no OR decomposition, e.g. no alternate sub-goals.

The UML sequence diagram (Fig. 2), illustrates the interactions among the stake-
holders and how operations are carried out. The diagram shows time incrementing ver-
tically. In particular, the diagram models the interaction among the three Users: parent,
agency and child. The interaction starts with the advertise profile request by the parent
to the agency and ends with the pay fee by the parent to the agency. We note that the
match ok sent by both parent and child can be asynchronous. Moreover, the agency
sends the adoption certificate and the plan ceremony to both child and parent.

Based on actor diagrams and goal decomposition, we proceed with a goal analysis
taking each actor point of view. The objective is to obtain a set of strategic dependencies
among the actors. We therefore perform an iterative analysis on each goal until all are
analyzed. We build a succession of dependence networks from each actor point of view.

With temporal dependence networks, we aim at analyzing the evolution of depen-
dence networks and conviviality over time. We identify the most relevant interactions
in our running example and build a model with the key succession of dependence net-
works.

Definition 2 (Temporal dependence networks). A dependence network is a tuple DP =
〈A,G, goals, dep〉 where:

– A is a set of agents
– G is a set of goals
– T is the set of natural numbers
– goals : T ×A → 2G is a function that relates with each pair of a sequence number

and an agent, the set of goals the agent is interested in.
– dep : T × A × 2A → 22G

is a function that relates with each triple of a sequence
number, an agent and a set of agents, all the sets of goals on which the first depends
on the second if the third creates the dependency.

We use this structure to model our example (Fig. 3). Note that the set of agents does
not change, but the goals of the agents and the dependencies among them, changes over
time.
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parent: User agency: User Child: User

advertise profile
select 

profilesend select profile

match profile

try out matchtry out match

match okmatch ok

adoption certificate

plan ceremony

pay fee

Fig. 2. Actor diagram modeling the stakeholders for the virtual adoption domain.

Agents A = {P,C, VA} and
Goals G = {g1, g2, g3, g4, g5, g6, g7, g8, g9, g10}
We thus have the following sequence of dependence networks:
DP4 = 〈A,G, goals4, dep4〉, where:

– goals(4, VA) = {{g5, g6, g7}}: In dep4, the goals of agent VA are to provide adop-
tion service, to get paid and to match parent-child profiles.

– goals(4, P ) = {{g1, g10}}: In dep4, the goals of agent P are to adopt a child and
to try out match.

– goals(4, C) = {{g8, g10}}: In dep4, the goals of agent C are to get adopted and to
try out match.

– dep(4, VA, {P, C}) = {{g7}}: In dep4, agent VA depends on agents P and C to
achieve goal g7: match parent-child profiles.

– dep(4, P, {C}) = {{g10}}: In dep4, agent P depends on agents C to achieve goal
g10: try out match.

– dep(4, C, {P}) = {{g10}}: In dep4, agent C depends on agents P to achieve goal
g10: try out match.
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In our notation, depi refers to the temporal dependence network where i ∈ T and
denotes the ith sequence, P refers to agent Parent, C to agent Child and VA to agent
Virtual Agency.

Plan ceremony, 

get certificate

Advertise 

profile

Select 

profiles

Match 

profiles

Try out 

match

g5

DP1

C VA

P g1
, g2

C VA

P

C VA

P

C VA

P

C VA

P

C VA

P

g9

g7

DP2
g7

g2

DP3

g1
0

g10 g7

g7

DP4DP5DP6
g
6

g3,g4

g3
, g4

g1

g8

Fig. 3. DP sequences

4 Epistemic dependence networks

In our running example, we use the Tropos methodology [4], with the difference that
we include neither plans nor resources. However similarly to Tropos, we identify ac-
tors which depend on each other to achieve their hardgoals, simply referred to as goals,
and softgoals, the latter being typically used to model non-functional requirements and
“having no clear -cut definition and/or criteria for deciding wheter they are satisfied or
not" [4]. In Fig. 4, we show an actor diagram for the virtual adoption. In particular,
Parent is associated with the goal: adopt child, and the softgoal: get nice child. Sim-
ilarly, Child is associated with the goal: get adopted and the softgoal get nice parents
while Virtual agency wants to provide adoption service and has the softgoal to provide
a good service. Finally, the diagram includes one softgoal dependency where Parent
depends on Virtual agency to fulfill the softgoal: adoption fee well spent.

Temporal dependence networks allow us to capture a relation from a specific point
of view and at a specific time. Unfortunately, it is not sufficient for the situation we want
to model, so in the next section, we try to answer this question by introducing a new
model that will allow us to capture a more global view from the system point of view.

In order to model such system, we use the epistemic dependence network formally
defined as Def. 3.
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Actor

Hardgoal

Softgoal

Softgoal 

dependency

depender

dependum

dependee

adoption fee

well spent
get nice 
parents

get adopted

adopt child

provide 

adoption 

service

Child
provide a good 

service
Virtual 

Agency

get nice 

child

Parent

Fig. 4. Actor diagram modeling the stakeholders for the virtual adoption.

Definition 3 (Epistemic dependence networks). An epistemic dependence network is
a tuple DP = 〈A,G, T, goals, dep〉 where:

– A is a set of agents
– G is a set of goals
– T is the set of natural numbers
– goals : T × A → 2G is a function that relates with each pair of sequence number

and an agent, the set of goals the agent is interested in.
– dep : A → T × A× 2A → 22G

is a function that expresses from the point of view
of an agent a ∈ A, the dependence relation between another agent b ∈ A and a set
of other agents regarding the goals of agent b in a sequence t ∈ T .

If we consider Fig. 5 the starting goal diagram, the three steps of this design process
are:

1. Goal delegation: Each goal of any actor may be delegated to any other actor, already
existing or new. It proceeds with the analysis of goals from the point of view of each
actor. This generates a network of delegation between stakeholders, external actors
and the system. The inclusion of new actors and sub-actors and subsequently, the
delegation of sub-goals to sub-actors continues until all goals have been analyzed.
Actors that contribute to the requirements are also included.

2. Goal decomposition: Goals and softgoals are further decomposed into sub-goals
or found not reachable. Through this refinement process a goal hierarchy is cre-
ated where leaf goals represent alternatives to root goals. Moreover, some identi-
fied sub-goals become reasons for new dependencies with new actors. Therefore,
dependencies in actors diagrams must be revised.

3. When all actors fulfill their goals, all the goals have been analyzed and the root
goals are satisfied then, this design process is complete.
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select profilesearch by web 

profile

search by 

visited places search by 

appearance

Child

Parent

advertise 

profile

Virtual 

Agency

get parent 
profile info

search by 

groups

Fig. 5. Goal diagram for the goal select profile and dependencies between the actor
Child and other environment’s actors.

4.1 Example

In our running example, let’s consider the set of agents
A = {P, C, VA, AS}, where AS is the Adoption System.
dep(P ) = (2, VA, {C}) = {g9}: Parent believes that in sequence 2, Adoption

System depends on Child to achieve goal g9: select profile.
We express Fig. 6 as follows: dep(AS) = (2, P, {C}) = {g9}: Adoption System

believes that in sequence 2, Parent depends on Child to achieve goal {g9}: select pro-
file. We note that there is no dependency from Adoption System towards Adoption
System for the goal: select profile.

With Fig. 5 and 6, we explain the iterative design process from the Tropos method-
ology that are tool supported [22].

To explain what is the delegation process, and as an example, we here give a partial
view on goal: select profile.

To start, we have the goal of Child: select profile. After analyzing the rational for
this goal from each actor point of view, we delegate this goal to the new actor, the
system-to-be Adoption System . We continue by analyzing each sub-goal.

We then identify the capabilities needed by Adoption System to fulfill all the four
identified sub-goals: search by web profile, search by visited places, search by groups
and search by appearance. In order for this latter sub-goal to be fulfilled, we add a new
goal: provide photo/video and a new dependency from Adoption System towards Par-
ent. Similarly, in Fig. 5 the sub-goal: search by web profile has no dependency while
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in 6 a new dependency from Adoption System towards Child has been created to ful-
fill the subgoal: know web address. Of course, each dependency must be mapped to
a capability. We then define a set of agent types and assign each of them one or more
capabilities. The specification of agent’s goals, beliefs, capabilities and the communica-
tion between the agents depends on the adopted platform and the chosen programming
language. We therefore leave this part for further work.

select profile

search by 

groups

Adoption

Sytem

Child

get adopted

provide 

photos/videos

search by 

visited places

Parentspecify visited 
places

search by 

appearance

know web 

address

search by web 

profile

classify 

profiles

Fig. 6. Goal diagram for the goal select profile and dependencies between the actor
Adoption System and other environment’s actors.

4.2 Nested dependencies

We first mention that by nested we simply mean a belief produced and only accessible
by an agent a and about another agent b, e.g. inaccessible to all others. For instance,
empathy provides a way to know what another agent’s preference is, and therefore to
better adapt to it, allowing for a convivial relation, whereby agents contribute to each
other. In our running example, let’s assume that Parent believes that Child depends
on it, Parent, for its goal: select profile. Let’s further assume that Child believes that
Parent depends on it to advertise parent profile, for example if Child first had to publish
an announcement on a board that it is seeking parents to be adopted by. We write:
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dep(P ) = (1, C, {P}) = {g9}: agent P believes that in sequence 1, agent C de-
pends on it, P to achieve its goal g9: select parents’ profile.

dep(C) = (1, P, {C}) = {g2}: agent C believes that in sequence 1, agent P de-
pends on it, C, to achieve its goal g2: advertise its profile.

5 Norms and masks

There are many different kinds of goals, some goals may be considered normative,
others personal. Agents do not only have personal goals, they also have normative goals,
e.g. goals imposed by the procedures. We propose a further extension of epistemic
dependence networks that we call “Normative epistemic dependence networks" in order
to take into account the differences in the two kinds of goals as well as obligations and
violations.

Definition 4 (Normative epistemic dependence
networks). A dependence network is a tuple

DP = 〈A,G, N, O, V, T, goals, dep〉 where:

– A is a set of agents
– G is a set of goals
– N is a set of norms
– T is the set of natural numbers
– O : N ×A → 2G is a function that associates with each norm and agent the goals

the agent must achieve to fulfill the norm; We assume for all n ∈ N and a ∈ A that
O(n, a) ∈ power({a});

– V : N ×A → 2G is a function that associates with each norm and agent the goals
that will not be achieved if the norm is violated by agent a; We assume for each
B ⊆ A and H ∈ power(B) that (∪a∈AV (n, a)) ∩H = ∅.

– goals : T × A → 2G is a function that relates with each pair of sequence number
and an agent, the set of goals the agent is interested in.

– dep : A → T × A× 2A → 22G

is a function that expresses from the point of view
of an agent a ∈ A, the dependence relation between another agent b ∈ A and a set
of other agents regarding the goals of agent b in a sequence t ∈ T .

5.1 Example 1

We explain with an example how to use our formalism and model normative situations.
In sequence 2 of our running example, while Child’s obligation to select profiles is a
normative goal, Child’s desire to select the parents it prefers is a personal goal. In this
case, personal and normative goals coincide:

The goal g9, to select parents’ profile, is both a personal goal and a normative goal,
that is, goals(2, C) = g9 ∪ O(2, C) = g9, where g9 ∈ PGC : in sequence 2, agent C
has the goal and the obligation to select parents’ profiles g9, where PG is personal goal.

GC = ∪O(n,C) ∪ PGC , where GC ∈ G is the set of normative goals of agent
C ∈ A, n ∈ N is an adoption norm, O(n,C) is the obligation for C to respect norm n
resulting in its normative goals, and PGC ∈ G are the personal goals of C.
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5.2 Example 2

In this paragraph, we explain the notions of positive and negative consequences to a
norm violation. A positive consequence is adding a goal to the existing ones whereas
a negative consequence forbid the realization of a goal. We further explain with our
example. Let’s assume that the parent believes that, in sequence 2, the child depends
on the virtual agency to hide its information to parents. However, the parent violates its
obligation to respect it and looks up the child’s information. One possible sanction is
that the parent cannot advertise its profile at the agency any longer, which means that
this goal is unrealizable. In the case of the violation sanctioned by the removal of the
goal g2, the obligation O(n2, P ) is not possible any longer as agent P cannot advertise
its profile at the agency, it cannot depend on the agency to get the child information
any longer. Moreover, agent P cannot achieve its personal goal g1: adopt a child, any
longer as g2 is a normative goal needed for agent P to achieve g1. And the violations
are: V −(n2, P ) = g2: agent P violating norm n2 will not be able to achieve goal g2,
advertise its profile, because g2 is removed.

As a consequence, the parent cannot adopt a child. Another possible sanction is that
the parent must make a donation, e.g. pay a fee, in which case a new goal is added to
the parent. As a result, until the parent has fulfill this new obligation, it cannot continue
the process.

dep(P ) = (2, C, VA) = g14: agent P believes that in sequence 2, agent C depends
on agent VA to achieve its goal g14: no child look up. Where the obligations are:

O(n1, C) = g9: agent C has the obligation to fulfill norm n1 to achieve goal g9,
select parent profile.

O(n2, P ) = g14: agent P has the obligation to fulfill norm n2 to achieve goal g14,
no look up child.

V +(n2, P ) = g15: agent P violating norm n2 will not be able to achieve goal g2,
advertise its profile, because a new goal g15, make a donation, is added. Until this new
goal is achieved, g2 cannot be achieved.

In the case of the violation sanctioned with the addition of the goal g15, we note that
a mechanism is needed to make sure that the new goal is fulfilled before agent P can
further proceeds.

6 Related work

Castelfranchi [11] introduces concepts like groups and collectives from social theory
in agent theory, both to enrich agent theory and to develop experimental, conceptual
and theoretical new instruments for the social sciences. For further work on the use of
the concept of conviviality in computer science and multiagent system see [6, 8, 5, 7].
A large body of work on design has been produced, to only cite a few: the AOSE
methodology [20], GAIA [12], the PASSY methodology [13].

7 Summary

– To express the temporal aspects of goal-oriented agents’ interactions in multi-agent
systems, we use sequences of dependence networks.
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– To take into account the individual perspectives of agents for the design of convivial
multi-agent systems, we model one dependence network for each agent.

– To design interaction mechanisms that ensure conviviality in multi-agent systems,
we use norms.

We apply the social viewpoints on multiagent systems to the concept of conviviality.
We use goal refinement within dependence networks by adding and removing goals.

We obtain the following results.

1. By introducing a temporal dimension to out models, we can model the dynamic
aspects of conviviality, such as Ashby’s observation that enforcing conviviality for
the majority re-inforces non-conviviality for minority. Moreover, we can model
conviviality by allowing the desired conditions for social interaction, e.g. the cre-
ation of new dependence networks and change of the existing ones.

Topics for further research are: We can extend the social models (for example with
privacy and community identity) to cover a wider range of notions of conviviality. For
instance, Polany’s notion of empathy, which needs trust, shared commitments and mu-
tual efforts to build up and maintain conviviality will benefit from such extensions. We
can use nested modalities representing agent profiles to model such empathy and related
notion of conviviality.
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Abstract. The social and organisational aspects of agency have led to a
good amount of theoretical work in terms of formal models and theories.
From these different works normative multiagent systems and multia-
gent organisations are particularily considered in this paper. Embodying
such models and theories in the conception and engineering of proper
infrastructures that achieve requirements of openness and adaptation, is
still an open issue. In this direction, this paper presents and discusses a
framework for normative multiagent organisations. Based on the Agents
and Artifacts meta-model (A&A), it introduces organisational artifacts
as first class entities to instrument the normative organisation for sup-
porting agents activities within it.

Keywords: normative system, organisation, artifacts, norm enforcement

1 Introduction

These last years, the global landscape of multiagent technology has pointed out
the concepts of norms and organisations for the modeling and programming of
such systems 1 [26]. On one side, the introduction of norms have led to the notion
of normative multiagent system. In [1], it is defined as “a multiagent system
organized by means of mechanisms to represent, communicate, distribute, detect,
create, modify, and enforce norms, and mechanisms to deliberate about norms
and detect norm violation and fulfilment.” On the other side, the increasing
importance of organisations has promoted an organisation oriented view of the
programming of MAS [2].

In this paper, we present a framework for normative multiagent organisa-
tions. Such an approach takes place at the intersection of the normative and the
organisation approaches. In this framework, norms are anchored and considered
in the context of the organisation of the system. Norms do not refer directly to
agents but to primitives related to an organisation such as roles, groups, etc.
The set of mechanisms cited above in the definition of normative systems, are

? Supported by French ANR Project ForTrust ANR-06-SETI-006.
1 The series of COIN (Coordination Organisation Institution and Norms in agent

systems) started in 2005 is an example of such an importance.

Dagstuhl Seminar Proceedings 09121 
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naturally enriched with functions related to the management of the organisa-
tion, to the support of the agents in their coordination and participation to the
organisation.

As shown in [2], current software engineering approaches on the definition
of these systems have led to a general architecture, kind of organisational mid-
dleware, composed of services and agents responsible for executing these mech-
anisms. From an architectural and software point of view, this middleware is
generally introduced between the application agents and the agent communica-
tion platform. In those cases, the application agents do not have the possibility
to take part in the management of the normative organisation to which they
participate. As noticed in [20], the agents have become, in some sense, under the
‘control’ of the organisational middleware with respect to the management and
use of their organisation. Our motivation in this work consists in the softening
of the management of openness promoted by these organisational middlewares.
We propose the implementation of the mechanisms supporting the normative
organisation at the agents application level with first class entities.

The paper is structured as follows. The next section presents the main foun-
dations that drive and structure our approach for the definition of the framework
for normative multiagent organisation. In the following sections, we detail two
components of this framework, starting by the Organisation Modeling language
(cf. Sec. 3). The description of the different Organisational Artifacts that sup-
port the deployed normative multiagent organisation is splitted in those that
are involved in the management and coordination of the organisation (cf. Sec. 4)
and in those that support the management and regulation of the normative di-
mension of the organisation (cf. Sec. 5). The last component of the framework
is composed of the organisation-awareness mechanisms that can be embedded
in the agents of the systems to properly behave in such a framework. This lat-
ter component being still under development, some elements will be described
instead of an exhaustive description. Before concluding, we provide some dis-
cussions and comparisons with the current state of the art. We position more
particularily our approach with respect to different challenges presented in [1].

2 General view and foundations

In this section we present the foundational guidelines that have been used for
the definition of the framework for the management of normative multiagent or-
ganisations. In the sequel, to alleviate the expression, we will use “organisation”
instead of “normative organisation”.

2.1 Different levels of representation of an organisation

A multiagent organisation can be considered and represented at three differ-
ent levels: (i) the organisation specification stating the abstract structure and
functioning of the MAS that is independent of the concrete agents that are
participating to it, (ii) the organisation entity built by the different agents in
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interaction within the organisation according to their autonomous interpretation
and obedience of the specified organisation and (iii) the internal organisation
entities, i.e. the local and individual representations of the organisation entity in
every agent of the MAS. Let’s notice that these levels are not independant. The
organisation entity is updated and modified by runtime events related to agents
entering and/or leaving the organisation, to group creation, to role adoption, to
goal commitment, etc. The global representation of this organisation entity may
be not accessible to the agents. It may be only represented in the eyes of an
external observer. On the contrary a set of local, potentially inconsistent repre-
sentations of it may be built and managed by each agent of the organisation.
Agents may also be able to decide from these local representations, to adapt and
to change the organisation in a bottom-up process, installing a new organisation
specification.

To explicitly represent the organisation that is manipulated at these three levels,
the framework is composed of an Organisation Modeling Language (OML). It is
complemented by an organisation implementation architecture composed of the
set of mechanisms to manage the organisation entity. This architecture is further
divided into an organisation infrastructure part and into an agent part.

The Organisation Modeling Language (e.g. Moise+ [24], Islander [12]) is
used to express the specification of the multiagent organisation in terms of norms,
specific constraints and cooperation patterns that the designer (or the agents
themselves) aim at imposing on the agents of the system. Several dimensions
are considered in the current litterature: structural, functional, dialogic, etc [8].
One important feature of these OMLs is that norms and constraints do not refer
directly to agents but to primitives related to an organisation such as roles,
groups, etc. For instance, it can be specified that every agent that adopts a role
“student” in a group “laboratory” is obliged to write a thesis. This language
defines the explicit representation of the organisation at the three levels described
above. Using these representations, the agents can reason on the organisation
specification and on their local and individual representation of the organisation
entity.

In the litterature, the development of the organisation implementation archi-
tecture normally considers both an agent-centred and an organisation-centred
point of view 2. The agent-centered view focuses on the organisational agent-level
deliberative mechanisms to interpret and reason on the organisation specification
and on the organisation entity to which the agents participate [4, 6]. Equiped
with such organisation-awareness mechanisms agents become organisation-
aware agents. Let’s note that in the sequel, when we will use the term “agent”
it is implicitly considered that the agent is an organisation-aware agent. The
organisation-centered view is mainly concerned with the definition of what we
call organisational infrastructure (OI) to support, interpret and manage the or-
ganisation entity derived from the enactment by the agents of the organisation

2 In [35] these points of view are called agent and institutional perspectives.
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specified with the OML. Thus, the OI provides the agents with global and shared
mechanisms related to their participation to the organisation entity.

2.2 Regimented Norms vs Enforced Norms

As stated in the Sec. 1 and [10], a normative multiagent organisation serves as
an instrument to control the autonomy of the agents. Its success depends on how
the behavioural constraints stated in its specification are ensured in the system.
These behavioural constraints are established by the norms that are stated by
the specification of the organisation. In the context of this work, a norm can
be an obligation, a permission, or an interdiction to perform some action or to
achieve some goal. The actions and goals that are considered are related to the
problem to solve (e.g. changing the state of some resource) but also related to
the management of the organisation itself (e.g. adopting a role, entering in a
group). A norm also has a condition that states when it is active and a deadline
to be fulfilled 3. These norms are considered and interpreted in the context of
the current organisation entity. Two types of mechanisms can be considered for
instrumenting them in the organisation 4: regimentation and enforcement.

Regimentation is a mechanism that simply prevents the agents to perform
actions that are stated as forbidden by a norm. More precisely, some actions are
regimented in order to preserve important features (e.g. wellformedness) of the
organisation. For instance, if a group can have at most one agent playing a given
role, the organisational action ‘adopt this role’ in this group is regimented in
order to ensure that this constraint is strictly respected. Since this mechanism
has to work in an open system, for any kind of agents, it is implemented ‘outside’
the agents in the organisation infrastructure. Therefore, action regimentation
implies the requirement to instrument the MAS with mechanisms preventing
the execution of the concerned set of actions and to install them under the strict
control of the OI.

Enforcement is a mechanism which is applied after the detection of the viola-
tion of some norm. While regimentation is a preventive mechanism, enforcement
is a reactive one. From the local point of view of an agent, a norm may be decided
to be obeyed or not. From the global point of view of the organisation, the ful-
filment/unfulfilment of the norms should be detected, evaluated as a violation
or not, and then judged as worth of sanction/reward or not. While detection
can be implemented as an automatic process that does not require decision, the
evaluation and the judgement need deliberation and reasoning.

3 We are aware that the concept of norm is broader and more complex than the one
used in this paper (e.g. [34] and the Deontic Logic in Computer Science workshop
series [18]). For the present paper however this simple and informal definition is
enough to discuss the proposal.

4 This classification is based on the proposal described in [19, 15]. However, we present
them in a more specific context: regimentation is applied only to preventing the
execution of organisational actions and enforcement is applied for the the other
cases.
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Instrumenting norms of the organisation either as regimentations or enforce-
ment mechanisms depends on which side the designer wants to give more weight.
Looking further at the functions used in the corresponding mechanisms, two
classes can be indeed distinguished: (i) management of regimentation in terms
of interpretation of the considered norms and checking their satisfaction before
executing changes in the organisation entity, (ii) management of enforcement in
terms of status detection, evaluation of this status and judgement on violation
or not followed by sanction execution.

2.3 First class entities for the Management of Normative
Organisation

As mentioned in the introduction, the engineering of organisation infrastructure
in the litterature has led to the proposals of organisation middleware installing
the OI as a separate layer that cannot be managed by the agents participating
to the application which is developed on top of this middleware. However, as
argued in [20], even if the OI aims at supporting and controling the agents in
their participation to the organisation entity, we consider that it should also be
managed by those agents.
To solve this problem, we propose to design and develop it within the multiagent
layer where the application is developed with the first class abstractions that are
used to develop it. The choice of these first class abstractions must be considered
with care, since, as stated in the previous section, the management of norms in
the OI strongly depends on a regimentation or an enforcement view.
Basing our approach on the basic A&A (Agents and Artifacts) meta-model
presented in [33], the organisation infrastructure of the framework, called
ORA4MAS [25], proposes a set of artifacts, called organisational artifacts. The
agents can use these artifacts to instrument (i) the multiagent environment
which is no more a merely passive source of agent perceptions and target of
agent actions and (ii) the organisation entities living upon in order to interpret
and manage them according to the way they are specified with the OML. Given
the deliberative nature of some of the mechanisms involved in the norm enforce-
ment (evaluation, judgement and sanction), the overall picture of ORA4MAS
accounts also for organisational agents (cf. Fig. 1).
We use here the adjective “organisational” to identify those agents and arti-
facts of the MAS which are part of the OI. They are responsible for activities
and encapsulate functionalities concerning the management and enactment of
the organisation. It is however possible, depending on the application require-
ments, that agents participating also to the proper solving and functioning of
the application endorse the “role” of organisational agents.

Analogously to the human case, organisational artifacts are used here to reify
and modularise the functional-part of the organisation management machinery.
As in the A&A model, they are non-autonomous function-oriented entities, de-
signed to provide resources and tools that agents can create and use. They
are focused on the organisation entity management activities. As the cognitive

5



artifacts proposed in the A&A model, they constitute a distributed set of or-
ganisational resources and tools that can be perceived and used by agents as
first-class entities. They can be dynamically adapted and possibly replaced (by
agents themselves) during the organisation lifetime. As cognitive artifacts, the
organisational artifact function is partitioned in a set of operations, which agents
can trigger by acting on artifact usage interface. The usage interface provides
all the controls that make it possible for an agent to interact with an organisa-
tional artifact, that is to use and observe it. Agents can use an organisational
artifact by triggering the execution of operations through the usage interface
and by perceiving observable events generated by the artifact itself, as a re-
sult of operation execution and evolution of its state. Besides the controls for
triggering the execution of operation, an organisational artifact can have some
observable properties, i.e. properties whose value is made observable to agents,
without necessarily executing operations on it. Organsational artifacts then me-
diate the access of agents to organisation resources and support participation of
these agents to organisation activities. For instance, to adopt a role an agent has
to use the appropriate artifact.
Considering the normative dimension of the organisation, organisational artifacts
encapsulate also organisational norms and functionalities, such as enabling, me-
diating, and ruling agent interaction, tracing and ruling resource access, and so
on. Regimentations of norms (see Fig. 1) are implemented in the organisational
artifacts. For instance, let’s consider the case of a regimented adoption of role.
The operation will be successfully executed only in the case the agent is allowed
to adopt the role, otherwise the adoption fails. Since it is possible to link or-
ganisational artifacts with cognitive artifacts that mediate the access of agents
to resources, it is thus possible to imagine to regiment also the access to those
resources by the way of the organisational artifact. In the case of enforcement of
norms, the functionality provided by the artifacts consists in the detection and
showing (by means of observable properties) the non fulfilment of a norm. We
consider that agents (organisational ones or not depending on the application)
should be informed of current status of the norm and can evaluate the exis-
tence of violation or not and take the better decision regarding the application
objectives.

The organisational agents embed dedicated reasoning and strategies related
to the management of the organisation. They can be dedicated agents or agents of
the application having special knowledge. They dynamically articulate, manage,
regulate and adapt the organisation entity by creating, linking and manipulating
the organisational artifacts, which are discovered and used by the agents to work
inside the organisation entity, according to the specified organisations. Such ac-
tivities typically include observing artifacts dynamics and possibly intervening,
by changing and adapting artifacts or interacting directly with other agents,
so as to improve the overall (or specific) organisation processes or taking some
kinds of decisions when detecting violations. As an example, in the context of
theMoise+ model, one or multiple scheme manager agents can be introduced,
responsible for monitoring the dynamics of the execution of a scheme by ob-
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serving a specific artifact. The scheme artifact and scheme manager agents are
designed so as that the artifact allows for violation of the deontic rules concern-
ing the commitment of missions by agents playing some specific roles, and then
the decision about what action to take – after detecting the violation – can be
in charge of the manager agent.

Organisational artifacts and organisational agents create a sort of explicit
organisational infrastructure on which the organisation entity is deployed, re-
vealed to the agents as available tools in the environment. Regimentation and
detection mechanisms into artifacts, whereas evaluation and judgement mech-
anisms involved in inforcement are implemented into the agents. ORA4MAS is
thus able to ensure that important properties of the organisation entity hold
while agents keep their autonomy with respect to the constraints considered as
norms to enforce.
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Fig. 1. General relation between the mechanisms that implement the norms and the
organisational agents and artifacts of ORA4MAS

Given the sketching of the foundational guidelines underlying our framework,
we describe in the next section its different components and how the full-fledged
Moise+ organisational model 5 can be implemented with organisational arti-
facts. Detailed examples of the use of the framework can be found in [20] and
in [22]. ORA4MAS is realised on top of CARTAGO infrastructure [32], embed-
ding algorithms used in S-Moise+ [23]. CARTAGO is integrated with Jason [3],
2apl [9], and jadex [29] — these integrations are presented in [31, 28].

In this paper, descriptions of the organisation-awareness mechanisms and of
the organisational agents are not given. Even if some work has been realized
in the different examples that we have developed, we don’t have yet generic
5 Different OMLs require a different set of suitable artifacts and agents. For instance,

in the AGR organisational model [14], we can conceive artifacts to manage groups;
for Islander [12], the artifacts can be used to manage the scenes.
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architectures of such agents. Examples of organisation-awereness mechanisms
may be found for instance in [5].

3 Normative Organisation Modeling Language

The current version of the framework uses theMoise+ OML[24] as the language
to define and describe explicitly an organisation. This language decomposes the
specification of an organisation into three independent dimensions: structural,
functional, and deontic dimensions 6. The structural dimension focuses on the
specification of the roles, groups, and links of the organisation. The definition
of roles states that when an agent decides to play some role in a group, it
is accepting some behavioural constraints related to this role. The functional
dimension specifies how the global collective goals should be achieved, i.e. how
these goals are decomposed into global plans, grouped into coherent sets (called
missions) to be allocated to roles. The decomposition of global goals results in a
goal-tree, called scheme, where the leaves-goals can be achieved individually by
agents. The deontic dimension glues the structural dimension with the functional
one by the specification of the roles’ permissions and obligations for missions.

The detailed syntax and definition of the language is described in [21]. Let’s
stress that, agents and the OI interpret that declarative organisation specifica-
tion. This language is founded on components represented by predicates and
functions. Considering an organisation specification, G, R, S, M, Φ denote re-
spectively the set of all group specifications, the set of all roles, the set of all
scheme specifications, the set of all missions, and the set of all goals. We present
here only some predicates that are used in the sequel of the paper:

– compat(g, ρ, C): is true iff the role ρ (ρ ∈ R) is compatible with all roles
in the set C (C ⊆ R) when played in the group g (g ∈ G) (two roles are
compatible if they can be adopted by the same agent);

– mission scheme(m, s): is true iff the mission m (m ∈ M) belongs to the
scheme s (s ∈ S);

– goal mission(ϕ, m): is true iff the goal ϕ (ϕ ∈ Φ) belongs to the mission m
(m ∈M);

– obl(ρ,m): is true iff the role ρ has an obligation relation to the mission m;
– per(ρ,m): is true iff the role ρ has a permission relation to the mission m;
– goal role(ϕ, ρ): is true iff goal ϕ is part of one of the obliged missions of role

ρ;

Similarly, functions of this language that are considered in the sequel are:

6 Extensions are currently on the way to integrate an extended version of it in the
framework. These extensions have been developped in the Moise-Inst OML [17].
This OML proposes an enriched deontic dimension with more expressive normative
expressions and also a supplementary dimension, called context specification, stating
the a priori evolution of the organisation.

8



– maxrp : R× G → Z: returns the maximum number of players of a role in a
group, i.e. upper bound of the role cardinality ;

– minrp : R×G → Z: returns the minimum number of players of a role within
a group, necessary for that group to be considered well-formed (i.e. lower
bound of the role cardinality);

– maxmp : M× S → Z: returns the maximum number of agents that can
commit to a mission in a scheme (i.e. upper bound of the mission cardinal-
ity);

– minmp :M×S → Z: returns the minimum number of agents that have to
commit to a mission within a scheme for that scheme to be considered well-
formed regarding that mission (i.e. lower bound of the mission cardinality).

4 Organisational Artifacts for Organisation Coordination

Derived from the OML presented in previous section, we describe here and
in Sec. 5 the basic set of artifacts of ORA4MAS [25] that constitutes the building
blocks for the support of the ‘reification’ of the structural specification (SS),
functional specification (FS), and deontic specification (DS) of Moise+. We
focus here on the management of the organisation. In Sec. 5, we will present
organisational artifacts in relation to the normative content of the organisation
entity.
The basic set of organisational artifacts considered here accounts for: OrgBoard,
GroupBoard artifacts, SchemeBoard artifacts. The instrumentation of the organi-
sational entity with those artifacts is done as follows: one and only one OrgBoard

is used to keep track of the current state of the deployed organisational artifacts
supporting the current organisational entity in the overall, one GroupBoard for
each instance of group of agents used to manage the life-cycle of this specific
instance of a group, one SchemeBoard for each social scheme being executed by
the agents used to support and manage the execution of it.

The organisational artifacts are linked together to allow the synchronisation
of some their operations and to share information required to maintain a coherent
and consistent state of the organisation entity. The OrgBoard is linked to all the
other organisational artifacts of the organisation entity. The GroupBoard is linked
to all SchemeBoard that manage schemes involving for their execution agents that
are member of the corresponding group. Each SchemeBoard is linked to exactly
one NormativeBoard (see next section) that verifies the status of the norms related
to the execution of the scheme.

In the following we briefly describe these artifacts. We consider just a core
set of the characteristics and functioning of the artifacts, skipping most details
that would make heavy the overall understanding of the approach.

4.1 OrgBoard artifact

An abstract representation of the OrgBoard is depicted in Fig. 2. The observable
properties of this organisational artifact are:
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Fig. 2. Basic kinds of artifacts in ORA4MAS, with their usage interface, including
operations (represented by circles) and observable properties (represented by rectangles
with circles in their center), and the link interface (represented by rectangles with circles
on their left side)

– OrgSpecification: specification of the organisation entity written in the
Moise+ OML. Agents may use this observable property to get the organ-
isational specification. They can then reason about it and decide whether
they want or no to enter in the organisation.

– GroupBoards, SchemeBoards, and NormativeBoards and ReputationBoards: identi-
fiers of all instances of GroupBoard, SchemeBoard, NormativeBoard, Reputation-

Board, respectively, within the organisation entity. Generally speaking, these
observable properties make it possible for agents observing an OrgBoard to
know the current set of organisational artifacts instrumenting the organisa-
tion entity.

The usage interface of the OrgBoard has the following operations:

– getOrgAgents(): used to get the set of agents having the status of organisa-
tional agent in the organisation entity (this status is set during the deploy-
ment of the system).

– getMemberAgents(): used to get the set of all agents playing at least one role
within a group of the organisation entity 7

The main link operation of the OrgBoard is registerOrgArt. It is used in the initial-
isation process of each new instance of GroupBoard, SchemeBoard, and Normative-

Board to be registered as an artifact linked to the organisation entity represented
by the OrgBoard.

7 This operation would be implemented as an observable properties; however due to
distributed characteristic of the information (they are managed by all GroupBoard),
maintaining an uptodate observable property would be time consuming. Using an
operation, the list of member agents is a cache, computed only on demand.
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4.2 GroupBoard artifact

A GroupBoard is an organisational artifact providing functionalities to manage
a group. Each GroupBoard is attached to a group in the organisation entity in-
stanciated from a specific group specification. It maintains a consistent state of
that group by regimenting some norms stating essential structural properties.
For instance, whenever some agent asks for a role adoption in the group man-
aged by the GroupBoard, the GroupBoard regiments a set of norms that state when
a role can be adopted: (1) the role belongs to its group specification; (2) each
role that the agent already plays is specified as compatible with the new role;
and (3) the number of players is lesser or equals than the maximum number of
players defined in the group’s compositional specification.

As an artifact, the GroupBoard has some observable properties (Fig. 2) that
enable agents to know which are the available roles and their constraints, which
are the participant agents, and which are the other organisational artifacts linked
to the GroupBoard. Among them, the most relevant are:

– OrgBoard: is the reference to the OrgBoard that represents the organisation
entity to which the group belongs.

– Type: is the identification of the group specification in the structural specifi-
cation (an element of G).

– PlayableRoles: contains all roles that can still be adopted in this group, i.e.
those which the number of players is not the maximum yet. This property
changes whenever a new agent enters into the group by adopting a role.

– PlayersOfRole: contains the names of all agents belonging to the group and
their corresponding roles.

– SchemeBoards: contains a set of all schemes the group is responsible for.

The usage interface accounts for the following operations:

– adoptRole(ρ): used by an agent to adopt a new role in the group, where ρ ∈ R
is the identifier for a role in the Structural Specification.

– leaveRole(ρ): used by an agent to give up the role ρ that it had adopted
previously.

The link operations of a GroupBoard manage the coordinations with its linked
organisational artifacts. Among them, we have:

– addSchemeBoard(sb): used by a SchemeBoard initialisation process to notify the
GroupBoard that it is responsible for the scheme sb. The GroupBoard updates
accordingly its SchemeBoards observable property.

– removeSchemeBoard(sb): used by a SchemeBoard linked to the GroupBoard, to
notify that the GroupBoard is no more responsible for the execution of the
scheme sb. The GroupBoard updates accordingly its SchemeBoards observable
property.

– isMember(α): used by a SchemeBoard to request whether an agent α is member
(i.e. is playing at least one role) of the group managed by the GroupBoard.
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Before presenting the norms that a GroupBoard regiments, let’s introduce some
predicates related to the internal state of this artifact. Let GB, Rg, and A be
respectively the set of current group boards, the set all roles that can be played in
a group board created from specification g, and the set of all agents participating
to the organisation entity.

– group type(gb, g): is true iff the group board gb ∈ GB has been created based
on the group specification g ∈ G (cf. Sec. 3);

– plays(α, ρ, gb): is true iff agent α ∈ A plays role ρ in the group board gb ∈
GB;

The function rplayers returns the number of current players of the role ρ in the
group gb.

rplayers : R× GB → Z
rplayers(ρ, gb) def= |{α | plays(α, ρ, gb)}|

(1)

Given the above definitions and the functions maxrp and minrp (cf. Sec. 3), we
are able to define the wellformedness property of a group

well formed(gb)← group type(gb, g) ∧
∀ρ∈Rg rplayers(ρ, gb) ≥ minrp(ρ, g) ∧

rplayers(ρ, gb) ≤ maxrp(ρ, g)

(2)

Since role adoption is the very action that may bring a group in an inconsis-
tent state, two norms bearing on this organisational action are regimented by a
GroupBoard: role compatibility norm and role cardinality norm. In the following
norms are represented as a pair. The first argument is the condition part stating
when the norm is active. The second argument is the action part stating the
obligation, permission, or interdiction.

Role compatibility norm: In theMoise+ language, roles are incompatible unless
explicitly stated the contrary in the organisation specification. When two roles
ρ1 and ρ2 are specified as compatible inside a group g (compat(g, ρ1, {ρ2})),
it implies that an agent that plays ρ1 in a group board gb created from the
specification g cannot perform the operation adoptRole(ρi) for any i 6= 2 on the
corresponding artifact. This constraint on role adoption is formalised by the
following norm:

(plays(α, ρ, gb) ∧ group type(gb, g) ∧ compat(g, ρ, C),
∀ρi∈R\C FORBIDDENα adoptRole(ρi))

(3)

The condition of the norm (the first line) is a conjunction of predicates. Its
evaluation is given by the particular status of the group board (that defines
whether plays(α, ρ, gb) and group type(gb, g) hold or not) and by the structural
specification used by the artifact (that defines whether compat(g, ρ, C) holds or
not). The action part of the norm (the second line) states that it is forbidden
for agent α to execute the action adoptRole on any role that does not belong to
the set of compatible roles C. Based on this norm, as soon as an agent adopts
a role (activating the norm), the adoption of other roles that are not explicitly
stated compatible are forbidden for it.
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Role cardinality norm: The number of players of a role in a group is limited by
the function maxrp(ρ, g) defined from the Structural Specification. The following
norm constrains the role adoption based on the cardinality of the role:

(group type(gb, g) ∧ rplayers(ρ, gb) ≥ maxrp(ρ, g),
∀α∈A∀ρ∈R FORBIDDENα adoptRole(ρ))

(4)

Since these two norms are of the type ‘action interdiction’, they can be easily
implemented in the artifact: whenever the adoptRole operation is triggered by the
agent α, the condition of all norms are checked using the structural specification
and the current state of the group artifact. If the condition of some of these
norms holds, the execution of the corresponding operation is denied.

4.3 SchemeBoard artifact

A SchemeBoard is an organisational artifact providing functionalities to manage
the execution of a social scheme. Each SchemeBoard is instantiated upon a spe-
cific social scheme specification of the Functional Specification. It coordinates
the commitments to missions and the achievement of goals by managing the de-
pendencies between the missions and the goals as described in the social scheme
specification. The lifecycle of a SchemeBoard is organised along three phases: for-
mation, goal achievement and finishing. In the formation phase, agents commit
to the missions of the scheme. A property of wellformedness conditions the tran-
sition to the second phase. A scheme is well-formed if the mission cardinalities
are satisfied, i.e. there are enough agents committed to the missions (see below
for a more formal definition). In the second phase, goals should be fulfilled by
the agents. Each agent is expected to achieve the goals of the missions it is com-
mitted to. When the root goal of the scheme is satisfied, the third phase starts
and the scheme can be finished and removed from the organisation entity (i.e.
the corresponding artifact is destroyed).

During the execution of a scheme, its goals can be in three different states:
waiting, possible, achieved. The waiting state is the initial state of every goal.
In such a state, a goal can not be pursued by the agents. Its change of state
depends on the achievement of other goals (called pre-conditions for a goal) or
of the wellformedness of the scheme (in case the goal has no pre-conditions). The
set of pre-conditions for a goal is deduced from the goal decomposition tree of the
scheme. When all pre-conditions of a goal are satisfied and the scheme is well-
formed, the state of a goal is changed to possible. Then the agent(s) committed to
a mission containing that goal can start to achieve it. Let’s note that the change
from the state waiting to possible is performed by the SchemeBoard, whereas the
change from the state possible to achieved is performed by the agents.

The observable properties of a SchemeBoard are defined to make an agent
able to monitor the overall dynamics concerning execution of the corresponding
scheme. It is thus possible for an agent to be aware of which missions are assigned
to which agents, which goals are achieved and which can be pursued. Among
the observable properties, the most important are the following (Fig. 2):
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– OrgBoard: is the reference to the OrgBoard that represents the organisation
entity in which the scheme is being executed.

– NormativeBoard: is the reference to the NormativeBoard linked to the scheme 8.
– ResponsibleGroupBoards: contains the references to the GroupBoard that are

responsible for the scheme.
– Type: is the identification of the scheme specification in the functional spec-

ification (an element of S).
– PlayableMissions: contains all missions that can still be committed to in the

scheme.
– PlayersOfMission: contains all the agents committed to a mission of the scheme

and their corresponding mission.
– GoalsState: contains the current state of the goals of the scheme.

The usage interface provides the following operations:

– commitMission(m): used by an agent to commit to a mission m ∈M;
– leaveMission(m): used by an agent to give up a mission m it is committed to;
– setGoalAchieved(ϕ): used by an agent to set the state of a goal to achieved.

As for the GroupBoard, we define the following predicates bearing on the current
state of a SchemeBoard. Let SB andMs be respectively the set of current scheme
boards and the set all missions that can be played in a scheme board created
from specification s.

– scheme type(sb, s): is true iff the scheme board sb ∈ SB is created based on
the scheme specification s ∈ S (the type of a scheme board is defined in its
creation);

– resp group(gb, sb): is true iff the group gb ∈ GB is responsible for the exe-
cution of the scheme sb ∈ SB;

– committed(α, m, sb) is true iff the agent α ∈ A is committed to the mission
m ∈M in the scheme sb ∈ SB;

– achieved(ϕ, sb): is true iff the goal ϕ is already achieved in the scheme sb;
– possible(ϕ, sb): is true iff the state of the goal ϕ is possible in the scheme sb;

considering Φ′ the set of all goals that are pre-condition of ϕ, this predicate
can be deduced by

possible(ϕ, sb)←
∧

ϕ′∈Φ′

achieved(ϕ′, sb) ∧ well formed(sb) (5)

– succeeded(s) it is true that the scheme s has finished successfully.

The function mplayers returns the number of current players of the mission m
in the scheme of sb.

mplayers :M×SB → Z
mplayers(m, sb) def= |{α | committed(α, m, sb)}|

(6)

8 This observable property indirectly links all responsible groups of the scheme to the
normative board of the same scheme.
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Given the above definitions and the functions maxmp and minmp (cf. Sec. 3),
we are able to define the wellformedness property of a scheme:

well formed(sb)← scheme type(sb, s) ∧
∀m∈Ms

mplayers(m, sb) ≥ minmp(m, s) ∧
mplayers(m, sb) ≤ maxmp(m, s)

(7)

Mission commitment norm: Analogously to the role cardinality norm, we define
a mission commitment norm to forbid an agent to commit to missions in a
scheme. The number of agents already committed to a mission constrains the
action commitMission (mission cardinality). Another constraint is that only agents
that play some role in a responsible group for the scheme can commit to a mission
in the scheme. We define the mission commitment norm as follows:

((scheme type(sb, s) ∧ mplayers(m, sb) ≥ maxmp(m, s)) ∨
(resp group(gb, sb) ∧ ¬plays(α, ρ, gb)),
FORBIDDENα commitMission(m))

(8)

The implementation of this norm follows the same algorithm used by the Group-

Board: whenever an agent attempts to commit to a mission, if the condition of
the norm holds, the operation is denied.

Note that in the current version of ORA4MAS, there is no regimentation on
the leaving of a mission or of a role. We consider that these organisational actions
should give rise to enforcement and violation. For instance, we could imagine to
detect a violation when a mission or a role are left while still having goals of the
mission to be achieved. Following the detection of violation, sanctions have to
be decided by organisational agents.

5 Organisational Artifacts for Organisation Regulation

Pursuing the description of the basic set of organisational artifacts building
ORA4MAS, we turn to the organisational artifacts in relation with the norma-
tive dimension of the organisation which is connected to the enforcement mech-
anisms and to the regulation of the organisational entity. In the current state of
the framework, two kinds of such organisational artifacts have been defined: Nor-

mativeBoard and ReputationBoard artifacts. They are used to maintain and provide
information concerning the agents compliance or not to norms. These artifacts
don’t provide any operation to the agents since their function is to detect and
show as observable properties information related to the current status of the
norms given the agents’ behaviour related to the groups and scheme they are
linked to.

5.1 NormativeBoard artifact

The NormativeBoard artifact (Fig. 2) embeds the functionalities to manage the
specification concerning permissions and obligations defined between roles of the
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Structural Specification and missions of the Functional Specification. There is
one link operation (updateAgentStatus) used by the assigned scheme and groups
to trigger an update of the current status concerning a particular agent whenever
this agent has performed some operation in the scheme or group.

The norms that are considered in this artifact are not implemented by reg-
imentation, since we would like to allow the agents to violate them. Their im-
plementation is thus not as simple as the implementation of the norms of group
and scheme artifacts (where only interdictions are considered and regimenta-
tion is used as the mechanism). The NormativeBoard manages the state of the
norms as follows (more details are available in [20]). The state of a norm is
initially inactive. It becomes active when its condition holds. When the agent
executes the action as it is stated in the action part of the norm, the status of
the norm becomes fulfilled. In the other case, i.e. the agent does not behave in
time accordingly to the action part of the norm, the status of the norm becomes
unfulfilled.

The set of norms are defined from the deontic specification and the current
state of related artifacts. As examples, in the sequel some of these norms are
presented.

Obligation to commit to a mission: Based on the deontic relations obl(ρ,m)
included in the organisation specification (as defined in section 3), the roles
played by the agents (as defined in the section 4.2), and the current number of
agents committed to a mission (an agent is not obliged to commit to a mission
if the minimum number of players is already achieved), the following norm is
defined:

(obl(ρ,m) ∧ plays(α, ρ, gb) ∧ resp group(gb, sb) ∧
scheme type(sb, s) ∧ mission scheme(m, s) ∧
mplayers(m, sb) < minmp(s),
OBLIGEDα commitMission(m))

(9)

The three first lines of this norm are the condition that states when the norm is
active and the last line represents the obligation for the target agent.

Permission to commit to a mission: Based on deontic relations per(ρ,m) in-
cluded in the organisation specification, and the roles played by the agents, the
following a norm which is defined as an interdiction as follows:

(¬(per(ρ,m) ∧ plays(α, ρ, gb) ∧ resp group(gb, sb) ∧
scheme type(sb, s) ∧ mission scheme(m, s)),
FORBIDDENα commitMission(m))

(10)

Obligation to achieve a goal: Once an agent α is committed to a mission m, it is
obliged to fulfil the possible goals of the mission. The norm below specifies that
rule.

(committed(α, m, sb) ∧ goal mission(ϕ, m) ∧ possible(ϕ, sb),
OBLIGEDα ϕ)

(11)
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5.2 Artifact for Instrumenting Reputation Processes

Inspired by the concept of reputation artifact proposed in [7, p. 101], ORA4MAS
is enriched with such a type of artifact in order to provide first class constructs
which can be easily used to support the reputation processes. It serves as an
indirect sanction instrument for norms enforcement. While direct sanctions are
applied when the violation is detected, indirect sanctions have long term results,
as is the case of reputation.

This artifact is linked to all the organisational artifacts described in the
previous section and to the NormativeBoard artifacts. It can be observed by all
agents inside the organisation. The other artifacts notify it about the current
state of the organisation. This information is used to compute an evaluation for
each agent member of the organisation entity. This evaluation is published as an
observable property of the artifact. It is important to notice that the evaluation
is not the reputation of the agent, as remarked in [7], reputation is a shared
voice circulating in a group of agents. This artifact is indeed an instrument to
influence the reputation of the agent.

Several criteria may be used to evaluate an agent inside an organisation.
Herein we chose to evaluate an agent in the context of the roles and missions it
is concerned by along three criteria: obedience, pro-activeness, and result.

– obedience of an agent is computed by the number of obliged goals it achieves.
The goals an agent is obliged to achieve are defined by the deontic specifi-
cation. All obliged goals that have not been achieved until its deadline are
considered as a possible violation (this detection is provided by the norma-
tive board). Let’s define the following functions: general mission obedience
function (o : A → [0, 1]) and obedience in the context of a particular mission
function (om : A×M→ [0, 1]) and obedience in the context of a particular
role (or : A × R → [0, 1]). They are computed as follows (in the equations
# is a function that returns the size of a set):

o(α) =
#{ϕ | obliged(α, ϕ) ∧ achieved(α, ϕ)}

#{ϕ | obliged(α, ϕ)}

om(α, m) =
#{ϕ | obliged(α, ϕ) ∧ goal mission(ϕ, m) ∧ achieved(α, ϕ)}

#{ϕ | obliged(α, ϕ) ∧ goal mission(ϕ, m)}

or(α, ρ) =
#{ϕ | obliged(α, ϕ) ∧ goal role(ϕ, ρ) ∧ achieved(α, ϕ)}

#{ϕ | obliged(α, ϕ) ∧ goal role(ϕ, ρ)}

o(α) = 1 means that the agent α achieved all its obligation and o(α) = 0
means it achieved none. om(α, m) = 1 means that the agent achieved all
goals when committed to the mission m, and or(α, ρ) = 1 means that the
agent achieved all goals when playing the role ρ.

– The pro-activeness of an agent is computed by the number of goals an agent
achieves such that it is not obliged to fulfil that goal in a scheme. The general
pro-activeness function (p : A → [0, 1]) and the pro-activeness in the context
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of a particular mission (pm : A×M→ [0, 1]) and role (pr : A×R → [0, 1])
are defined as follows:

p(α) =
#{ϕ | achieved(α, ϕ) ∧ ¬obliged(α, ϕ)}

#Φ #S

pm(α, m) =
#{ϕ | achieved(α, ϕ) ∧ ¬obliged(α, ϕ) ∧ goal mission(ϕ, m)}

#{ϕ | committed(α, m, ) ∧ goal mission(ϕ, m)}

pr(α, ρ) =
#{ϕ | achieved(α, ϕ) ∧ ¬obliged(α, ϕ) ∧ goal role(ϕ, r)}

#{ϕ | committed(α, m, ) ∧ goal mission(ϕ, m) ∧ goal role(ϕ, r)}

p(α) = 1 means that the agent achieved all goals it is not obliged to (a highly
pro-active behaviour) and p(α) = 0 means the contrary.

– The results of an agent is computed by the number of successful execution of
scheme where it participates. It does not depend on the achievement of the
goals in the scheme. It means the agent somehow share the success of the
scheme execution and likely has helped for the success. The general results
function (r : A → [0, 1]) and the results in the context of a particular mission
(rm : A×M→ [0, 1]) and role (rr : A×R → [0, 1]) are defined as follows:

r(α) =
#{s | committed(α, , s) ∧ succeeded(s)}

#{s | committed(α, , s)}

rm(α, m) =
#{s | committed(α, m, s) ∧ succeeded(s)}

#{s | committed(α, m, s)}

rr(α, ρ) =
#{s | committed(α, m, s) ∧ succeeded(s) ∧ obl(ρ,m)}

#{s | committed(α, m, s) ∧ obl(ρ,m)}

r(α) = 1 means that all schemes the agent participated have finished suc-
cessfully and r(α) = 0 means the contrary.

Unlike the previous two criteria, the results value of an agent cannot be increased
by the agent itself. This evaluation depends on the performance of all agents
committed to the same scheme, creating thus a dependence among them. The
selection of good partners is therefore important and the reputation artifact
could be used for that purpose.
The aforementioned criteria are combined into a single overall evaluation of an
agent (e : A → [0, 1]) by the following weighted mean:

e(α) =
γ o(α) + δ p(α) + ε r(α)

γ + δ + ε

em(α, m) =
γ o(α, m) + δ p(α, m) + ε r(α, m)

γ + δ + ε

er(α, ρ) =
γ o(α, ρ) + δ p(α, ρ) + ε r(α, ρ)

γ + δ + ε
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The factors γ, δ, and ε are used to define the importance of the obedience,
pro-activeness, and results values respectively.

All these objective values provided by the reputation artifact can then be
used by agents to compute the reputation of others. It is possible that in one
organisation where violation is the rule, if you are a strong violator of norms,
your reputation is perhaps greater that in an organisation where violation is not
at all the rule.

6 Related works and discussion

Several proposals for organisational infrastructures have been proposed in the
literature: MadKit, based on AGR organisational model [14]; Ameli [13] and
Ameli+ [16], based on Islander [12]; karma, based on TeamCore [30];
OperA [11]; S-Moise+ [23], based onMoise+ [24]. In the sequel, these works
and our proposal are discussed considering important topics and features.

Abstraction & encapsulation. The current OIs components are either in
agents (Ameli, S-Moise+, OperA) or services (MadKit). The approaches
that use only services are not flexible enough to allow the management and
change by the agents. Those that use only agents are using them for reactive
and task oriented services. Some of those agents are not really pro-active and
autonomous entities. In our framework, we raise the level of abstraction with
respect to approaches in which organisation mechanisms are hidden at the im-
plementation level. By using agents and artifacts, such mechanisms become parts
of the agent world, suitably encapsulated in proper entities that agents then can
inspect, reason and manipulate, by adopting a uniform approach.

Agent autonomy. All above mentioned OIs extinguish the agents’ autonomy.
In Ameli, for instance, the agents are autonomous to achieve goals but the com-
munication is constrained (or regimented) by the OI; in S-Moise+ the agents
are autonomous concerning the communication protocols but constrained (or
regimented) in the achievement and coordination of collective goals. In our pro-
posal, agents are still autonomous with respect to decision of using or not a
specific artifact – including the organisational artifacts – and keep their auton-
omy – in terms of control of their actions – while using organisational artifacts.
Agents however can depend on the functionalities provided (encapsulated) by
artifacts, which can concern, for instance, some kind of mediation with respect
to the other agents co-using the same organisational artifact. Then, by enforcing
some kind of mediation policy an artifact can be both an enabler and a con-
strainer of agent interactions. However, such a constraining function can take
place without compromising the autonomy of the agents regarding their deci-
sions. We also clearly consider two kinds of mechanisms to implement the norms:
regimentations that are implemented in the artifacts and can not be violated and
enforcement that are implemented both in the artifacts (the detection) and in
the organisational agents (evaluation and judgement).

Distributed management. Some OI, as S-Moise+ and MadKit, centralise
all the management of the organisation in one agent or service bringing out scal-
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ability problems. Distributing the management of the organisation into different
organisational artifacts realises a distributed coordination (meaning here more
particularly synchronisation) of the different functions related to the manage-
ment of the organisation. Completing this distribution of the coordination, the
reasoning and decision processes which are encapsulated in the organisational
agents may be also distributed among the different agents. Thanks to their re-
spective autonomy, all the reasoning related to the management of the organi-
sation (monitoring, reorganisation, control) may be decentralised into different
loci of decision with a loosely coupled set of agents.

Openness. To be open to the entrance of heterogeneous agents is an impor-
tant feature for MAS in general and a reason to establish an organisation for the
system. This is thus also an issue considered by all above OIs. In most cases (e.g.
S-Moise+, Ameli) , the agents have access to the organisational infrastructure
by means of an agent communication language (KQML, FIPA-ACL) or other
open protocols. ORA4MAS does not use a protocol or communication language;
operations are used instead. The interaction between the agents and the organi-
sation is no more expressed with an ACL semantic. Besides that, organisational
artifacts, as any other kind of artifact, can be created and added dynamically
as needed. They have a proper semantic description of both the functionalities
and operating instructions, so conceptually agents can discover at runtime how
to use them in the best way.
Still related to openness, the approach promotes heterogeneity of agent societies:
artifacts can be used by heterogeneous kinds of agents, with different kinds of
reasoning capabilities. Extending the idea to multiple organisations, we can have
the same agents playing different roles in different organisations, and then inter-
acting with organisational artifacts belonging to different organisations. The use
of artifacts, and particularly the CARTAGO implementation, allows agents im-
plemented in different languages to use the artifacts and cooperate using them.
Most of the OI listed above give tools and support only for agents implemented
in a particular language, normally Java — which is not the most appropriate
language to code some types of agents.

‘Organisational power back to agents’. The current implementations of OI
conceive the organisation as a layer where the application agents relies on to
participate in the organisation activities. The agents are not actors of this layer,
they are simply passive users. This conception of OI is captured by the notion
of regimentation and organisation artifacts in our proposal. However, our con-
tribution in this context is to allow that some decisions that were embedded
in the services go back to the agents’ layer by means of organisational agents.
In ORA4MAS artifacts encapsulate the coordination and synchronisation which
were implemented in services. Control and judgement procedures are separated
from these aspects and are embedded in organisational agents. Organisational
agents can then use organisational artifacts to help them in deciding and even-
tually applying sanctions to other agents.

’Some answers to challenges raised in [1]’ In [1] different challenges for build-
ing normative multiagent systems have been reported. We attempt in the fol-
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lowing to position our work with respect to some of these challenges.
Challenge 1 and Challenge 2 address respectively the need of tools for agents to
support “communities in their task of recognizing, creating, and communicating
norms to agents” and tools for agents “to simplify normative systems, recognize
when norms have become redundant, and to remove norms”. In the framework,
the proposal of an OML used to declaratively represent an organisation at the
three different levels are a step in the satisfaction of this need. Moreover, by
providing OML embedding the expression of norms, these latter are anchored
and contextualized within the organisation. Contrary to other approaches which
hide the organisation entity, the artifacts building the organisation infrastruc-
ture of the framework propose a set of tools to act and manipulate this revealed
organisational layer on which the organisation entity is deployed.
Few proposals of enforcement of norms are detailed in the context of an organ-
isational infrastructure. This is also mentioned by the Challenge 3 “Tools for
agents to enforce norms”. In the proposed framework, the structuration of the or-
ganisational artifacts and agents makes a clear distinction between enforcement
and regimentation. Besides organisational agents, two special kinds of artifacts
have been defined to address that challenge: NormativeBoard, ReputationBoard. In
the same trend, the distinction complemented by the fact that the framework
doesn’t modify the agents internal decision proposes a clear basis to address the
Challenge 4 by developping “Tools for agents to preserve their autonomy”. Work
realised in [5] proposes a good starting point in that direction.

7 Conclusion

In this paper, we have proposed a framework for normative multiagent organisa-
tions. It is composed of an organisation modeling language in which norms can
be expressed, organisation-awareness mechanisms that are under development
and an organisation infrastructure which is based on the A&A meta-model. This
latter is composed of a set of organisational artifacts that encapsulate the func-
tional aspects of an organisation and organisation management and regulation.
Organisational agents complement this overall picture by encapsulating the de-
cision and reasoning side of the management of organisations and enforcement
of norms.

Although we already have some initial results on the use of this framework,
some extensions aim at taking advantage of the uniform concepts used to im-
plement the environment and the organisation abstractions through the concept
of artifacts. Such an homogeneous conceptual point of view will certainly help
us to situate organisations in environment or to install the access to the envi-
ronment into organisational models (in the same direction as proposed by [27]).
Other points of investigation are (1) the study of the reorganisation process
of a MAS using the ORA4MAS approach, (2) the impact of the reorganisation
on the organisational artifacts, (3) the definition of a meta-organisation for the
ORA4MAS, so that we have special roles for organisational agents that give them
access to the organisational artifacts.
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Abstract. In this paper, we deal with regulations that may exist in
multiagent systems in order to regulate agent behaviour. More precisely,
we discuss two properties of regulations, consistency and completeness.
After defining what consistency and completeness mean, we propose a
way to consistently complete incomplete regulations. This contribution
considers that regulations are expressed in a first order deontic logic.

1 Introduction

In a society of agents, a regulation is a set of statements, or norms, which rule
the behaviour of agents by expressing what is obligatory, permitted, forbidden
and under which conditions. Such a regulation is for instance the one which
applies in most countries in EU: smoking is forbidden in any public area except
specific places and in such specific places, smoking is permitted. Another example
of regulation is the one which gives the permissions, prohibitions (and sometimes
the obligations) of the different users of a computer system for file reading, file
writing and file execution. Regulations are means to regulate agent behaviour
so that they can live together. But in order to be useful, regulations must be
consistent and, in most cases, they must also be complete.

Consistency is a property of regulations that has already been given some at-
tention in the literature. For instance, as for confidentiality policies, consistency
allows to avoid cases when the user has both the permission and the prohibition
to know something [2]. More generally, according to [4] which studies consistency
of general kind of regulations, a regulation is consistent if there is no possible
situation which leads an agent to normative contradictions or dilemmas also
called in [20] contradictory conflicts (a given behaviour is prescribed and not
prescribed, or prohibited and not prohibited) and contrary conflicts (a given
behaviour is prescribed and prohibited). Following this definition, consistency of
security policies has then been be studied in [5].

Completeness of regulations has received much less attention. [2] proposes a
definition of completeness between two confidentiality policies (for each piece of
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information, the user must have either the permission to know it or the prohibi-
tion to know it), definition which has been adapted in [8] for multilevel security
policies.

More recently, we have studied the notion of completeness for particular reg-
ulations which are policies ruling information exchanges in a multiagent system
[6]. A definition of incompleteness for such policies has been given and a way
to reason with incomplete policies has been defined. The approach taken in this
work was rather promising and we have extended it for general regulations in
[7]. The formal language used in those papers is classical first-order logic (FOL)
following the ideas developed in [4]. In particular, deontic notions (obligation,
permission, prohibition) are represented using predicate symbols. Because this
leads to a rather complicated partition of the language between deontic predicate
symbols and predicate symbols representing objects properties, this approach
can be criticized. Moreover, deontic notions are classically represented in modal
logic since [19, 14]. This is the reason why, in this present paper, we aim at using
first order modal logic [12] to express regulations in a more elegant manner. Our
objective is thus to reformulate the work described in [7] in a first-order modal
framework.

This paper is organised as follows. Section 2 presents the logical formalism
used to express regulations, the definitions of consistency and completeness of
regulations. Section 3 focuses on the problem of reasoning with an incomplete
regulation. Following the approach that has led to the default logic [17] for
default reasoning, we present defaults that can be used in order to complete an
incomplete regulation. In section 4, we present a particular example of regulation,
information exchange policy. Finally, section 5 is devoted to a discussion and
extensions of this work will be mentioned.

2 Regulations

The basic formalism used to model regulations is SDL (Standard Deontic Logic),
a propositional modal logic [3]. We extend SDL to FOSDL (First-Order Standard
Deontic Logic) in order to be able to express complex regulations implicating
several agents. This is done in the way developed in [12].

2.1 Language

The alphabet of FOSDL is based on the following sets of non logical symbols: a
set P of predicate symbols, a set F of function symbols and a modality symbol O
representing obligation. The set of functions with arity 0 is called the constants
set denoted C. We define also the following logical symbols: a set V of variable
symbols, ¬, ∨, ∀, ( and ). We call a term a variable or the application of a
function symbol to a term.

We will use roman uppercase letters as predicate symbols, roman lowercase
letters as function symbols and {x1, . . . , xi, . . .} as variable symbols.

Definition 1. The formulae of FOSDL are defined recursively as follows:
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– if t1, . . . , tn are terms and P a predicate symbol with arity n, then P (t1, . . . , tn)
is a formula of FOSDL.

– if ϕ is a formula of FOSDL, then Oϕ is a formula of FOSDL.
– if ψ1 and ψ2 are formulae of FOSDL and x1 a variable symbol, then ¬ψ1,
ψ1 ∨ ψ2, ∀x1 ψ1 are formulae of FOSDL.

If ψ1, ψ2 and ψ3 are FOSDL formulae and x1 is a variable symbol, we also
define the following abbreviations: ψ1 ∧ ψ2 ≡ ¬(¬ψ1 ∨ ¬ψ2), ψ1 ⊗ ψ2 ⊗ ψ3 ≡
(ψ1 ∧ ¬ψ2 ∧ ¬ψ3) ∨ (¬ψ1 ∧ ψ2 ∧ ¬ψ3) ∨ (¬ψ1 ∧ ¬ψ2 ∧ ψ3), ψ1 → ψ2 ≡ ¬ψ1 ∨ ψ2,
ψ1 ↔ ψ2 ≡ (¬ψ1 ∨ ψ2) ∧ (ψ1 ∨ ¬ψ2), ∃x1 ψ1 ≡ ¬∀x1 ¬ψ1.

The modalities for permission, noted P , and prohibition, noted F , are defined
from O in the following way:

Fϕ ≡ O¬ϕ
Pϕ ≡ ¬Oϕ ∧ ¬O¬ϕ

It must be noticed that our definition of permission does not correspond to
the usual definition of permission defined in SDL. According to SDL, something
is permitted if its negation is not obligatory. However, it has been shown by
lawyers [13] that the cases where permission is bilateral (permission to do and
permission not to do) are the only valid ones. If not bilateral, permission to do
entails obligation to do1. Our definition of bilateral permission corresponds to
the notion of optionality [15] (something is optional iff neither it or its negation
is obligatory).

A formula of FOSDL without modality is said to be objective. A term of
FOSDL without variable symbols is said to be ground. The set of all ground
terms in FOSDL is said to be the Herbrand universe HU . A formula of FOSDL
without variable is said to be ground. A formula of FOSDL without the ∨, ∧,
⊗, → nor ↔ connectives is said to be a literal. Finally, we will call a ground
substitution any function χ : V → HU . If ϕ(x) is a FOSDL formula with free
variable x, ϕ(χ(x)) is the formula ϕ in which occurrences of x have been replaced
by χ(x).

2.2 Semantics

Semantics for propositional modal logics are classically defined using Kripke
models. Models are defined by a frame 〈W,R〉, where W is a set of worlds and
R an accessibility relation between worlds, and a relation  between worlds and
propositional letters. In the first-order case, we define models using an augmented
frame and a first-order interpretation instead of .

The semantics of first-order languages is based on a set of symbols (the objects
of discourse), called the domain. The domain represents the objects on which
the predicates will be evaluated by opposition to terms which are purely mathe-
matical notions. In the case of first-order modal logic, we have to choose between
1 For instance, when smoking is permitted, this implies that not smoking is also per-

mitted. If not, that would mean that smoking would be obligatory.
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a constant domain augmented frame and a varying domain augmented frame. In
the first case, the domain is fixed for all the worlds in W, in the second case, each
world of W can have its own domain. We choose here a constant domain. As we
study norms concerning only fixed elements, this choice is intuitively justified2.

Definition 2. Let W be a set of worlds, RO a relation on W2 and D a non
empty set of symbols representing the domain, then 〈W,RO,D〉 is called a frame.

To define a model, we have to define an first-order interpretation which is
done classically.

Definition 3. An interpretation I in a frame 〈W,RO,D〉 is an application such
that:

– for all n-ary function symbol f in F and all world w ∈ W, I(f, w) is a
function Dn → D independent of the world w;

– for all n-ary predicate symbol P in P and all world w ∈ W, I(P,w) is a
relation on Dn.

Notice that we impose a particular condition on the interpretation of func-
tions: the interpretation of a given function f is the same in every world w of
W (this is possible because we use constant domain frames). This restriction
allows us to escape from complicated technical details3, for instance predicate
abstraction. See [12] for more details.

Definition 4. A model M is a structure 〈W,RO,D, I〉 where 〈W,RO,D〉 is a
frame and I an interpretation on 〈W,RO,D〉.

Finally, we only use a class of frames that capture the correct behaviour of
the modal operator O by constraining the accessibility relation RO.

Definition 5. A FOSDL model is a model 〈W,RO,D, I〉 such that RO is serial.

In order to define a satisfiability relation between models and formulae, we
have to define the valuation notion which maps variables to elements of D:

Definition 6. Let D be a domain. A valuation on D is a complete function
V → D. A valuation σ′ is a x-variant of a valuation σ if σ and σ′ are identical
except on x.

Let t be a term and V(t) the set of variables in t, χ(t) is the term t in which
each xi in V(t) has been replaced by χ(xi).

2 Notice that varying domain can be useful. For instance in the study of doxastic
first-order modal logic, an agent can learn the existence of a particular object, or a
new object can appear.

3 The main problem is to be able to characterize the meaning of a formula such as
OF (c) where c is a constant: does it mean that ”it is obligatory that the object
represented by c in the current world has F property” or ”it is obligatory that in
each world, the object represented by c has the F property”.
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The satisfiability relation |= is defined as follows:

Definition 7. Let M = 〈W,RO,D, I〉 a FOSDL model, w a world of W and
σ a valuation on D. Then:

– if P is a n-ary predicate symbol and t1, . . . , tn are terms, then M, w |=σ

P (t1, . . . , tn) iff 〈I(σ(t1), w), . . . , I(σ(tn), w)〉 ∈ I(P,w).
– if ψ is a FOSDL formula, then M, w |=σ ¬ψ iff M, w 6|=σ ψ.
– if ψ1 and ψ2 are FOSDL formula, then M, w |=σ ψ1 ∨ ψ2 iff M, w |=σ ψ1

or M, w |=σ ψ2.
– if Oϕ is a FOSDL formula, M, w |=σ Oϕ iff for every v ∈ W such that
wROv holds, M, v |=σ ϕ.

– if ψ is a FOSDL formula, M, w |=σ ∀x ψ iff for all valuations σ′ x-variant
of σ, M, w |=σ′ ψ.

Let ψ be a FOSDL formula. If for all valuations σ M, w |=σ ψ, we will note
M, w |= ψ. If M, w |= ψ for all w in W, we will note M |= ψ. Finally, if M |= ψ
for all FOSDL models M, then we will note |= ψ.

2.3 Axiomatics

We will now define an axiom system for FOSDL following the approach presented
in[12]. In the following, ϕ(x) denotes a formula in which the variable x may have
free occurrences. We will say that a free variable y is substitutable for x in ϕ(x)
if no free occurrence of x in ϕ(x) is in the scope of ∀y in ϕ(x).

Definition 8 (Axioms). The formulae of the following forms are axioms:
(Taut) all classical FOL tautologies
(KO) O(ϕ→ ψ) → (Oϕ→ Oψ)
(DO) Oϕ→ ¬O¬ϕ
(Bar1) O(∀x ϕ) → ∀x Oϕ
(Bar2) ∀x Oϕ→ O(∀x ϕ)

Definition 9 (Inference Rules).

(MP)
ϕ ϕ→ ψ

ψ

(Gen)
ϕ

∀x ϕ
(NO)

ϕ

Oϕ

Proposition 1 (Validity and soundness). The previous system is valid and
sound w.r.t. FOSDL semantics.

The proof is given in [12].
We will define a proof of ϕ from the set of formulae Σ, noted Σ ` ϕ, as a

sequence of formulae such that each one of them is an axiom, a formula of Σ, or
produced by the application of an inference rule on previous formula.

In the following, ⊥ will denote every formula that is a contradiction and >
will denote every formula that is a tautology.
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2.4 Regulation and integrity constraints modelling

In this section we define the notion of regulation and integrity constraints. First,
we define the notion of rule, which is the basic component of a regulation. In
this definition, rules have a general form, in particular they can be conditional.

Definition 10. A rule is a formula of FOSDL of the form ∀−→x l1∨ . . .∨ ln with
n ≥ 1 such that:

1. ln is of the form Oϕ or ¬Oϕ where ϕ is an objective literal
2. ∀i ∈ {1, . . . , n − 1}, li is an objective literal or the negation of an objective

literal
3. if x is a variable in ln, then ∃i ∈ {1, . . . , n − 1} such that li is a negative

literal and contains the variable x
4. ∀−→x denotes ∀x1 . . .∀xm where {x1, . . . , xm} is the set of free variables ap-

pearing in l1 ∧ . . . ∧ ln−1.

In this definition, constraints (1) and (2) allow rules to be conditionals of the
form ”if such a condition is true then something is obligatory (resp. permitted or
forbidden)”. Constraint (3) restricts rules to range-restricted formulae4. Finally,
rules are sentences, i.e. closed formulae, as expressed by constraint (4).

Notice also that we restrict in the definition of rules the formulae that can be
defined as obligatory in the regulation: only objective literals can be obligatory
or not obligatory.

We will write ∀−→x l1∨ . . .∨ ln−1∨Pϕ as a shortcut for the two rules {∀−→x l1∨
. . . ∨ ln−1 ∨ ¬Oϕ,∀−→x l1 ∨ . . . ∨ ln−1 ∨ ¬O¬ϕ}.

Definition 11. A regulation is a set of rules.

Let us consider an example which will help us to illustrate our purpose all
along section 2 and 3.

Example 1 We consider a regulation which rules the behaviour of a driver in
front of a traffic light.

The language needed is defined as follows:

– green, orange, red, car, truck, bike, A and T are 0-arity functions, i.e.
constants.

– x, y, z, i and t are variables.
– D(.) is a predicate symbol that indicates that a term is a driver.
– TL(.) is a predicate symbol that indicates that a term is a traffic light.
– C (., .) is predicate symbol that takes for parameters a traffic light and a color

and indicates the traffic light color.

4 Range-restricted formulae are a decidable subset of domain-independent formulae
which have been proved to be the only first order formulae having a meaning in
modelling [9]. Notice in particular that by definition of FOSDL language, all variables
appearing in ln are free in ln.
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– V (., .) is a predicate symbol that takes for parameters a driver and the type
of vehicle he drives.

– IFO(., .) is a predicate symbol that takes for parameters a driver and a traffic
light and indicates that the vehicle driven by the driver is in front of the traffic
light.

– Stop(., .) is a predicate symbol that takes a driver agent and a traffic light
for parameters and that indicates that this agent stops in front of the traffic
light.

Let’s now take the three rules (r0): ”When a car-driver is in front of a traffic
light that is red, he has to stop” (r1): ”When a car-driver is in front of a traffic
light that is orange, it is permitted for him to stop” (r2): ”When a car-driver
is in front of a traffic light that is green, he must not stop”. These rules can be
modelled by :

(r0)∀x∀t D(x) ∧ TL(t) ∧V (x, car) ∧ C (t, red) ∧ IFO(x, t) → OStop(x, t)
(r1)∀x∀t D(x) ∧ TL(t) ∧V (x, car) ∧ C (t, orange) ∧ IFO(x, t) → PStop(x, t)
(r2)∀x∀t D(x) ∧ TL(t) ∧V (x, car) ∧ C (t, green) ∧ IFO(x, t) → FStop(x, t)

2.5 Consistency of regulations

We now define a first notion for regulations, consistency. Intuitively, we will say
that a regulation is consistent iff we cannot derive from the regulation using the
system defined in 2.3 inconsistencies like OStop(x, t) ∧ FStop(x, t). Consistency
of a regulation is evaluated under integrity constraints, i.e. a set of closed ob-
jective formulae which can represent for instance physical constraints or domain
constraints. In the following, we will note such an integrity constraints set IC.

First, we will define consistency of a regulation in a particular state of the
world. Intuitively, states of the world are syntactic representations of classical
first-order interpretations. They can also be assimilated to classical Herbrand
models.

Definition 12 (state of the world). A state of the world s is a complete and
consistent set of objective ground literals.

A state of the world is a syntactical representation of a Herbrand interpreta-
tion. Thus, for any n-ary predicate symbol P , any ground terms t1, . . . , tn and
any state of the world s, either P (t1, . . . , tn) ∈ s or ¬P (t1, . . . , tn) ∈ s. In the
following, when describing a state of the world, we will omit the negative literals
for readability.

Definition 13. Let IC be a set of integrity constraints and s a state of the
world. s is consistent with IC iff s, IC 6` ⊥.

Definition 14. Let ρ be a regulation, IC a set of integrity constraints and s a
state of the world consistent with IC. ρ is consistent according to IC in s iff
ρ, IC, s 6` ⊥.
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Example 2 Let us resume example 1. Let us consider that IC contains two
constraints: (1) a traffic light has a unique color and this color can be green,
orange or red, and (2) a driver drives one and only one type of vehicle. Thus
IC = {∀t TL(t) → C (t, green)⊗C (t, orange)⊗C (t, red),∀x∀y∀z D(x)∧V (x, y)∧
V (x, z) → y = z}5.

Let s be the state of the world {D(A), TL(T ), IFO(A, T ),V (A, car), C (T, red)}.
First, s is such that s, IC 6` ⊥. Let us consider a regulation ρ that contains

the three rules (r0), (r1) and (r2). In this case, ρ, IC, s 6` ⊥ (because the only
deontic literal that can be deduced from ρ, IC and s is OStop(A, T )). Thus, ρ is
consistent according to IC in s.

Definition 15 (consistency of a regulation). Let ρ be a regulation and IC
a set of integrity constraints. ρ is consistent according to IC iff for all states of
the world s such that s, IC 6` ⊥ then ρ, IC, s 6` ⊥.

2.6 Completeness of regulations

Informally, a regulation is totally complete as soon as it prescribes the behaviour
any agent should have in any situation. We can wonder if this definition really
makes sense: can or must a regulation take into account all possible situations?
Thus, we suggest to define a partial completeness restricted to two ground for-
mulae ϕ and ψ: ϕ represents a particular situation in which we want to evaluate
the regulation and ψ a predicate ruled by the regulation. Thus, we want a regu-
lation be complete for ϕ and ψ iff in any situation where ϕ is true, it is obligatory
(resp. permitted, forbidden) that ψ.

This leads to the following definition:

Definition 16. Let IC be a set of integrity constraints, ρ be a regulation con-
sistent according to IC and s a state of the world consistent with IC. Let ϕ(−→x )
and ψ(−→x ) two objective formulae, −→x representing free variables in ϕ and ψ(−→x )
meaning that the free variables in ψ are a subset of −→x . ρ is (ϕ(−→x ), ψ(−→x ))-
complete according to IC in s for ` iff for all ground substitutions χ such that
s ` ϕ(χ(−→x )):

ρ, s ` Oψ(χ(−→x )) or
ρ, s ` Fψ(χ(−→x )) or
ρ, s ` Pψ(χ(−→x ))

Example 3 Let us consider the state of the world s0 = {D(A),TL(T ), IFO(A, T ),V (A,Car),
C (T, red)}. Consider ρ and IC defined in example 2. s0 is consistent with IC
and ρ, s ` O(Stop(A, T )). Let’s take ϕ0(x, t) ≡ TL(t) ∧ D(x) ∧ IFO(x, t) and
ψ0(x, t) ≡ Stop(x, t). s0, IC ` IFO(A, T ) and ρ, IC, s0 ` O(Stop(A, T )). Thus,
ρ is (ϕ0(x, t), ψ0(x, t))-complete according to IC in s0 for `.

Let us now consider the state of the world s1 = {D(A),TL(T ), IFO(A, T ),V (A,
Truck),C (T, red)}. s1 is consistent with IC. s1, IC ` IFO(A, T ) but ρ, IC, s1 6`
5 The introduction of equality is done in the same way as in [12].
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Oψ0(A, T ), ρ, IC, s1 6` Pψ0(A, T ) and ρ, IC, s1 6` Fψ0(A, T ). Thus, ρ is (ϕ0(x, t), ψ0(x, t))-
incomplete according to IC in s1 for `. In fact, no rule of the regulation can be
applied as the vehicle is not a car but a truck.

The previous definition can be generalized as follows:

Definition 17 (completeness of a regulation). Let IC a set of integrity
constraints and ρ be a regulation. Let ϕ(−→x ) and ψ(−→x ) be two objective for-
mula with the same meaning as in definition 16. ρ is (ϕ(−→x ), ψ(−→x ))-complete
according to IC for ` iff for every state of the world s consistent with IC, ρ is
(ϕ(−→x ), ψ(−→x ))-complete according to IC in s for `.

Completeness is an important issue for a regulation. For a given situation,
without any behaviour stipulated, any behaviour could be observed and thus con-
sequences could be quite important. With an incomplete regulation, we could
(1) detect the ”holes” of the regulation and send them back to the regulation
designers so that they can correct them or (2) detect the ”holes” of the regula-
tion and apply on those holes some completion rules to correct them. The first
solution could be quite irksome to be applied (the number of holes could be quite
important and thus correct them one by one quite long). Therefore, we put in
place the second solution.

3 Reasoning with incomplete regulations

3.1 Defaults for completing regulation

Reasoning with incomplete information is a classical problem in logic and artifi-
cial intelligence: can we infer something about an information that is not present
in a belief base? Several approaches have been defined, but we are here interested
in one: default reasoning. The principle of default reasoning is quite simple: if
an information is not contradictory with the informations that can be classically
deduced from the belief base, then we can deduced another information from the
belief base. A classical example is the following: let us suppose that we believe
that ”every bird flies”, that ”penguins do not fly” and ”penguins are birds”. Of
course, the representation of this set of formulae in FOL is inconsistent (a bird
which is also a penguin flies and do not fly at the same time). In fact, the first
rule ”every bird flies” is a default: ”if a is bird and it is not inconsistent with
the belief base that a flies, then a flies”6. If a is a penguin, then ”a flies” cannot
be deduced, and it cannot be deduced that a is a penguin, then we can deduce
that a flies.

Default logic is a non-monotonous extension of first-order logic introduced
by Reiter [17] in order to formalize default reasoning. We will here follow the
presentation of Besnard given in [1].

6 Notice that in this case, the information that is not contradictory with the belief
base and the information newly deduced are the same.
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A default d is a configuration
P : J1, . . . , Jn

C
where P, J1, . . . , Jn, C are first-

order closed sentences. P is called the prerequisite of d, J1, . . . , Jn the justification
of d and C the consequence of d. A default theory ∆ = (D,F ) is composed of a
set of objective closed formulae F (facts) and a set of defaults.

A default theory (D,F ) can be given in a surface form (D′, F ) on condition
that

D = {P (−→a ) : J1(−→a ), . . . , Jn(−→a )
C(−→a )

:
P (−→x ) : J1(−→x ), . . . , Jn(−→x )

C(−→x )
∈ D′ and

−→a is a ground term}

and every element of D′ is of the form
P (−→x ) : J1(−→x ), . . . , Jn(−→x )

C(−→x )
where

P (−→x ), J1(−→x ), . . . , Jn(−→x ), C(−→x ) are first-order sentences with free variables oc-
curring in −→x .

Using defaults we obtain extensions, i.e. sets of formulae that are deduced
monotonically and non-monotonically from F . Let ∆ = (D,F ) be a default
theory where defaults contains only closed formulae, then a extension of ∆ is a
set of formulae E verifying the following conditions:

1. F ⊆ E
2. Th(E) = E where Th(E) = {ϕ : E ` ϕ}
3. if

P : J1, . . . , Jn
C

is a default of D, then if P ∈ E and J1 is consistent with
E, . . . , Jn is consistent with E, then C ∈ E

Default theories can have many extensions or no extensions at all. Reiter
showed in [17] that if F is consistent and if (D,F ) has an extension, then this
extension is consistent. He showed also that any normal and closed default theory
has at least one extension.

Here, we are not interested in the fact that a given objective formula ψ is
believed but in the fact that a given regulation deduces that it is obligatory,
forbidden or tolerated (those cases are the only ones due to the D axiom of O).
Thus, if the regulation is incomplete for an objective formula ψ (i.e. it does not
deduce neither Oψ nor Fψ nor Pψ), then it can only be completed by assuming
that Oψ can be deduced, or Pψ, or Fψ. This leads to the three sets of defaults
which are described in the following.

In the following, let IC be a set of integrity constraints, ρ be a consistent
regulation according to IC and s be a state of the world consistent with IC. Let
ϕ(−→x ) and ψ(−→x ) be two objective formulae verifying definition 16.

Definition 18. Let EF (−→x ), EP (−→x ) and EO(−→x ) be three objective formulae
such that their respective set of free variables is in −→x . We define a set of con-
figuration as follows:

(DFϕ,ψ)
ϕ(−→x ) ∧ EF (−→x ) : Fψ(−→x )

Fψ(−→x )

(DPϕ,ψ)
ϕ(−→x ) ∧ EP (−→x ) : Pψ(−→x )

Pψ(−→x )

(DOϕ,ψ)
ϕ(−→x ) ∧ EO(−→x ) : Oψ(−→x )

Oψ(−→x )
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A (ϕ(−→x ), ψ(−→x ))-completeness default theory for ρ and s is a default theory
∆ρ,s(ϕ(−→x ), ψ(−→x )) whose surface form is given by ({DFϕ,ψ, DPϕ,ψ, DOϕ,ψ}, ρ∪
s)

We can complete an incomplete regulation so that ψ(−→x ) is forbidden (DFϕ,ψ),
permitted (DPϕ,ψ) or obligatory (DOϕ,ψ) depending on EF (−→x ), EP (−→x ) and
EO(−→x ). Following Reiter, we define a new inference relation `∗ defined as fol-
lows:

Definition 19. Let γ be a formula of FOSDL. ρ, s `∗ γ iff there is an extension
Eγ of ∆ρ,s(ϕ(−→x ), ψ(−→x )) such that γ ∈ Eγ .

Moreover, we will note Th∗(E) = {ϕ : E `∗ ϕ and ϕ is closed}.
Notice that we define here what Reiter calls an existential inference. There

are of course other sorts of inference, for instance universal, but as we will show
in section 3.2 we will obtain only one extension in the cases we are interested in,
so the different kinds of inference are identical.

The next step is to define the conditions under which the regulation is com-
plete and consistent with this new inference. This will be addressed in the next
section.

3.2 Consistency and completeness of the completed regulation

First, we extend the definitions 15, 16 and 17 by using `∗ instead of ` in those
definitions. To distinguish the new notions of consistency and completeness from
the old ones, we will use ∗ as a prefix (for instance we will write ”∗-consistency”)
or write explicitly ”for `∗” (for instance, we will write ”consistent for `∗”).

The main result about completeness and consistency of the regulation ob-
tained by using the default theory defined previously is expressed by the following
proposition.

Proposition 2. Let us consider a set of integrity constraints IC, a regulation ρ
consistent according to IC and a state of the world s consistent with IC and such
that ρ∪ s is consistent. Let ϕ(−→x ) and ψ(−→x ) be two objective formulae verifying
definition 16 and ∆ρ,s(ϕ(−→x ), ψ(−→x )) the corresponding default theory.

The following propositions are equivalent:

1. for every vector −→a of ground terms, if s ` ϕ(−→a ), ρ, s 6` Oψ(−→a ), ρ, s 6`
Pψ(−→a ) and ρ, s 6` Fψ(−→a ) (i.e. ρ is not (ϕ(−→a ), ψ(−→a ))-complete in s), then
s ` EF (−→a )⊗ EP (−→a )⊗ EF (−→a ).

2. ρ is consistent and (ϕ(−→x ), ψ(−→x ))-complete for `∗ in s.

This proposition characterizes necessary and sufficient conditions for the de-
faults to consistently complete an incomplete regulation. More precisely, this
proposition says that if every time the regulation does not prescribe a behaviour
one and only one Ei is true, then the defaults consistently complete the regula-
tion (because one and only one default is applied for a particular ψ(−→a )).
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Example 4 Consider the state of the world s1 = {D(A),TL(T ), IFO(A, T ),
V (A, truck), C (T, red)} from the last example. ρ is incomplete in s1 for ϕ0(x, t) ≡
D(A) ∧ TL(T ) ∧ IFO(A, T ) and ψ0(x, t) ≡ Stop(A,T ) in s1.

Let’s take EF (x, t) = V (x, truck) ∧ C (t, green), EP (x, t) = V (x, truck) ∧
C (t, orange) and EO(x, t) = V (x, truck)∧C (t, red), then s1 ` EO(A, T ). Thus,
ρ is consistent and (ϕ0(x, t), ψ0(x, t))-complete for `∗ in s1.

Even if this necessary and sufficient condition is interesting in theory, it is
not really useful for practical purposes. In fact, to verify that this condition is
satisfied, we would have to detect every ”hole” in the regulation. This detection
is an operation we want to avoid. Thus, we try to find more general conditions
that are still sufficient but not necessary for the completion rules to consistently
complete the regulation. We present two immediate corollaries of the previous
definition.

Corollary 1. If s ` ∀−→x ϕ(−→x ) → EO(−→x )⊗EF (−→x )⊗EP (−→x ) then ρ is consistent
and (ϕ(−→x ), ψ(−→x ))-complete according to IC for `∗ in s.

Example 5 Consider the state of the world s2 = {D(A),TL(T ), IFO(A, T ),
V (A, bike), C (T, red)}. s2 is consistent with IC. Consider the regulation defined
in example 1.

This time, let us consider EF (x, t) = C (t, green), EP (x, t) = C (t, orange)
and EO(x, t) = C (t, red). s2 ` EO(A, T ). Thus, ρ is ∗-consistent and ∗-complete
for ϕ0(x, t) and ψ0(x, t) in s2. But we also have s1 ` EO(A, T ), so ρ is ∗-
consistent and (ϕ0(x, t), ψ(x, t))-complete for `∗ in s1. Those more general Ei
allow us to have a regulation complete for any type of vehicle.

Corollary 2. If IC ` ∀−→x EO(−→x )⊗ EF (−→x )⊗ EP (−→x ) then ρ is consistent and
(ϕ(−→x ), ψ(−→x ))-complete according to IC for `∗.

Example 6 IC ` ∀t C (t, red)⊗C (t, green)⊗C (t, orange). Thus ρ is ∗-consistent
and (ϕ0(x, t), ψ0(x, t))-complete for `∗.

IC specifies that a traffic light has one and only one color among three colors
Red, Orange and Green. If there is one Ei for each color, we are sure that
whatever the situation is, we can apply one and only one default if there is a
”hole” in the regulation.

Another alternative would be to take fixed Ei. For example, we could take
one Ei equal to > and the two others to ⊥. We have three cases:

– suppose that EF ≡ >, EP ≡ ⊥ and EO ≡ ⊥. In this case, according to
completion rules, everything that is not specified as obligatory or permitted
by the regulation is forbidden. This strict behaviour could be observed for
regulations that rule a highly secured system where each action has to be
explicitly authorized before being performed.

12



– suppose that EF ≡ ⊥, EP ≡ > and EO ≡ ⊥. We are here in the opposite
situation, meaning that everything that is not obligatory or forbidden is
permitted. This ”tolerant” behaviour could be observed for regulations for
dimmed secured systems where everything that is not forbidden or obligatory
is implicitly permitted.

– suppose that EF ≡ ⊥, EP ≡ ⊥ and EO ≡ >. In this case, every action that
is not forbidden or permitted has to be performed.

4 Examples of regulations: information exchange policies

An information exchange policy is a regulation which prescribes the behaviour of
agents in a multiagent system regarding information communication. To describe
such policies, we need five predicate symbols: Agent , Info, Receive, Topic and
Tell . Agent(x) means that x is an agent, Info(i) means that i is an information,
Receive(x, i) means that agent x receives information i. Topic(i, t) means that
information i deals with topic t. Tell(x, i, y) means that agent x tells agent y
an information i. We also define constants a, b, i1 , EqtCheck , ExpRisk , Meeting
and EqtOutOfOrder .

The consistency of such policies is defined by definition 14. The completeness
of such policies is defined by instantiated definition 16 with the following specific
formula:

ϕ(x, i, y) ≡Agent(x) ∧ Info(i) ∧ Receive(x, i)∧
Agent(y) ∧ ¬(x = y)

ψ(x, i, y) ≡Tell(x, i, y)

This leads to the following definition:

Definition 20. Let IC a set of integrity constraints, s a state of the world
consistent with IC and ρ a regulation consistent in s according to IC. ρ is
complete according to IC in s for ` iff for all ground substitution χ such that
s ` Agent(χ(x))∧Info(χ(y))∧Receive(χ(x), χ(i))∧Agent(χ(y))∧¬(χ(x) = χ(y)):

ρ, s ` OTell(χ(x), χ(i), χ(y)) or
ρ, s ` FTell(χ(x), χ(i), χ(y)) or
ρ, s ` PTell(χ(x), χ(i), χ(y))

Thus, default are the following:

(DFϕ,ψ)
ϕ(x, i, y) ∧ EF (x, i, y) : FTell(x, i, y)

FTell(x, i, y)

(DPϕ,ψ)
ϕ(x, i, y) ∧ EP (x, i, y) : PTell(x, i, y)

PTell(x, i, y)

(DOϕ,ψ)
ϕ(x, i, y) ∧ EO(, i, y) : OTell(x, i, y)

OTell(x, i, y)
Results proved in section 3 remain valid. In particular, we still have the three

cases:
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– EF ≡ >, EP ≡ ⊥ and EO ≡ ⊥.
This applies to highly secured multiagent systems in which any commu-
nication action should be explicitly obligatory or permitted before being
performed.

– EF ≡ ⊥, EP ≡ > and EO ≡ ⊥.
This case applies to lowly secured systems in which any communication
action which is not explicitly forbidden is permitted.

– EF ≡ ⊥, EP ≡ ⊥ and EO ≡ >.
In this case, unless explicit mentioned, sending information is obligatory.

In order to illustrate this, consider the example of a firm in which there is a
manager and two employees. Consider a policy π0 with only one rule which states
that ”Managers are required not to inform their employees about any equipment
checking information”. The rule is modelled by7

∀x∀i∀y Manager(x)∧Employee(y)∧Receive(x, i)∧Topic(i,EqtChk) → O¬Tell(x, i, y)
Let us consider IC = ∅ (there is no integrity constraints) and the state of the

world s0 = {Agent(a),Agent(b),Manager(a),Employee(b), Info(i1),Topic(i1,ExpRisk),Receive(a, i1)}.
In this situation, a is a manager and b an employee. a has received information
i1 whose topic is ”Explosion Risk”.

As π0 contains only one rule and s0 is consistent with IC, π0 is consistent in
s0.

However we have s0 ` Agent(a) ∧ Info(i1) ∧ Receive(a, i1) ∧ Agent(b) ∧
¬(a = b) but π0, s0 6` O(Tell(a, i1, b)) and π0, s0 6` P (Tell(a, i1, b)) and π0, s0 6`
F (Tell(a, i1, b)). Thus, π0 is incomplete for `.

Incompleteness comes from the fact that the policy prescribes the behaviour
of the manager if he/she receives an information about ”Equipment Verification”
but it does not prescribe anything as for information about ”Explosion Risk”.
The policy does not state what the manager should do when he/she receives
information about ”Risk Explosion”.

In order to complete the previous policy, we could take:
EF (x, y, i) = Topic(i,EqtChk), EP (x, y, i) = ⊥ andEO(x, y, i) = Topic(i,ExpRisk).

Such a choice forces the manager to tell its employees about ”Risk Explosion”
information. We can verify that π0 is complete and consistent for `∗ in s0 for
ϕ(x, i, y) and ψ(x, i, y).

Let consider now that IC contains the constraint ”An information has one
and only one topic and this topic can be EqtChk, ExpRisk, Meeting or EqtOut-
OfOrder”. Take:

EF (x, y, i) ≡Topic(i,EqtChk)∨
Topic(i,Meeting)

EP (x, y, i) ≡Topic(i,EqtOutOfOrder)
EO(x, y, i) ≡Topic(i,ExpRisk)

We can apply the corollary 2 to conclude that π0 is ∗-complete and ∗-
consistent for ϕ(x, i, y) and ψ(x, i, y).
7 The predicate names are obvious thus we do not formally define the language.
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5 Conclusion

In this paper, we addressed the problem of analysing consistency and complete-
ness of regulations which may exist in a society of agents in order to rule their
behaviour.

More specifically, we have defined a modal logical framework and showed
how to express a regulation within this framework. We then have reminded of
a definition of consistency and we have defined what meant completeness for a
regulation. The definition of completeness we gave is rather general. We also dealt
with incomplete regulations and proposed a way for completing them by using
defaults. We have established several results which show when these defaults
consistently complete a regulation.

Although these notions (except defaults) were present in [6, 7], we have ex-
tended these previous papers in two points:

– first, we use a first-order modal logic to represent regulations. This allows us
to clearly distinguish between the properties with which the deontic notions
deal from the deontic notions and we keep the expressiveness of FOL for
objects properties.

– second, the approach taken in the previous papers to complete a regulation
was to extend the CWA (Closed World Assumption) defined by Reiter in
order to complete first-order databases [16]. We choose here to use default
reasoning, which is a more elegant solution to complete regulations.

The notion of completeness developed here is in fact a kind of local com-
pleteness, in the sense that we require to have O(ψ(−→x )), P (ψ(−→x )) or F (ψ(−→x ))
only for a specific context represented by formula ϕ(−→x ). That looks close to
the notion of completeness introduced in the databases domain by [18, 10], who
noticed that some of the integrity constraints that are expressed on a database
are rules about what the database should know (i.e. these are rules about what
should be deduced in the database). For instance, the integrity constraint ex-
pressing that ”any employee has got a phone number, a fax number or a mail
address” expresses in fact that, for any employee known by the database, the
database knows its phone number, its fax number or its mail address8. As first
mentioned by Reiter [18], this integrity constraint expresses a kind of local com-
pleteness of the database. Reiter’s defaults can be used in order to complete
such a database in case of incompleteness. For instance, one of the rules can be
that if the database does contain any required information (no phone number,
no fax number, no mail address) for a given employee but if the department that
employee works in is known, then it can be assumed that its phone number is
the phone number of its department.

Studying the formal link between the notion of completeness introduced in
this paper and that notion of local completeness constitutes one interesting ex-
tension of this work.
8 Notice that this does not prevent the fact that in the real world, an employee of the

company has no telephone number, no fax number and no mail address
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Furthermore, in order to deal with more general regulations, this present
work must be extended. In particular, we have to extend it by considering more
notions, among them time and action. Indeed, as it is shown in [11], the issue
of time is very important when speaking about obligations and we will have to
consider different types of time among which, at least, the time of validity of
the norms and the deadlines beared on the obligations. Notice also for instance
that in most of the examples of this paper, the predicates concerned by deontic
operators represent actions (tell, stop etc.). The adding of a dynamic modal
operator and/or temporal operator may be interesting. We will thus obtain a
multimodal logic with strong expressiveness.

Finally, we developed a really simple model of the deontic notions by using
SDL and lots of classical problem in deontic logic are not handled here: norms
with exceptions, contrary-to-duties, collective obligations etc. Another extension
of this work will be to define a logic that can deal with these problems.
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A note on Brute vs. Institutional Facts:
Modal Logic of Equivalence Up To a Signature

Davide Grossi
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Abstract. The paper investigates the famous Searlean distinction between
“brute” and “institutional” concepts from a logical point of view. We show
how the partitioning of the non-logical alphabet—e.g., into “brute” and
“institutional” atoms—gives rise to interesting modal properties. A modal
logic, called UpTo-logic, is introduced and investigated which formalizes
the notion of (propositional) logical equivalence up to a given signature.

1 Introduction

In the last decade the logical analysis of constitutive rules, initiated by [9], has
focused on a number of aspects: defeasibility [3, 4], contextual and classifica-
tory aspects [7, 8], mental aspects [12]. The prominent view has been to study
constitutive rules, or “counts-as statements”, as logical conditionals of the form
ϕ1 ⇒ ϕ2 where the logic of⇒ was, from case to case, capturing the aforemen-
tioned aspects. One aspect, though, that has up to now been neglected concerns
the different linguistic nature of the antecedent ϕ1 and the consequent ϕ2 of
such conditionals.

According to Searle [14, 15] a characteristic aspect of constitutive rules is to
link brute facts to institutional ones. Antecedent and consequent belong, some-
how, to two different sets of concepts into which the language of institutions
can be split. Institutional facts are constituted on the top of brute ones, giving
to brute ones some sort of ‘priority’ upon the institutional ones.

The present paper explores, using modal logic, this linguistic aspect of con-
stitutive rules. It develops ideas already introduced and partially investigated
in [5,6]. It is structured as follows. Section 2 introduces the notion of equivalence
up to a given propositional signature. Such notion is then semantically and ax-
iomatically studied in a multi-modal language in Section 3. Section 4 discusses
some related work and draws some conclusions.

2 Formal aspects of the brute vs. institutional distinction

In this section Searle’s thesis concerning the distinction of brute and institutional
facts is related to a specific notion of logical equivalence.
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2.1 Counts-as conditionals, brute, and institutional facts

Let us start off with one of Searle’s paradigmatic examples of a constitutive rule,
the one concerning the institution of promising:

Under certain conditions C anyone who utters the words (sentence) “I
hereby promise to pay you, Smith, five dollars” promises to pay Smith
five dollars [13, p. 44].

So, in context C the brute fact of uttering “I hereby promise” is a sufficient
condition for the institutional fact of promising to occur. Following [7, 8] by
interpreting contextual statements as forms of localized propositional validity,
this can be semantically rendered as:

(1) WC |= utter→ promise

where WC is the set of states modeling context C.1 Now, utter belongs to the
set BR of “brute” atoms, while promise to the set IN of “institutional ones”. In
the Spirit of Searle, sets BR and INS should obviously be taken to be disjoint,
and to cover the set P of atoms of the language.

So where does the priority of BR in constituting the elements of IN arise?
The thesis of this paper—already partially put forth in [6]—is that the priority
of BR over IN consists in implications such as utter → promise in Formula 1
to cease to be valid once only the “brute” sublanguage, i.e., the atoms in BR, is
considered. With respect to Formula 1, this means that counts-as conditionals
imply the existence of a state w in context WC and a state w′ such that w and
w′ are indistinguishable from the point of view of BR (i.e., they satisfy the very
same brute facts), and such that WC ∪ {w′} 6|= utter → promise. If such a w′

exists, then we can properly say that the truth of promise in WC is constituted
by the truth of utter since “all brute facts being equal” the implication possibly
fails. The paper presents a logic to systematically handle this idea within a
modal language.

2.2 Propositional equivalence up to a signature

The signature of a propositional language is its non-logial alphabet, that is, its
set of propositional atoms. Let P = {p, q, r . . .} be a countable set of propositional
atoms, and let L(P) be the propositional language built on P and the usual
Boolean connectives. We say that P is the signature of L(P).

Consider now the set 2P of all possible sub-signatures of L(P). Elements of
such set will be denoted P,Q,R, . . . etc. Notice that the set of all sub-signatures
of L(P) naturally yields a set algebra

〈
2P,∪,−,P, ∅

〉
. Two propositional models

w and w′ of L(P) are propositionally equivalent if they satisfy the same atoms
in P. As a consequence, for any formula ϕ of L(P): w |= ϕ iff w′ |= ϕ. If w and
w′ are equivalent (w ∼ w′) then there is no set Φ of formulae of L(P) whose

1 This is the semantics of what, in [7, 8], is called classificatory counts-as.
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models contain w but not w′, or vice versa. That is to say, the two models are
indistinguishable for L(P).

However, two models which are not equivalent for P may be equivalent for
some sub-signature P ∈ 2P. In this case, the two models cannot be distinguished
by only looking at the atoms in P. The following definition makes such notion
formal.

Definition 1. (Equivalence up to a signature) Two models w and w′ for a propositional
language L are equivalent up to signature P ∈ 2P, or P-equivalent, if and only if for
any p ∈ P,w |= p iff w′ |= p. If w and w′ are P-equivalent we write w ∼P w′.

Obviously, if w ∼P w′ then for all ϕ ∈ L(P): w |= ϕ iff w′ |= ϕ. The definition
makes precise the idea of two propositional models agreeing up to what is
expressible on a given signature.

Theorem 1. (Properties of ∼P) Let W be a set of models for the propositional language
L(P). The following holds:

(i) For every signature P ∈ 2P, the relation ∼P is an equivalence relation on W;
(ii) For all signatures P,Q ∈ 2P, if P ⊆ Q then ∼Q ⊆ ∼P;

(iii) For each atom p ∈ P, the relation ∼{p} yields a bipartition of W;
(iv) ∼P = ∼;
(v) ∼∅ = W2.

Proof. (i) The following holds: identity is a subrelation of ∼P for any sub-
signature P; and that ∼P ◦ ∼P and ∼−1

P are subrelations of ∼P for any signature P.
(ii) If m ∼Q m′ then for all atoms p ∈ Q: w |= p iff w′ |= p. Therefore, since P ⊆ Q,
w ∼P w′. (iii) Suppose, per absurdum, that there exist three disjoint equiva-
lence classes: |w′|∼{p} , |w

′′
|∼{p} and |w′′′|∼{p} . For bivalence, we have either w′ |= p

or w′ 6|= p. Suppose, without loss of generality, that w′ |= p. By Definition 1 it
follows that w′′ 6|= p and w′′′ 6|= p. Hence |w′′|∼{p} = |w′′′|∼{p} , which is impossible.
(iv) The set P is the signature of the propositional languageL(P), hence ∼P is the
propositional equivalence relation for L(P). (v) Suppose, per absurdum, there
exists w,w′ ∈ W such that not w ∼∅ w′. For Definition 1, there exists p ∈ ∅ such
that w |= p and w′ 6|= p (or viceversa), which is impossible.

Besides showing that signature-based equivalence is an equivalence relation (i),
Theorem 1 shows also that: (ii) the bigger the signature, the more fine-grained
is the equivalence relation; (iii) equivalences based on singleton signatured
partition the set of states in two classes; (iv) if the propositional language under
consideration isL(P) then relation∼P is standard propositional equivalence; (iv)
∼∅ is the universal relation on W. Notice also that from (ii) and (iii) follows that
for every signature P it is the case that ∼ ⊆ ∼P, that is, propositional equivalence
implies signature-based equivalence.

3 A modal logic of propositional equivalence up to a signature

The present section presents a modal logic—which we call UpTo—characterizing
the notion of propositional equivalence up to a given signature.
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3.1 Syntax of UpTo.

Let P = {p, q, r . . .} be a countable set of propositional atoms. The language
LUpTo(P)2 of logic UpTo on P is defined by the following BNF:

LUpTo : ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | [P]ϕ

where p ranges over P and P over 2P. The Boolean connectives >,∨,→,↔ and
the dual operators 〈P〉 are defined as usual.

3.2 Semantics of UpTo.

Let us first define frames and models built on the notion of equivalente up to a
given signature, in short, UpTo-frames and UpTo-models.

Definition 2. (UpTo-frames) An UpTo-frameF = 〈W, {∼P}P∈2P〉 for the propositional
language L(P) is a tuple such that:

– W is a non-empty set of states;
– Each ∼P is an equivalence relation based on signature P ∈ 2P.

Intuitively, an UpTo-frame fixes a particular arrangement of the equivalence
classes available given a propositional language L(P). To make a simple exam-
ple, suppose W = {w′,w′′}, P = {p} and ∼{p}= {(w′,w′), (w”,w”)}. Such frame for
L({p}) states that w′ and w” are equivalent up to signature {p} only to themselves.
The valuation function will then say whether it is w′ that satisfies p while w”
does not, or vice versa. This brings us to the notion of UpTo-model.

Definition 3. (UpTo-models) An UpTo-model M = 〈F ,I〉 for the modal language
LUpTo(P) is a tuple such that:

– F is an UpTo-frame for the propositional language L(P);
– I : P −→ 2W is an interpretation function.

It may be instructive to notice that for each UpTo-frame there are exactly 2P

different UpTo-models since Definition 1 requires that, for any atom p in P, each
element in the bipartition yielded by p coincides either with the truth-set of p or
with the truth-set of ¬p.

The satisfaction relation is defined as follows.

Definition 4. (Satisfaction for UpTo-models) LetM be an UpTo-model forLUpTo(P),
w ∈W and ϕ,ψ ∈ LUpTo(P).

M,w |= p iff w ∈ I(p);
M,w |= ¬ϕ iff M,w 6|= ϕ;

M,w |= ϕ ∧ ψ iff M,w |= ϕ &M,w |= ψ;
M,w |= [P]ϕ iff ∀w′ ∈W,w ∼P w′ :M,w′ |= ϕ

2 In what follws we will often drop the reference to P and denote the language of UpTo
simply by LUpTo.
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Formula ϕ is valid in M, noted M |= ϕ, if and only if for all w in W, M,w |= ϕ.
Formula ϕ is valid in F , noted F |= ϕ, if and only if it is valid in all models built on F .
Finally, ϕ is UpTo-valid, noted |=UpTo ϕ, iff it is valid in all UpTo-frames. The logical
consequence of formula ϕ from a set of formulae, noted Φ |=UpTo ϕ, can be defined as
usual.

Intuitively, the up to operator [P] means that ϕ holds in all states that are equiv-
alent to the state of evaluation up to signature P.

3.3 Axiomatics of UpTo.

Logic UpTo is axiomatized by the following schemata.

(P) all tautologies of propositional calculus
(K) [P](ϕ→ ψ)→ ([P]ϕ→ [P]ψ)
(T) [P]ϕ→ ϕ

(4) [P]ϕ→ [P][P]ϕ
(5) 〈P〉ϕ→ [P]〈P〉ϕ

(PO) [P]ϕ→ [Q]ϕ if P ⊆ Q
(Bipart) [{p}]p ∨ [{p}]¬p

(Dual) 〈P〉ϕ↔ ¬[P]¬ϕ
(MP) if ` ϕ1 and ` ϕ1 → ϕ2 then ` ϕ2

(N) if ` ϕ then ` [P]ϕ

where P,Q range over 2P, ϕ,ψ over LUpTo(P) and p over P. The up to operators
are S5 operators with the addition of axioms PO (partial order) and Bipart
(bipartition). Axiom PO orders the strength of the operators according to the
relation of set-inclusion on the set of signatures. Notice that it consists of a
transposition, in modal logic, of property (ii) in Theorem 1. Axiom Bipart

states that if the signature considered consists of only atom p then it is either
necessarily the case that p, or it is necessarily the case that ¬p. In other words,
the equivalence up to p determines a bipartition of the set of states where the
one cluster coincides with the set of p-states and the other with the set of ¬p
states. This axiom rephrases property (iii) of Theorem 1. Notice that from PO,
Bipart and P follows that [P]p ∨ [P]¬p if p ∈ P. 3

Provability of a formula ϕ, noted `UpTo ϕ, and derivability of a formula ϕ
from a set of formulae Φ, noted Φ `UpTo ϕ can be defined as usual. Appendix
A offers a proof of the soundness and strong completeness of the proposed
axiomatics with respect to the class of models built on UpTo-frames.

3 A slightly different version of such schema has been used as an axiom in [5], where
it is called NoCross. Notice that it forces the accessibility relation not to cross the
bipartitions of the domain W yielded by each atom p, when p does belong to signature
in the modal operator.
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3.4 Embedding UpTo into S5

Take the standard modal language L�(P) with one modal operator � defined
on the set of atoms P. If we allow only up to operators [P] where P is finite, it is
possible to define an EXPtime truth-preserving reduction f : LUpTo(P) −→ L�(P)
as follows:

f (p) = p
f (¬ϕ) = ¬ f (ϕ)

f (ϕ ∧ ψ) = f (ϕ) ∧ f (ψ)
f ([∅]ϕ) = � f (ϕ)

f ([P]ϕ) =
∧
πi∈2P

((∧
π+

i ∧
∧

π−i
)
→ �

((∧
π+

i ∧
∧

π−i
)
→ f (ϕ)

))
where π+

i = πi and π−i = {¬p | p ∈ P & p < πi}. Intuitively, the up to operators
are translated by taking care of all the possible truth-value combinations of the
atoms in the signature P. If a given combination, e.g.,

∧
π+

i ∧
∧
π−i , is true at

the given state, then in all accessible states, if that combination is true, than ϕ is
also true. In addition, this should be the case for any combination drawn from
a non-empty P, which explains

∧
πi∈2P−∅. If P is empty, than [P] is taken to be �.

As a consequence, � has to be interpreted as a universal modality (Theorem 1).

Theorem 2. ( f preserves satisfiability) LetM = 〈W, {∼P}P∈2P ,I〉 be an UpTo-model
for language LUpTo(P) andM′ = 〈W′,R′,I′〉 be an S5 model for L�(P) such that:

– W′ = W;
– R′ = ∼∅;
– I′ = I.

For any w ∈W and ϕ ∈ LUpTo(P),M,w |= ϕ iffM′,w |= f (ϕ).

Proof. The Boolean clauses and the clause for [∅] are obvious. As to the the
last clause, by induction hypothesis (IH): M,w |= ϕ iff M′,w |= f (ϕ). By IH,
the semantics of [P] and �, and Definition 1, the following expressions are all
equivalent toM,w |= [P]ϕ:

∀w′ ∈W,w ∼P w′ :M,w′ |= ϕ

∀w′ ∈W,w ∼P w′ :M′,w′ |= f (ϕ)

∀w′ ∈W,∀πi ∈ 2P ifM′,w |=
∧

π+
i ∧

∧
π−i thenM

′,w′ |=
(∧

π+
i ∧

∧
π−i

)
→ f (ϕ)

∀πi ∈ 2P ifM′,w |=
∧

π+
i ∧

∧
π−i thenM

′,w′ |= �
((∧

π+
i ∧

∧
π−i

)
→ f (ϕ)

)
M
′,w′ |=

∧
πi∈2P−∅

((∧
π+

i ∧
∧

π−i
)
→ �

((∧
π+

i ∧
∧

π−i
)
→ f (ϕ)

))
This completes the proof.

As a consequence, we also obtain the following result.

6



Corollary 1. (Decidability) The satisfiability problem for UpTo is decidable.

Proof. The satisfiability problem for S5 is decidable [2]. The result follows from
Theorem 2.

Translation f makes explicit how the up to operators enable a compact rep-
resentation of rather rich logical information. What can be expressed by UpTo
can as well be expressed in S5, but not as easily.

4 Related work and conclusions

In these last two sections we relate the results presented in this paper to existing
work in modal logic, and we finally draw some conclusions pointing at future
research directions.

4.1 Related work: up to, release and ceteris paribus logics

The logic presented in Section 3 is a strict relative of the so-called release log-
ics, first introduced and studied in [10, 11] in order to provide a modal logic
characterization of a general notion of irrelevancy. Modal operators in release
logics are S5 operators indexed by an abstract set denoting the issues that are
taken to be irrelevant while evaluating the formula in the scope of the operator.
In [5] a special release logic is studied where the potentially irrelevant issues are
precisely the propositional atoms of the language. This allows for the character-
ization of a notion of equivalence modulo a given signature. Instead of studying
formulae [P]ϕ, whose intuitive meaning is “ϕ is the case” up to signature P, that
logic studies formulae [P]ϕ whose intuitive meaning is “ϕ is the case” modulo
signature P, that is, if we abstract from the atoms in P. Therefore, in order to
obtain a truth-preserving translation f of this logic to UpTo we just need to
require: f ([P]ϕ) = [−P] f (ϕ), where − is the set-theoretic complement. The UpTo
logic can therefore be considered to belong to the family of release logics.4

Another work coming very close to the spirit of the present paper is [1].
In that paper a logic is presented for ceteris paribus preferences, that is to say,
for preferences under the“all other things being equal” condition. Leaving the
preferential component of such logic aside, its ceteris paribus fragment concerns
sentences of the form 〈Γ〉ϕwhose intuitive meaning is “there exists a state which
is equivalent to the evaluation state with respect to all the formulae in the (finite)
set Γ and which satisfies ϕ”, where the formulae in Γ are drawn from the full
language. At this point it is easy to see that logic UpTo is, in fact, the fragment of
the ceteris paribus logic where Γ is allowed to consist only of a set of atoms. It is,
we could say, the logic of “everything else being equal which you can express on
this signature”. From the semantic point of view, this means that UpTo-models
contain considerably less equivalence classes than ceteris paribus models.

4 See [5] for more details.
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4.2 Conclusions

The paper has introduced and studied modal logic UpTo characterizing the
notion of equivalence up to a given propositional signature. Soundness and
completeness of the axiomatics, as well as the decidability of the satisfaction
problem has been proven.

To conclude, let us go back to the beginning of Section 2 and show how
Formula 1 can be appropriately extended in order to capture the “brute vs.
institutional” distinction:

(2) WC |= utter→ promise and WC 6|= [BR](utter→ promise)

Using the syntax of the modal context logic Cxt developed in [7, 8], Formula 2
could be expressed in the object-language as follows:

(3) [C](utter→ promise) ∧ ¬[C][BR](utter→ promise)

where [C] denotes the context operator. A systematic study of the interaction of
logics Cxt and UpTo is left for future work.
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A Soundness and completeness of UpTo

Soundness is easily proven.

Theorem 3. (Soundness of UpTo) For any ϕ ∈ LUpTo, if `UpTo ϕ then |=UpTo ϕ.

Proof. It is well-known that inference rules MP and N preserve validity on any
class of frames, and that axioms T, 4 and 5 are valid on models built on equiva-
lence relations5. The validity of PO and of Bipart follows from Theorem 1.

As to completeness, we make use of the standard canonical model technique.

Lemma 1. Logic UpTo is strongly complete w.r.t. the class of UpTo-frames iff every
UpTo-consistent setΦ of formulae is satisfiable on some model built on an UpTo-frame.

Proof. From right to left we argue by contraposition. If UpTo is not strongly
complete w.r.t. the class then there exists a set of formulaeΦ∪ {ϕ} s.t.Φ |=UpTo ϕ
and Φ 0UpTo ϕ. It follows that Φ ∪ {¬ϕ} is UpTo-consistent but not satisfiable on
any UpTo-model. From left to right we argue per absurdum. Let us assume that
Φ ∪ {¬ϕ} is UpTo-consistent but not satisfiable in any sublanguage equivalent
model built on a frame in class UpTo. It follows that Φ |=UpTo ϕ and hence
Φ ∪ {¬ϕ} is not UpTo-consistent, which is impossible.

Now letMUpTo be the canonical model of logic UpTo in language LUpTo(P).
ModelMUpTo is the structure

〈
WUpTo, {RUpTo

P }P∈P,IUpTo
〉

where:

1. The set WUpTo is the set of all maximal UpTo-consistent sets.
2. The canonical relations {RUpTo

P }P∈P are defined as follows: for all w,w′ ∈
WUpTo, if for all formulae ϕ, ϕ ∈ w′ implies 〈P〉ϕ ∈ w, then wRUpTo

P w′.
3. The canonical interpretation IUpTo is defined by IUpTo(p) = {w ∈ WUpTo

| p ∈
w}.

5 See [2].
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We have now to prove the Existence and Truth Lemmata for logic UpTo.

Lemma 2. (Existence lemma) For all states in WUpTo, if 〈P〉ϕ ∈ w then there exists a
state w′ ∈WUpTo s.t. RUpTo

P (w,w′) and ϕ ∈ w′.

Proof. The claim is proven by construction. Assume 〈P〉ϕ ∈ w and let w′0 =
{ϕ} ∪ {ψ | [P]ψ ∈ w}. The set w′0 must be UpTo-consistent since otherwise there
would exist ψ1, . . . , ψm ∈ w′0 such that `UpTo (ψ1 ∧ . . . ∧ ψm) → ¬ϕ, from which
we obtain `UpTo ([P]ψ1 ∧ . . . ∧ [P]ψm) → [P]¬ϕ. Since [P]ψ1, . . . , [P]ψm ∈ w
we have that ¬〈P〉ϕ ∈ w, which contradicts our assumption. Therefore, w′0 is
UpTo-consistent and can be extended to a maximal UpTo-consistent set (for
Lindenbaum’s Lemma6). By construction, w′ contains ϕ and is such that for all
ψ, if [P]ψ ∈ w then w′ contains ψ. From this it follows RUpTo

P (w,w′) since, if this
was not the case, then there would exist a formula ψ′ s.t. ψ′ ∈ w′ and 〈P〉ψ′ < w.
Since w is maximal UpTo-consistent, [P]¬ψ′ ∈ w and hence ¬ψ′ ∈ w′, which
contradicts the UpTo-consistency of w′.

Lemma 3. (Truth lemma) For any formulaϕ ∈ LUpTo(P) and w ∈WUpTo:MUpTo,w |=
ϕ iff ϕ ∈ w.

Proof. The claim is proven by induction on the complexity of ϕ. The Boolean
case follows by the properties of maximal UpTo-consistent sets. As to the modal
case, it follows from the definition of the canonical relations RUpTo

P and Lemma
2.

Everything is now put into place to prove the strong completeness of UpTo.

Theorem 4. (Strong completeness of UpTo) For any formula ϕ ∈ LUpTo(P) and set of
formulae Φ, if Φ `UpTo ϕ then Φ |=UpTo ϕ.

Proof. By Proposition 1, given an UpTo-consistent setΦ of formulae, it suffices to
find a model state pair (M,w) such that: (a)M,w |= Φ, (b)M is an UpTo-model.
Let MUpTo =

〈
WUpTo, {RUpTo

P }P∈2P ,IUpTo
〉

be the canonical model of UpTo, and
let Φ+ be any maximal UpTo-consistent set in WUpTo extending Φ. By Lemma
3 it follows thatMUpTo, Φ+

|= Φ, which proves (a). To prove (b), we show that
M

UpTo is s.t.: (b.1) the frame on whichM is based is an UpTo-frame; and (b.2)
for all p ∈ P, RUpTo

{p} (w,w′) iff it is the case that p ∈ w iff p ∈ w′. As to (b.1), it is

well-known that axioms T, 4 and 5 force the relations RUpTo
P to be equivalence

relations. It remains to be shown that if P ⊆ Q then RUpTo
Q ⊆ RUpTo

P . Assume

RUpTo
Q (w,w′). It follows that for all ϕ, if ϕ ∈ w′ then 〈Q〉ϕ ∈ w and hence, by the

contrapositive of axiom PO, 〈P〉ϕ ∈ w. Therefore, RUpTo
P (w,w′). As to (b.2), form

left to right. Assume RUpTo
{p} (w,w′). For axioms T and Bipart, p ∈ w iff p ∈ w′.

From right to left, we assume p ∈ w iff p ∈ w′. If p ∈ w′, by axioms T and Bipart,
〈{p}〉p ∈ w and therefore RUpTo

{p} (w,w′). This completes the proof.

6 See [2].
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Abstract. With the ongoing evolution from closed to open distributed
systems and the lifting of the assumption that agents acting in such a
system do not pursue own goals and act in the best interest of the society,
new problems arise. One of them is that compliance cannot be assumed
necessarily and consequently trust issues arise. One way of tackling this
problem is by regulating the behavior of the agents with the help of insti-
tutions. However for institutions to function effectively their compliance
needs to be ensured. Using a utility computing scenario as sample appli-
cation, this paper presents a general applicable taxonomy for ensuring
compliance that can be consulted for analyzing, comparing and develop-
ing enforcement strategies and hopefully will stimulate research in this
area.
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Sanctions, Utility Computing

1 Self-Interested Agents in Utility Computing

1.1 The Vision of Utility Computing

The vision of Utility Computing (UtiC) has gained significant interest in the
last years and has become a popular buzzword. The word “utility” is used to
make an analogy to the provision of other services, such as electrical power, the
telephone, gas or water, in which the service providers seek to meet fluctuating
customer needs, and charge for the fungible resources they sell based on usage
rather than on a flat-rate basis1. In the computing context examples of such
resources are storage space, server capacity, bandwidth or computer processing
time. UtiC envisions that in contrast to traditional models of web hosting where

1 It is important to note that although the services offered by the service providers are
individualized, their basic components are very standardized resources that can be
easily exchanged. Thus, a telephone provider for example may provide his customers
with very different telephone packages, however the underlying resources he uses are
standardized telephone units.
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the web site owner purchases or leases a single server or space on a shared
server and is charged a fixed fee, the fixed costs are substituted by variable costs
and he is charged upon how many of the fungible resources he actually uses
on demand over a given period of time in order to perform his computationally
intensive calculations. The business idea behind this vision is that if a company
has to pay only for what it is using it can adapt its cost structure and will be
able to economize, i.e. save money, while the company offering utility computing
resources can benefit from economies of scale by using the same infrastructure
to serve multiple clients [8].

Looking at the nature of the resources sold in the UtiC context as well as the
potential number of transactions that might be conducted in such an infrastruc-
ture, it seems reasonable to argue that UtiC is an ideal field of application for
automated negotiations using artificial agents [16]. Thus, the resources traded
in UtiC have a high degree of standardization, and furthermore the open inter-
action system as well as the high number of repetitive transaction, suggest the
usage of artificial agents that act on behalf of their human owners. Furthermore,
as mentioned in the AgentLink Roadmap [25], Multi-Agent-Systems (MAS) offer
strong models for representing complex and dynamic environment that cannot
be analyzed mathematically any more, but need to be simulated. However when
thinking in the lines of this vision, several problems occur, such as the question
about the risks involved in UtiC transactions. Thus, it has to be ascertained that
the bilateral economic exchange envisioned in UtiC is very likely to involve risks,
such as risks resulting from strategic- and parametric uncertainties, that shall
be explained in the next section with regard to the problem of self-interested
agents [38].

For the further analysis it has to be noted that this paper views UtiC as one
possible field of application of electronic institutions or e-commerce. Nevertheless
as it is a good example of an open distributed market that can be simulated with
MAS simulation, it is explained in more detail at this point and will be used as
example in the course of the paper.

1.2 Strategic Uncertainties resulting from Self-Interested Agents

As noted at the end of the last section, two main kinds of uncertainties exist
in UtiC transactions, namely strategic- and parametric uncertainties. Whereas
the latter ones refer to environmental uncertainties that cannot (or only with
a disproportionate effort) be reduced by the UtiC participants, the strategic
uncertainties concern the question of whether the transaction partners are willing
to comply with what has been agreed on or not; and whether, if a transaction
has had an adverse outcome, this was due to bad luck or bad intentions [26, 21].
Thus, if a buyer does not receive the promised UtiC resources from the seller, it
is often hard to judge whether the seller did not deliver intentionally, or whether
the transaction failed, because the network broke down for example.

The basic assumption behind this the problem of strategic uncertainty thereby
is that agents are rational believe forming utility maximizing entities. Thereby
it is assumed that the agents do not necessarily always act in the best interest
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of the societies global (or social) welfare. Instead they are likely to pursue their
individual goals and try to maximize their profit (in terms of a maximization
of their utility function) [31]. That is why agents may choose to not fulfill a
contract as promised, if they expect a higher own utility from this. Thereby
the decisions about the utility of different options by each agent are based on
the limited information the particular agent has about the environment (i.e. the
agents have a bounded rationality). As a result it becomes difficult to assess
and control the utility functions of all participating agents. As a consequence it
is very challenging from a UtiC environment designers point of view to control
that the overall UtiC market outcome is as desired.

As a result institutions are needed that influence the utility functions of the
agents and create incentives in such a way that cooperation is the dominant
strategy and strategic uncertainty can be reduced to a minimum extent. In the
next section the term institutions as used in this paper will be explained and
the roles of institutions for regulating and controlling UtiC will be analyzed in
more detail (2). Thereby special focus will be on the ensuring of the compliance
with the institutions in UtiC as “if not being enforced effectively, [institutions]
are nothing more than a decorative accessory” [9]. In the course of the analysis
of the compliance-ensuring of institutions for UtiC, as the main contribution
of this paper, in section 3 a taxonomy will be developed that tries to combine
all elementary compliance-ensuring options in one table and to classify them in
a expedient way. In a second step, the different elements of the taxonomy will
be explained in detail in the sections 3.1–3.5 with the help of UtiC examples.
Although, the main focus of this paper is UtiC, UtiC itself is just seen as a
sample application for open distributed systems by the author. Thus, the au-
thor aims at presenting a general applicable taxonomy that can be consulted for
analyzing, comparing and developing compliance-ensuring strategies and hope-
fully will stimulate research in this area. In a last step in this paper a research
proposal will be made how to evaluate the taxonomy elements one against the
other (chapter 4). Thereby 5 performance indicators will be presented that shall
serve as a starting point for this analysis. Furthermore a research outline will of
how the mechanisms shall be evaluated will be presented (chapter 4).

2 Ensuring Compliance of Institutions for Controlling
Utility Computing

2.1 Institutions in Utility Computing

As mentioned in the last section, resulting from the openness of UtiC envi-
ronments two problems arise: First of all anybody can participate in such an
infrastructure and act intentionally and optimally towards their own specific
goals (i.e utility functions). The second problem is that the overall social wel-
fare of the system emerges as a result of the individual decisions and actions of
the individual agents. However the utility functions that the agents base their
decisions on are dynamic and normally private information of the individuals
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and are therefore hardly predictable for the UtiC environment designers. As a
result, “appropriate” mechanisms that foster compliance and regulate the UtiC
environments (in terms of defining a regulative framework as well as sanctions
for non-compliance with the framework2) need to be applied in order to achieve
an “acceptable” overall behavior. The most promising mechanism, which will be
addressed in this paper is the usage of institutions. Institutions alter the relative
prices for defections and thereby create incentives for a system-conform behav-
ior. This paper thereby understands the term institutions as often used in new
institutional economics, namely is follows:

Institutions are formal (e.g. statute law, common law, regulations) and
informal structures (e.g. conventions, norms of behavior and self imposed
codes of conduct) and mechanisms of social order and cooperation gov-
erning the behavior of a set of individuals by attributing rights and
obligations to them. They are identified with a social purpose and per-
manence, transcending individual intentions, and with the making and
compliance-ensuring of rules governing cooperative human behavior and
thereby define the social outcomes that result from individual actions
[29, 33].

Looking at this definition three main aspects can be remarked. The first one
is that in the institutional economic view institutions are understood as a very
abstract notion of a set of norms or social structure. Hence norms are seen
to be component of institutions, which are the overall concept of a regulative
framework. The second aspect to be remarked concerns the role of institutions,
namely the setting up of a framework of rules and actions in which the agents
have to operate. This framework not only defines what agents should and should
not do, but erects sanctions to be applied if the framework is violated. And
this is where the third main aspect comes into play: the compliance-ensuring
component. As North phrased it in [28] with regard to ensuring compliance:

“...[it] poses no problem when it is in the interests of the other party
to live up to agreements. But without institutional constraints, self-
interested behavior will foreclose complex exchange, because of the un-
certainty that the other party will find it in his or her interest to live up
to the agreement.”

What North formulated in this statement is very straight forward: the com-
pliance with an institutional framework poses no problem, if no self-interested
behavior is involved. If however – as in UtiC – this is not the case and agents
can exhibit self-interested behavior, it is important that institutions do not only
state a set of rules, but it needs to be taken care that their compliance is ensured,
because otherwise the strategic uncertainties arising might negatively influence
the usage of an environment (e.g. UtiC).
2 In this paper special focus will be on regulative rules as they pose problems in terms

of compliance-ensuring. Although being of high importance as well constitutive rules
will be omitted as their non-compliance leads to nullity [20].
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After this brief description of the role of institutions and especially the ensur-
ing of their compliance in UtiC, in the next section, the related work relevant for
the implementation of institutions in open distributed environments such as UtiC
shall be reviewed. Thereby special focus will be once again on the compliance-
ensuring aspect as it is has a key function in the success of every institutional
setting.

2.2 Related Work

Already in 1998, Conte et al. [10] pointed out two distinct sets of problems rel-
evant for MAS research on norms: (1) the interaction of different autonomous
agents on a norm-governed basis and (2) the interaction of individual autonomous
agents with the norms (including the acquisition and the violation of norms).
This problem definition has been expanded by Boella and van der Torre [4] to
include a third question that deals with the evolution of norms. The first of the
three questions has been discussed at length by researchers using game-theoretic
approaches [4]; however a model integrating these approaches with the different
social, cognitive and normative concepts is still missing. The second question has
been studied by Broersen et al. [7] for example, who focused on the agent archi-
tecture for determining how agents can acquire and violate norms and how norms
in turn influence agent behavior. Last but not least, the third question has been
dealt with by Verhagen [37] and some economic commerce researchers. Verhagen
distinguished between norms created by legislators, norms negotiated between
agents and norms emerging spontaneously and thereby laid the groundwork for
a number of papers about protocols and social mechanisms for the creation [5]
and agent mediated evolution of norms [34] in MAS. In spite of this intensive
research on the creation of norms in MAS, little work has been done explic-
itly addressing the ensuring of the compliance with such norms. Thus, although
trust and reputation mechanisms as centralized (e.g. eBay) and decentralized
coordination and compliance-ensuring instances [32] have been discussed by a
number of researchers, the mechanisms tend to concentrate on specific use cases
and often fail to address the importance of these mechanisms in the compliance
context. Thus, in many papers it is explicitly assumed, that all normative regula-
tions can be asserted and therefore little or no thought is given on what happens
if this assumption cannot be fulfilled, although many scientists have stated that
institutions and norms are more or less senseless if their compliance cannot be
ensured [9].

One of the few papers that deals with compliance and analyzes at what lev-
els it can be applied in a system was written by Vázquez-Salceda et al. [36],
who not only make a distinction between regimentation and enforcement, but
also elaborate on the levels of observability of norm violations. Other authors
that address the compliance topic in their papers include D. Grossi [19, 20] who
also distinguished between enforcement and regimentation, L. van der Torre, G.
Boella and H. Verhagen (see [4] or [5] for example) as well as A. Perreau de
Pinninck, C. Sierra and M. Schorlemmer [30], A. Artikis, M. Sergot and J. Pitt
[1], M. Esteva, J. Padget and C. Sierra [15] or A. Garcia-Camino, P. Noriega



6 Tina Balke

and J. A. Rodriguez-Aguilar [17]. All these papers elaborate on the importance
of suitable mechanisms for ensuring compliance in distributed systems and pro-
pose mechanisms for specific scenarios. However in these papers, little analysis
can be found, examining and comparing the different compliance ideas based on
a common setting and researching on the interplay of the different concepts as
well as their applicability for certain settings. That is why, this paper aims at
providing a first step into the research just mentioned by presenting a compre-
hensive taxonomy for ensuring compliance with institutions, that can be used
not only as a basis for analyzing different compliance mechanisms, but also for
comparing, combining and in general developing corresponding strategies.

3 A Taxonomy for Ensuring Institutional Compliance in
Utility Computing

After having had a brief look at the existing literature about institutions and the
ensuring of their compliance in the last section, in this section a taxonomy of all
methods through which compliance can be administered shall be developed. The
goal of this endeavor is to illuminate the general concept of ensuring compliance
as well as its different potential forms of implementation.Thereby, first of all, the
cornerstones of the taxonomy (the column heads in figure 1) will be explained.
This will be followed by a detailed analysis of the resulting compliance-ensuring
mechanisms. The ideas for the taxonomy are based on works by Ellickson [13]
(that were already cited by North [28] as theoretical “enforcement” foundation)
and works by Grossi [19, 20] who made a distinction between regimentation and
enforcement and proposed a basic classification mechanism for enforcement con-
cepts.

To start, as already defined in section 2.1, an institutionally tailored system
consists of a framework of rules defining normatively appropriate behavior. The
compliance with these rules is ensured through (positive or negative) sanctions,
the administration of which is itself governed by rules. Concerning the sanctions,
institutionally entailored systems typically employ both rewards and punishment
– both carrots and sticks – to influence behavior. In order to administer these
positive and negative sanctions, agent behavior is usually divided into three
categories [13]:

1. good behavior that is to be rewarded,
2. ordinary behavior that warrants no response (as giving a response to the

most common behavior only tends to increase the costs of administering
sanctions) and therefore will not be discussed any further in this paper, and

3. negative behavior that is to be punished.

However, before any compliance-ensuring can take place another aspect has
to be thought about: the behavior of the agents needs to be monitored in or-
der to categorize it and apply the right kind of sanction3. This monitoring can
3 In the further course of this paper, the main focus will be on sanctions that punish

negative behavior, as these are especially relevant in the context of strategic uncer-
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be done by observers in a system. Thereby it seems useful to distinguish be-
tween 4 types of observers, that not only monitor the behavior of the individual
agents, but can act as information source for both rules of behavior and sanc-
tions: a first-party observer who controls his accordance with the rules in a sys-
tem (whether self-imposed or imposed by other sources) himself, a second-party
observer who observes the behavior of his transaction partner(s), third-party
observers that control the behavior of other agents the system and last but not
least the infrastructure (in the sense of both, the infrastructure as a whole as
well as infrastructural entities) as observer. Once, the behavior of the agents is
observed, the ensuring of compliance can take place. This can either be done by
te observer of the violation or by another party. In total this paper distinguishes
4 different kinds of compliance-ensuring entities which all have different kinds of
sanctions that can be used for ensuring institutional compliance. The 4 enforcers
are: the infrastructure provided by the UtiC designer (including institutional en-
tities as a sub-group), social groups (up to the society as whole) consisting of
non-infrastructural entities, second-party enforcers (i.e. the transaction partners)
and first party-enforcers.

As a result of these considerations, the taxonomy that can be seen in the
final column of figure 1 can be developed. The taxonomy is the synthesis of
the 4 types of observers that can spot the behavior of agents with regard to the
institutional framework (e.g. violations or actions in accordance with the institu-
tions) and the 4 types of compliance ensurers that (depending on their type) can
apply sanctions (in order to ensure compliance). It consists of 8 different kinds
of combined systems that represent all compliance-ensuring concepts that can
be applied reasonably: infrastructural control (white box), infrastructural control
(black box), institutionalization of other agents, infrastructural assisted enforce-
ment (third-party), promisee-enforced rules, infrastructural assisted enforcement
(second-party) and self-control.

3.1 Regimentation vs. Enforcement

After briefly explaining the main categories (i.e. the column heads in figure 1), as
a last step before going into detail about the synthesized taxonomy, the distinc-
tion between the two row heads of figure 1, i.e. regimentation and enforcement
shall be explained.

Regimentation refers to the ensuring of institutional compliance by making
violation states unreachable via an appropriate infrastructure (i.e. allowing for
no deviation from institutionally defined behavior) so that no compliance issues
occur [23]. This is normally done in either of the following two ways.

1. By ensuring that all agents’ mental states are accessible to the system (closed
systems), and can be altered to be in accordance with the normative frame-
work. Thus, agents are treated as a white box that’s content can be by

tainties. However all the taxonomy elements of this paper can be thought of in form
of reward mechanisms for good behavior as well.
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analyzed and altered (this concept is for example applied in the KAoS archi-
tecture [6]). In the taxonomy this idea is referred to as infrastructural control
(white box).

2. In case the mental states are not accessible to the system (i.e. the inner
states of an agent are a black box to the system), compliance is ensured by
constraining the actions of the individual agents. This idea is for example
used in systems such as ISLANDER that uses so-called “governors”. In IS-
LANDER agents do not act directly but through their governor, who can
consequently check all actions. Hence, if an agent wants to send a message
that is not allowed, the governor will not send it and consequently institu-
tional compliance is ensured [14]. In the taxonomy this idea is referred to as
infrastructural control (black box).

In contrast to regimentation where non-compliance is made impossible by
controlling everything that might lead to a violation of the institutional frame-
work, enforcement “only” uses indirect mechanisms in order to ensure compli-
ance. Thus in enforcement positive or negative incentives are being used that
shall render compliance the preferable choice for an agent.

Putting it simple: regimentation pursues the idea of 100 per cent control (of
either agent actions or their mental states) and consequently compliance can be
always be ensured, however it limits the autonomy of the agents. Furthermore it
seems difficult to implement it in open distributed settings such as UtiC and
might become inoperative in case agents have agreed to conduct the actual
transaction outside the monitored environment (of course messages of such type
could be filtered by the system, this aspect is neglected at this point). Looking
at eBay for example, although the transaction partners agree to live up to their
agreements in a transaction (e.g. deliver a good after the money has been set),
eBay cannot force them to do so, because the physical transaction takes place
outside the eBay marketplace and thus at that point eBay has no direct control
over either the mental states or the actions of the individuals acting on eBay.
Last but not least one further possible problem arises with regimentation, a
problem with its costs. The term costs thereby is not necessarily understood in
monetary terms, but can for example be seen in the increased number of messages
(infrastructural resources) that are needed for the 100 per cent monitoring. This
is where enforcement steps in. Although maybe preferable in some situations,
enforcement aims at as much control as possible control at resonable costs for the
compliance. As already mentioned it instead makes use of negative and positive
incentives that can be applied not only by the organization, but all agents acting
in the system as well and therefore can reduce the costs of UtiC designers, by
reducing their monitoring work.

Now that the heads of the table columns have been discussed, finally the com-
bined systems that result from the intersection of the components of compliance-
ensuring shall be explained in more detail. These are infrastructural control
(white / black box), the institutionalization of other agents, infrastructural
assisted enforcement (third-party / second-party), informal control, promisee-
enforced rules and self control. Thereby special focus will be on the enforcement
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related concepts and infrastructural control (i.e. regimentation) will be neglected
as it has just been discussed.

3.2 Institutionalization of Agents

The institutionalization of other agents can be thought of in form of the im-
plementation of agents with special rights (i.e. some kind of police agents) that
patrol the environment (in our example the UtiC environment) and sanction
negative behavior (i.e. non-compliance) if spotted. These police agents are given
their special rights by the UtiC designer (i.e. they are infrastructural entities
and receive their power from the institutional framework provided by the UtiC
infrastructure) and consequently perform an institutional compliance-ensuring.
However in contrast to regimentation the police agents do not control all actions
but only act as enforcers if violations are spotted. The spotting of the institution-
violation is done by the police agents themselves who test the behavior of agents
at random and react to what they detect. Looking at the kind of sanctions that
can be applied by the police agents several sanctions can be thought of (depend-
ing on the severity of the non-compliance) such as a complete exclusion of the
UtiC system to penalty payments or replacement deliveries of the resources (e.g.
disk space).

3.3 Infrastructural Assisted Enforcement (Second-Party /
Third-Party)

The concepts of infrastructural assisted enforcement are very close to the idea
of the institutionalization of other agents. Thus again infrastructural entities
act as compliance ensuring entities that can make use of sanctions ranging from
a complete exclusion of the UtiC system to penalty payments or replacement
deliveries of the resources (e.g. disk space). However in contrast to the concept
of the institutionalization of other agents, not the infrastructural entities act as
observers, but either the agent that was acted upon, i.e. the agents that was
deceived by its transaction partner (second-party observer) or the observation
is done by a third-party, i.e. an agent that is not involved in the transaction
but has spotted the non-compliance of one actor. These observers then call the
infrastructural entities for conducting the sanctioning in order to assure com-
pliance. Thus, in contrast to the institutionalization of other agents where the
infrastructural entities act on their own observations, in these two cases, an ad-
ditional communication effort must be made that bears two problems. First of
all the additional communication needed might result in a longer reaction time
and furthermore, the infrastructural entities need to verify the testimonies made
to them as the agents my lie on purpose in order to have rival agents sanctioned
(and thereby profit themselves).

One sample application of this taxonomy element (with second-party ob-
servers) was described by Balke and Eymann [2, 3] that seized an idea by Güth
and Ockenfels [22] and analyzed the effects of an arbitration board as infras-
tructural entity that can be called by any agent that has been deceived. Using
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an game-theoretic approach, in their paper they showed that with the help of
the arbitration board, it is possible to increase trust and reduce strategic uncer-
tainty in open environments such as UtiC markets where software agents trade
standardized resources on behalf of their human owners, even if the arbitration
board is not equipped with superior detection capabilities, but uses Bayesian
rules for assessing the trustworthiness of the agents.

3.4 Informal Control and Promisee-Enforced Rules

Two other concepts that can be thought of where second- or third party observer
information is being used are informal control and promisee-enforced rules. Al-
though looking different in figure 1 at the first glance (i.e. in promisee-enforced
rules concept it is the agent that has been promised something (i.e. he is a
promisee) but didn’t receive it as promised who observes and sanctions the non-
compliance, whereas in the informal control concept third-party agents observe
and sanction) the two concepts are closely interrelated and are therefore pre-
sented together in this section. This interrelation can be understood best when
thinking about examples for the two concepts. Thus promisee-enforced rules can
be found in image-based trust mechanisms, whereas informal control can be
found in reputation mechanisms.

Image is a global or averaged evaluation of a given target on the part of an
individual. It consists of a set of evaluative beliefs [27] about the characteristics
of a target. These evaluative beliefs concern the ability or possibility for the
target to fulfill one or more of the evaluator’s goals, e.g. to behave responsibly in
an economic transaction. An image, basically, tells whether the target is “good”
or “bad”, or “not so bad” etc. with respect to a norm, a standard, a skill etc.

In contrast reputation is the process and the effect of transmission of a target
image. The evaluation circulating as social reputation may concern a subset of
the target’s characteristics, e.g. its willingness to comply with socially accepted
norms and customs [11].

Putting it simple, an image is the picture an individual has gained about
someone else (the target) based on his own previous observations of that target.
If using reputation, the individual expands the information source about the
target beyond its own scope and includes the information of others about the
target as well [24].

Applying this to the taxonomy example the following picture can be drawn:
in the promisee-enforced rules concept, it is the promisee who acquires an image
of the agent it is interacting with. In case the other agent does not perform as
promised that promisee can sanction the non-compliance by for example not
interacting with the agent once more, etc. In contrast in case of informal con-
trol, third-party agents observe a transaction and form an own image about the
transaction participant. Then the individual images of agents are shared between
the agents and hence they are aggregated by the society (e.g. with the help of
gossip) and agents that did not comply with the institutional framework have to
fear that every agent that receives the information about their non-compliance
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will not act with them in the future, thus in this example the whole society
functions as enforcers.

3.5 Self-Control

The last part of the taxonomy that shall be discussed in this paper is self-control.
In contrast to all other compliance-ensuring mechanisms presented so far, it does
not included any additional party, but only the agent performing an action itself.
This agent is assumed to have an own normative value system that it was given
by its principal and constantly checks whether his actions are in accordance with
that own value system and the institutional framework of the UtiC environment
(i.e. the agent is its own observer). Thereby it has to be noted that the two
normative value systems (i.e. the private one of the agent and the UtiC one)
can contradict and needn’t necessarily be consistent with one another. Based
on the normative value system the agent can then decide to sanction itself. An
example of such a self-control scenario in UtiC could be that an vendor of UtiC
resources that didn’t deliver what he promised (e.g. he promised 1 Tera byte of
hard disk space available, but only could provide 0.99 Tera byte) is discontent
with his performance (although the buyer might not have complained) and as a
result offers his buyer a refund for the money paid.

4 Further Research

After presenting this short taxonomy for compliance-ensuring mechanisms in a
next step the highlighted enforcement mechanisms shall be evaluated one against
the other. Thus, the different enforcement mechanisms will be evaluated against
performance indicators derived from literature. These performance indicators
can be sen in figure 2.

With the help of the taxonomy developed that aims to prototypically repre-
sent existing enforcement mechanisms, an analysis of the technological restric-
tions of UtiC as well as economic theory, finally a sample UtiC market model
without and with the corresponding enforcement mechanisms will be deduced
as a next step. This market model will serve as the initial point for the later
simulations.

The simulation will be conducted in form of a MAS simulation because MAS
offer strong models for representing complex and dynamic environment such as
UtiC markets that cannot be analyzed mathematically any more, but need to be
simulated. For the simulation a social science simulation research process that
is based on works of Gilbert and Troitzsch [18] and Dooley [12] and can be seen
in figure 3 will be used.

Looking at the process, first of all an abstract model has to be conceptualized
and designed that represents the described UtiC market (with and without the
different enforcement mechanisms that are derived from the compliance-ensuring
taxonomy) adequately. This includes the consideration of the specification of
UtiC. For these UtiC specifications, specifications from existing computational
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Grid and systems such as the LHC Grid, TeraGrid and GEON-Grid or Grid5000
[35] will be used, as these are existing technical implementations of the economic
vision of UtiC.

Once the model has been designed, the building issue needs to be consid-
ered, i.e. the model just designed has to be implemented in a MAS simulation
environment. Therefore the SimIS simulation environment that is based on the
Repast Simphony Simulation Toolkit will be used as it allows to model computa-
tional Grid systems in form of “physical” nodes and edges between these nodes,
whereas each nodes hosts different agents, which fulfill a certain role each. After-
wards, the next step in the simulation research process is to check if the current
model is actually doing what it is expected to do. This process of checking is
called verification. In addition to this step the simulation has to be ensured to
reflect the behavior of the target, which is called validation. “Validity can be
ascertained by comparing the output of the simulation with data collected from
the target.” [18]

The idea of the simulation experiment is that in the initial form of the sim-
ulation, the market model will be implemented in the simulation environment
without an enforcement mechanism and will be calibrated in the course of the
simulations. Thus, throughout the simulation the UtiC market setting will be
altered in terms of the enforcement mechanism applied. In the analysis of the
simulation results afterwards, the initial form of the market as well as the market
outcome depending on the enforcement mechanism will serve as a reference for
the efficiency of different enforcement concepts with regard to the UtiC market
setting.
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After the test of the hypotheses and the corresponding calibration of the
simulation, the simulation results will be analyzed and evaluated in order to
arrive at set-up specific simulation results in a first step, as well as generalize-able
results for the UtiC domain in a second step. Resulting from these evaluations in
a last step a generalization is aimed at analyzing which enforcement mechanisms
works best for UtiC in which situation.

5 Conclusion

Using an UtiC example, in this paper a taxonomy for ensuring-compliance in
open distributed systems was presented. The taxonomy that was synthesized
based on considerations of the components and participants of compliance en-
suring mechanism in general (see section 3) consists of 8 idealized concepts that
were discussed with the help of examples in the further course of the paper. The
author views these concepts as a basis for not only analyzing different compli-
ance mechanisms, but also for comparing, combining and in general developing
corresponding strategies. Thus in the future work the author plan to simulate
prototypical implementations of the taxonomy elements (all based on the same
simulation setting) and analyze the performance with regard to compliance en-
suring and especially the corresponding cost-benefit ratio. Furthermore, a de-
tailed analysis of the interplay of the taxonomy elements will be made, as in
theory not only the individual taxonomy elements are realistic for compliance
ensuring strategies, but any combination of the elements is thinkable. However
in order to derive at this point, first of all the very high-level concepts presented
in this paper need to be made “processable”. That means that first off all, in
the next step the concepts will be analyzed with regard to their transferability
to a logical sound and operational Agent-Based Model. This model will then
be used as described in chapter 4. This means that an Agent-Based Model as
“processable” model of the economic theory will be developed that will that
serve as starting point for a MAS simulation. This simulation aims at evaluat-
ing the enforcement concepts that were presented in this paper with regard to
the performance indicators mentioned before. With the help of the results the
authors hope to be able to draw more general conclusions and arrive at propo-
sitions which enforcement concept seem appropriate if only certain performance
indicators need to be fulfilled.
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22. W. Güth and A. Ockenfels. The coevolution of morality and legal institutions – an
indirect evolutionary approach. Journal of Institutional Economics, 1(02):155–174,
December 2005.

23. A. J. I. Jones and M. Sergot. On the characterization of law and computer systems:
the normative systems perspective. In Deontic logic in computer science: normative
system specification, pages 275–307. John Wiley and Sons Ltd., Chichester, UK,
1993.

24. S. König, T. Balke, W. Quattrociocchi, M. Paolucci, and T. Eymann. On the effects
of reputation in the internet of services. In Proceedings of the 1st Int. Conference
on Reputation (ICORE 2009), 2009.

25. M. Luck, P. McBurney, O. Shehory, and S. Willmott. Agent Technology: Computing
as Interaction (A Roadmap for Agent Based Computing). AgentLink, 2005.

26. J. Martiensen. Institutionenökonomik. Verlag Vahlen, 2000.
27. M. Miceli and C. Castelfranchi. The role of evaluation in cognition and social in-

teraction. In K. Dautenhahn, editor, Human cognition and social agent technology.
Benjamins, Amsterdam, 2000.

28. D. C. North. Institutions, Institutional Change and Economic Performance (Polit-
ical Economy of Institutions and Decisions). Cambridge University Press, October
1990.

29. D. C. North. Institutions matter. Economics history working paper, 1994.
30. A. Perreau de Pinninck, C. Sierra, and M. Schorlemmer. Friends no more: norm

enforcement in multiagent systems. In E. H. Durfee and M. Yokoo, editors, AAMAS
’07: Proceedings of the 6th international joint conference on Autonomous agents
and multiagent systems, pages 640–642, New York, NY, USA, 2007. ACM.

31. L. Rasmusson and S. Janson. Agents, self-interest and electronic markets. The
Knowledge Engineering Review, 14(2):143–150, 1999.

32. J. Sabater. Trust and reputation for agent societies. PhD thesis, Institut
d’Investigació en Intelligència Artificial, Universitat Autonòma de Barcelona, 2003.
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Abstract. A theory of many-sorted implicative conceptual systems (ab-
breviated msic-systems) is outlined. Examples of msic-systems include
legal systems, normative systems, systems of rules and instructions, and
systems expressing policies and various kinds of scienti�c theories. In
computer science, msic-systems can be used in, for instance, legal in-
formation systems, decision support systems, and multi-agent systems.
In this essay, msic-systems are approached from a logical and algebraic
perspective aiming at clarifying their structure and developing e¤ective
methods for representing them. Of special interest are the most narrow
links or joinings between di¤erent strata in a system, that is between
subsystems of di¤erent sorts of concepts, and the intermediate concepts
intervening between such strata. Special emphasis is put on normative
systems, and the role that intermediate concepts play in such systems,
with an eye on knowledge representation issues. In this essay, norma-
tive concepts are constructed out of descriptive concepts using operators
based on the Kanger-Lindahl theory of normative positions. An abstract
architecture for a norm-regulated multi-agent system is suggested, con-
taining a scheme for how normative positions will restrict the set of
actions that the agents are permitted to choose from.
Key-words: Concept formation, Intermediary, Intermediate concept, Le-
gal concept, Normative system, Normative position, Norm-regulated sys-
tem, Agent architecture.

1 Introduction

1.1 Conceptual systems in computer- and systems sciences

In the famous Schilpp-volume where established scholars discuss Einstein�s work
in physics and philosophy, Einstein, in his reply to criticisms, states the following
about the relationship between epistemology and science:

The reciprocal relationship of epistemology and science is of notewor-
thy kind. They are dependent upon each other. Epistemology without
contact with science becomes an empty scheme. Science without episte-
mology is� insofar it is thinkable at all� primitive and muddled. How-
ever, no sooner has the epistemologist, who is seeking a clear system,
fought his way through to such a system, than he is inclined to interpret
the thought-content of science in the sense of his system and to reject
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whatever does not �t into his system. The scientist, however, cannot
a¤ord to carry his striving for epistemological systematic that far. He
accepts gratefully the epistemological conceptual analysis; but the ex-
ternal conditions, which are set for him by the facts of experience, do
not permit him to let himself be too much restricted in the construction
of his conceptual world by the adherence to an epistemological system.
He therefore must appear to the systematic epistemologist as a type of
unscrupulous opportunist ... (Einstein, 1949.)

The science Einstein has in mind is primarily physics, but even for sciences
that are rather unlike physics its reciprocal relationship to epistemology is of a
noteworthy kind. The external conditions that, according to Einstein, restrict
the adherence to an epistemological system is �the facts of experience�, with
what Einstein probably meant the results of observations and experiments. But
for the sciences that are rather unlike physics �the facts of experience� may
better be characterized in some other way. For computer- and systems sciences,
�the facts of experience�may perhaps be described as �useful applications�.
Every science ought to critically question its foundational assumptions. How

urgent the researchers in a �eld experience these foundational questions may
vary greatly from time to time. But probably all sciences go through stages when
the need for revisions and elaborations of the basic principles and fundamental
conceptions seem inevitable. In a young science, the foundational problems are
important and at the same time not seldom overlooked, since researchers working
in the �eld are so enthusiastic over the �ow of new results. In such situations,
philosophy (which includes epistemology as one of its sub-disciplines) may have
a role to play to make clear� and sometimes even to remedy� weak points in
the base of the new discipline. In this essay, some problems in the foundations
of computer- and systems sciences are addressed and theories and tools which
could be useful in the further development of some aspects of this discipline are
outlined.1

Concepts are a fundamental tool for all kinds of human communication and
concept formation is an important process in all branches of science. Information
science is of course not an exception. An information system is, when all technical
�embeddings� have been stripped o¤, a set of concepts and relations between
these concepts. The skeleton of an information system is a conceptual structure,
and this structure must have a solid formal representation, otherwise it cannot
function in a computer context.
The formal representations of conceptual systems has a long history in phi-

losophy and in several scienti�c disciplines. This essay is focused on the relation
between layers or strata of concepts of di¤erent sorts in a conceptual system and
on intermediate concepts that function as links between di¤erent strata. This
study is brought about using algebraic tools, which implies that the representa-
tion is algebraic in character. The result is a theory of many-sorted implicative
conceptual systems, msic-systems.

1 This essay is a revised version of Odelstad (2008b).
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I argue for an anti-nivelistic approach to theoretical systems, which implies
the recognition of the multitude of layers or strata that usually are parts of
such systems.2 As a consequence, I also argue for an anti-nivelistic approach to
knowledge representation. The following sketch is very vague and metaphorical,
however, my message is more adequately found in the formalism below. Suppose
that an msic-systemM represents knowledge or information of a domain D. The
implicative relation between concepts represents knowledge of some kind and the
kind of knowledge it represents may di¤er in di¤erent parts of the system. In
some parts of the system, it may represent conceptual knowledge, the knowledge
of de�nitions of concepts and the logical relations between concepts. In other
parts of the system, it may represent for example empirical knowledge about
some kind of phenomena and in yet another part of the system it may represent
empirical knowledge of another kind. Di¤erent strata of concepts of di¤erent
sorts may thus express knowledge of di¤erent kinds. The knowledge represented
by links between di¤erent strata often represent knowledge of a kind still di¤erent
from the knowledge represented by the strata, for example knowledge of rational
actions or appropriate rules. The revision of an msic-system can be done very
partially. In many cases, the necessary revision is e¤ected by the modi�cation of
the narrowest links between some strata of di¤erent kinds.
It is often argued that, for example, rule-based expert systems cannot be

modi�ed by the expert system itself. The following quotation from a text book
may illustrate this idea:

Knowledge in a rule-based expert system is represented by IF-THEN
production rules collected by observing or interviewing human experts.
This task, called knowledge acquisition, is di¢ cult and expensive. In
addition, once the rules are stored in the knowledge base, they cannot be
modi�ed by the expert system itself. Expert systems cannot learn from
experience or adapt to new environments. Only a human can manually
modify the knowledge base by adding, changing or deleting some rules.
(Negnevitsky, 2005, p. 261.)

One of the advantages with the anti-nivelistic approach to knowledge repre-
sentation expressed by msic-systems is, as I see it, that this may not be true.
This is discussed in connection with forest cleaning below.

1.2 Strati�cation of concepts in theoretical systems

In an article from 1936, Albert Einstein discusses, among other things, the strat-
i�cation of the scienti�c system. According to Einstein, there is a multitude of
di¤erent layers or strata of concepts in science, where higher layers are more ab-
stract than lower layers. As regards to the �nal aim of science, Einstein suggests,
intermediary layers are only of temporal nature and must eventually disappear

2 Nivelistic is constructed out of the French verb niveler, meaning �Mettre au même
niveau, rendre égal".
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as irrelevant. But in the science of today, these strata represent partial success,
though problematic. (See Einstein, 1973, p. 295.)
Many theoretical systems show the same kind of phenomena as theoretical

physics in the following respects: In the system there is a hierarchical ordering
of the concepts in di¤erent strata and the status of the concepts in intermediate
strata is not obvious. In theoretical physics, the ordering of the layers is based on
degrees of abstraction. In other contexts, the strati�cation of the system can be
grounded on quite di¤erent principles, for example: descriptive versus normative,
state versus action or physical versus mental. One of the main issues to be
examined in this essay is the strati�cation of concepts in theoretical systems,
especially the connections between di¤erent strata and the function and status
of intermediate layers.
The kind of theoretical systems that will come into focus in this study can,

in a fairly general way, be characterized as conceptual systems and two essential
characteristics of these systems are the following: They have an implicative form
and they are many-sorted, i.e. a system consists of di¤erent sorts of concepts
(at least two). They are thus many-sorted implicative conceptual systems, in
the sequel abbreviated msic-systems. Di¤erent kinds of systems belong to the
class under study, for example legal systems, normative systems, systems of
rules and instructions, systems expressing policies and some varieties of scienti�c
theories. Such systems have an important role to play in the discipline arti�cial
intelligence, which has as one of its aims to bring forth �smart� behaviour of
computers.
In the investigation reported here, msic-systems are studied from a logical

and algebraic perspective aiming at clarifying their structure and developing
e¤ective methods for representing them. Special emphasis is put on the most
�narrow� links between subsystems of di¤erent sorts in a system and interme-
diaries (intermediate concepts) mediating or intervening between subsystems of
di¤erent sorts. Such links and intermediaries are of great interest when there are
reasons for changing the system.
In computer science, msic-systems can be useful in many problem areas,

for example: legal information systems, computer security, knowledge represen-
tation, expert systems, architectures for multiagent-systems, decision-analytic
support systems and agent-based simulations. This study of msic-systems is
mainly a contribution to the tradition of constructing intelligible and explicit
models and representations in contrast to case-based, connectivist and emergent
approaches (cf. Luger, 2002, p. 228). But msic-systems also prepare the grounds
for the use of machine learning, where the links and intermediaries between
subsystems will play an important role.

1.3 The theory of msic-systems

When developing a theory of msic-systems, it is important to note that di¤erent
parts of the theory are situated on di¤erent levels of abstraction, and as a conse-
quence there are di¤erent levels of applications of the theory. The word �theory�
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has several meanings and in this context it is important to distinguish between
the following two meanings:

(1) Theory in the sense often used in logic; abstract theory, theory in contrast
to model (in the model-theoretic sense)

(2) Theory in contrast to practice and application.

Here a theory of msic-systems is put forward in both senses of �theory�. The the-
ory of msic-systems, where �theory�is taken in the second sense contains some
theories of msic-systems in the �rst sense, of formal theories. The formal theories
of msic-systems are characterized axiomatically as algebraic theories and among
the models of these abstract (formal) theories are speci�c msic-systems. The ab-
stract theories of msic-systems express the structure of such systems. The theory
of msic-systems, in the second sense, contains other theoretical perspectives than
the abstract, formal ones.
The theory of msic-systems will be abbreviated msic-theory, where �theory�

stands for sense (2). A formal, abstract theory of msic-systems where �theory�
is taken in sense (1) will be called a structural msic-theory, since such a theory
characterizes the structure of msic-systems. Such abstract theories will usually
be presented as axiomatized theories within set theory. The most abstract part
of the msic-theory will be framed as a number of set-theoretical predicates.

2 Normative systems

2.1 What is a norm?

The theory of msic-systems has many applications and there are many di¤er-
ent kinds of msic-systems. In this essay I will focus on the representations of
normative systems as msic-systems. I take a �rst step in the analysis of norms
in this section, and a great deal of simpli�cation is needed. Modi�cations and
elaborations of this oversimpli�ed picture will be developed step by step in later
sections.
Norms, normative sentences, are understood in contrast to descriptive sen-

tences. Sentences of the latter kind express matters of fact but are not used for
expressing evaluations or value judgments. A normative sentence, on the other
hand, does not state what is the case but what shall be the case or what may
be the case, or will have an evaluating function.
Let us preliminarily say that there are two kinds of normative sentences,

viz. categorically normative sentences and conditional normative sentences. A
categorically normative sentence consists of a descriptive sentence preceded by
a �norm creating operator�, for example �it shall be the case that�or �it may be
the case that�. If q is a descriptive sentence then �it shall be the case that q�,
which is abbreviated Shall(q) and �it may be the case that q�, abbreviated as
May(q), are examples of categorically normative sentences. A conditional norm
is an if-then sentence (an implication) where the antecedent is descriptive and
the consequent is purely normative. Hence, a conditional norm has the form
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p! B(q)

where p and q are descriptive sentences and B is a norm-creating operator,
for example Shall or May. As suggested above, it is possible to extend ordi-
nary propositional logic with propositional operators as Shall and May, etc. The
branch of logic derived in this way is called deontic logic. �Deontic�comes from
the Greek word �deont�, which means �that which is binding�. Expressed in a
very general way, deontic logic is the logical study of obligation and permission.
The modern study of this kind of logic is often said to have commenced with
the article �Deontic Logic�by the Finnish philosopher Georg Henrik von Wright
published in Mind in 1951.3 This theory was anticipated by Ernst Mally in the
1920s and, much earlier, by Gottfried Wilhelm Leibniz (1646-1716) and Jeremy
Bentham (1748-1832). The core of standard deontic logic is the formal study of
the deontic operators �it is permissible that� (May) and �it is obligatory that�
(Shall) and we can extend predicate logic as well as propositional logic with
these operators.

2.2 Norms in predicate logic and as ordered pairs

A conditional norm is (usually) expressed as a universal sentence. For example:

(n1) For any x; y and z : if x has promised to pay $y to z, then x has an
obligation to pay $y to z:

Within predicate logic, we can formalize (n1) as follows:

(n2) 8x; y; z : PromisedPay(x; y; z)! Obligation_to_Pay(x; y; z)

Thus, a typical conditional norm is a universal implication. Syntactically it con-
sists of three parts: the sequence of universal quanti�ers, the antecedent formula
and the consequent formula. Note that the norm (n2) correlates open sentences:
PromisedPay(x; y; z) is correlated to Obligation_to_Pay(x; y; z). A norm like
(n2) can therefore be represented as a relational statement correlating a ground,
PromisedPay, to a consequence, Obligation_to_Pay:

PromisedPay R Obligation_to_Pay.

Generally, pRq represents the norm

(n3) 8x1; :::; x� : p(x1; :::; x�)! q(x1; :::; x�)

given that p and q are �-ary predicates. It is important here that the free vari-
ables in p(x1; :::; x�) are the same and in the same order as the free variables in
q(x1; :::; x�): R is a binary relation, and pRq is a relational statement equivalent
to hp; qi 2 R. Thus, a norm can be represented as pRq or hp; qi 2 R. If, in the
3 The development of deontic logic is closely related to another, better known part of
logic, namely modal logic. The core of modal logic is the formal study of the operators
�it is possible that�and �it is necessary that�(the so-called alethic modalities) and
modal propositional logic is propositional logic extended with the possibility- and
necessity-operator.
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actual context, R can be tacitly understood and therefore omitted, it is only a
small step to the representation of (n3) as the ordered pair hp; qi.
Note that pRq as a representation of (n3) does not generally presuppose that

q is a normative (or deontic) predicate, so pRq can be used as a representation
of any sentence which has the same form as (n3). Therefore, in many contexts
of application the implicative relation R can be such that only some of the
sentences pRq are norms. For reasons that will be explained when the formal
framework is discussed, pRq will be abbreviated as the ordered pair hp; qi only
when p and q are conditions of di¤erent sorts.
In the above discussion of the representation of norms, p and q, as well

as PromisedPay and Obligation_to_Pay, appear as predicates. But the term
predicate is often used for syntactical entities, and, therefore, interpreting pRq;
p and q will here instead be conceived of as conditions. If p is a �-ary condition
and i1,...,i� are individuals, then p(i1; :::; i�) is a statement. Antecedents and
consequences of norms are represented as conditions and are called grounds and
consequences respectively. A norm is represented as a statement relating (or cor-
relating) a ground to a consequence, or represented as an ordered pair consisting
of a ground and a consequence. In the preliminary analysis put forward in this
section, grounds are descriptive and consequences are normative conditions.4

Note that Obligation_to_Pay is a normative condition but that the sentence
Obligation_to_Pay(x; y; z) can be analysed as
Obligatory Pay(x; y; z).

where Obligatory is a deontic operator resulting in a new predicate when it is
applied to a given predicate. Pay is a descriptive condition and by applying the
deontic operator Obligatory we can in a sense construct a normative condition
Obligatory Pay out of the descriptive condition Pay. It is presupposed here
that �Obligatory Pay�is equivalent to Obligation_to_Pay and I will return
to this way of constructing normative conditions out of descriptive conditions
using deontic operators.
Within the framework of the above preliminary analysis of norms, we can

view a normative system N as consisting of a system B1 of potential grounds
(descriptive conditions) and a system B2 of potential consequences (normative
conditions). The set of norms in N are the set J of links or joinings from
B1 to B2. The Figure 1.1 is an attempt to illustrate the situation, where a
norm is represented by an arrow from the system of grounds to the system of
consequences.
A norm in a normative system N , the norm here represented as an ordered

pair hp; qi, can be regarded as a mechanism of inference. We can distinguish two
cases. Suppose that p and s are descriptive conditions and q and t normative.
Then the following �derivation schemata�are valid given N .

1.
p(i1; :::; i�)

hp; qi

4 Cf. Odelstad & Lindahl (2002), pp. 32 ¤ and Lindahl & Odelstad (2004), section 3.2.
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Potential grounds, B1

Potential consequences, B2

Joinings, J

Fig. 1. A simple normative system.

� � � � �
q(i1; :::; i�)

2.
sRp
hp; qi
qRt
� � � � �
hs; ti5

In (1), hp; qi functions as a deductive mechanism correlating sentences by
means of instantiation, while in (2), hp; qi plays an important role in correlating
one condition, s, to another condition, t.6

A condition, as the term is used here, is very similar to a relation; in a sense
a condition is used for �expressing� a relation.7 Relations, and therefore also
conditions, are a speci�c kind of concepts. A normative system is thus a system
consisting of an implicative relation between concepts. Note that the kind of
normative systems we have encountered so far consists of two sorts of concepts,
descriptive and normative.

5 Note that sRp relates conditions of the same sort and the same holds for qRt; s
and p are descriptive but q and t are normative. A norm consists of conditions of
di¤erent sorts. As stated earlier, only implicative sentences that relate conditions of
di¤erent sorts will be represented as ordered pairs.

6 See Lindahl & Odelstad (2004) subsection 3.2 and Odelstad & Boman (2004) sub-
section 2.2. Cf. Alchourrón & Bulygin (1971) p. 28. Schema 1 corresponds to what
Alchourrón and Bulygin call the correlation of individual cases to individual solu-
tions, and schema 2 corresponds to what they call the correlation of generic cases to
generic solutions.

7 Properties are here regarded as unary relations and can be �expressed�by conditions.
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Easily observable, conjunctions, disjunctions and negations of conditions can
be formed by the operations ^;_;0 ; namely in the following way (where x1; :::; x�
are place-holders, not individual constants).

(p ^ q)(x1; :::; x�) if and only if p(x1; :::; x�) and q(x1; :::; x�).
(p _ q)(x1; :::; x�) if and only if p(x1; :::; x�) or q(x1; :::; x�).
(p0)(x1; :::; x�) if and only if not p(x1; :::; x�).

? (Falsum) is the empty condition, not ful�lled by any ��tuple, and > (Verum)
is the universal condition, ful�lled by all ��tuples.
As is well-known, the truth-functional connectives can be used as operations

in Boolean algebras. It is therefore possible to construct Boolean algebras of
conditions. The role of the set of norms is to join two Boolean algebras:

� a Boolean algebra of grounds,
� a Boolean algebra of consequences.

The norms are links or joinings between the algebra of grounds and the algebra
of consequences.
The outline of the algebraic approach to normative systems just presented is

substantially simpli�ed. The approach will be developed extensively below.

3 Conceptual systems

In the previous subsection, a simple normative system has been characterized
as a two-sorted implicative conceptual system, where the concepts are, from a
logical point of view, relations (expressed as conditions) and the two sorts of
concepts involved are descriptive and normative conditions. However, relations
(and therefore also conditions) are only one speci�c kind of concepts, where �kind�
is something else than �sort�. Other kinds of concepts are, inter alia, aspects
(in philosophy of science often called attributes) and measures (often termed
scales). Examples of aspects are length, weight, temperature, intelligence, utility
and probability. Examples of measures are meter, kilogram, degrees centigrade
and the probability measure. Di¤erent kinds of concepts have di¤erent logical
form (for example relations, structures and functions) while di¤erent sorts of
concepts di¤er in their cognitive status (for example descriptive and normative
respectively). From a logical point of view, aspects are structures and measures
are functions.
When studying implicative conceptual systems where the concepts are condi-

tions, the implicative relation is implication in a straightforward sense. However,
when the concepts are aspects or scales, we are dealing with implicative relations
that are implications only in a rather generalized sense. Implicative statements,
i.e. statements expressing that an implicative relation holds, can in such cases,
for example, be interpreted as determination or relevance. However, we will even
in the generalized contexts talk about the antecedent and consequent of an im-
plicative statement, and even of grounds and consequences.
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As pointed out above, for concepts which are conditions we can in an obvious
way de�ne the operations conjunction, disjunction and negation and thereby
arrive at a Boolean algebra. The situation is di¤erent for concepts that are
aspects, since taking the negation of an aspect is not certainly a meaningful
operation. However, aspects can form a lattice. We shall discuss this further
below.
�Concept�is a complicated notion and is of great importance in many areas.

It is tightly connected to the notion of �meaning�, and �the meaning of con-
cepts�is a philosophical mine�eld. But in this context, it is impossible to avoid
the term �concept�. The following short passage from the entry Concept in The
Encyclopedia of Philosophy describes its usefulness:

Concept is one of the oldest terms in the philosophical vocabulary, and
one of the most equivocal. Though a frequent source of confusion and
controversy, it remains useful, precisely because of its ambiguity, as a sort
of passkey through the labyrinths represented by the theory of meaning,
the theory of thinking, and the theory of being. (Heath, 1967.)

In the theory of msic-systems, the use of the notions �concept�and �meaning�is
instrumental, and these notions function as passkeys to the main objectives of
the work presented here. As the word �concept�is used, complex combinations
of concepts are still regarded as concepts. A concept can be de�ned in terms of
other concepts in a more or less complicated way.
A notion connected to �concept�that will play a role here is �cognitive status�.

The idea is that the di¤erent sorts of concepts constituting an msic-system are
often di¤erent with respect to their cognitive status. As a source of inspiration
for using the notion �cognitive status� in the theory of msic-systems one can
take Ernest Nagel�s discussion of the cognitive status of scienti�c theories in his
book The Structure of Science. But here the term �cognitive status�is applied to
concepts. Examples of di¤erent cognitive status include: logical, empirical, ob-
servational, operational, theoretical, physical, mental, descriptive, prescriptive,
normative, evaluative, and� as we will see below� intermediate. (Note that sev-
eral of the di¤erent sorts of cognitive status exempli�ed above can be applied to
the same concepts.)

4 Intermediate concepts� form and function

4.1 Intermediaries

In the simpli�ed presentation above, a normative system is represented as a two-
sorted implicative conceptual system, consisting of a set of descriptive grounds
and a set of normative consequences. However, many concepts for example in
law are neither purely descriptive nor purely normative. Like Janus, the Roman
god of beginnings and endings, they have two faces, one turned towards facts
and description, the other towards legal consequences. These concepts are said
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Intermediaries

Fig. 2. A normative system with intermediaries.

to be intermediate between facts and legal consequences and will often be called
intermediaries. Figure 1.2 will give a �rst illustration of this idea.
As an example, consider what it means to be a citizen according to the system

of the U.S. Constitution. Article XIV, section 1 reads as follows:

All persons born or naturalized in the United States, and subject to
the jurisdiction thereof, are citizens of the United States and of the State
wherein they reside. No State shall make or enforce any law which shall
abridge the privileges or immunities of citizens of the United States; nor
shall any State deprive any person of life, liberty, or property, without
the due process of law; nor deny to any person within its jurisdiction the
equal protection of the laws.

Two key concepts in the article are citizen and person. The article speci�es
the ground for the condition being a citizen in the United States:

persons born or naturalized in the United States, and subject to the jurisdic-
tion thereof

and speci�es a number of regal consequences of this condition expressed in terms
of �shall�:

no State shall make or enforce any law which shall abridge the privileges or
immunities of citizens of the United States.

The article does not state any ground for the condition to be a person but
speci�es a number of legal consequences connected to this condition:

nor shall any State deprive any person of life, liberty, or property, without due
process of law; nor deny to any person within its jurisdiction the equal protection
of the laws.
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Within the constitutional system of United States, this article is supple-
mented with rules laid down by the Constitution and through court decisions.
These rules determine together, by specifying grounds and consequences, the
role the concept �citizen�and �person�have within the legal system.
Let us construct a simpli�ed �condition-implicative� representation of the

legal rules described above.8 According to the rules, the disjunction of the two
conditions

b: to be a person born in the U.S.
n: to be a person naturalized in the U.S.

in conjunction with the condition
s: to be a person subject to the jurisdiction of the U.S.

implies the condition
c: to be a citizen of the U.S.

That this implicative relationship holds according to the system is repre-
sented in the form ((b_ n)^ s)Rc. Since it is a settled matter that citizens who
are minors do not have the right to vote in general elections, c does not imply
the condition

e: to be entitled to vote in general elections.
Therefore: not [cRe], and hence not [((b _ n) ^ s)Re].
Let

a: to be adult.
Simplifying matters, suppose that,

(1) (c ^ a)Re:
It is easy to see that this is equivalent to

(2) cR(a0 _ e):
Going from (1) to (2) can be called exportation, and going from (2) to (1)

importation.
We thus have within the system the following rules: ((b _ n) ^ s)Rc and

cR(a0_e), stating that the condition ((b_n)^s) is a ground for c and (a0_e) is
a consequence of c. These two rules determine partly the role of c (citizenship)
in the constitutional system under study. But there can also be other grounds
g1; g2; ::: for c and consequences h1; h2; ::: of c within the constitutional system.
Suppose that g1; g2; ::: are the grounds of c and h1; h2; ::: the consequences of c.
Hence, the role of c in the system is characterized by

g1Rc; g2Rc; :::; cRh1; cRh2; :::

The concept c thus couples a set of legal consequences to a set of legal grounds
and c is situated �intermediate�between the set of grounds and the set of conse-
quences. Concepts of this kind are called intermediate concepts or intermediaries.
Over the past sixty years, there has been an on-going discussion in Scandinavia
as regards the idea of intermediate concepts in the law. The debate was started

8 The concept citizen regarded as an intermediary is discussed in Odelstad & Lindahl
(1998), Odelstad & Lindahl (2000) and Lindahl & Odelstad (2000). In Lindahl &
Odelstad (2003), citizenship is treated from the point of view of organic wholes.
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in 1944-1945 by Anders Wedberg and Per-Olof Ekelöf, and in 1951 Alf Ross pub-
lished his well-known essay on �Tû-Tû�.9 In this debate, an often used example
is the concept of ownership. Ross represents a set of legal rules concerning own-
ership (denoted O) in essentially the following way, where Fi expresses a possible
legal ground and Cj a legal consequence of O.

F1 →

F2 →

F3 →

M
Fp →

C1

C2

C3

M
C n

O →

Ross himself comments on this scheme in the following way:

�O�(ownership) merely stands for the systematic connection that F1
as well as F2, F3,...,Fp entail the totality of legal consequences C1, C2,
C3,..,Cn. As a technique of presentation this is expressed then by stating
in one series of rules the facts that �create ownership� and in another
series the legal consequences that �ownership�entails. (Ross 1956-57, p.
820.)

Note that the rules that �create ownership� can be expressed by one rule:
F1_:::_Fp �! O.10 And the rules describing what �ownership�entail can also be
condensed to one rule: O �! C1 ^ :::^Cn. So an equivalent way of representing
the legal rules concerning ownership according to Ross is the following scheme:

F1 _ ::: _ Fp �! O �! C1 ^ ::: ^ Cn
Whereas F1; :::; Fp can be called grounds and C1; :::; Cn consequences of O,

F1 _ ::: _ Fp is the ground of O and C1 ^ ::: ^ Cn the consequence of O.
Note that the rule Fi ! O is a way of introducing O into the discourse,

and appropriately we can call such a rule an introduction rule of O. In harmony
with this, the rule O �! Cj can be called an elimination rule of O, since in a
sense such a rule can eliminate O from the discourse. Analogous to the use of
the phrases �the ground�and �the consequence�we can say that

F1 _ ::: _ Fp �! O

is the introduction rule of O and

O �! C1 ^ ::: ^ Cn
9 For a more detailed analysis of the early Scandinavian debate see Lindahl & Odelstad
(1999a) section 1.2.

10 �! is a consequence relation.
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is the elimination rule of O.11

In Wedberg (1951), three di¤erent methods for treating the concept of �own-
ership�are discussed. The �rst and second of these methods aim at a de�nition
of ownership in terms of grounds and consequences respectively. Wedberg�s third
method treats ownership as a �vehicle of inference�. According to Wedberg this
means that ownership is a tool for inferring statements of legal consequences
from statements of legal facts, and, therefore, ownership is unde�ned. Obviously,
Wedberg�s third method for treating ownership is close to Ross�s view.
We will return to the question of de�ning intermediate concepts in relation

to regarding them as vehicles of inferences. As a point of departure for further
discussions and re�nements, we regard intermediate concepts as characterized by
their grounds and consequences. The characterization of the concept citizenship,
c; thus has the following form:

g1Rc; g2Rc; :::; cRh1; cRh2; :::

For the view of intermediate concepts adopted in this essay, the discussion
in legal philosophy has been an important source of inspiration. But there are
of course also other theories that have in�uenced this research. The following
quotation from Lindahl & Odelstad (1999a) emphasizes this, where �the ideas
mentioned above�are the ideas of Wedberg and Ross.

In the theory of language of Michael Dummett, there are features with
some resemblance to the ideas mentioned above. According to Dummett,
the meaning of an expression is determined, on one hand by the condition
for correctly uttering it, and on the other hand by what the uttering
of the expression commits the speaker to. Therefore, the meaning of a
statement is identi�ed in part by the conditions from which it can be
inferred and in part by what can be inferred from the statement. In the
case of utterances of sentences composed by the connectives �and�, �or�
etc., this is given by what are called introduction and elimination rules
in Gentzen�s system of natural deduction. (Lindahl & Odelstad, 1999a,
p. 165.)

Introduction and elimination rules are discussed further in Lindahl & Odelstad
(2008a).
The analysis of the concept of �intermediary�involves complicated questions

of meaning and is therefore a philosophically loaded topic. The formal theory of
intervenients which is presented in Lindahl & Odelstad (2008a) and (2008b) is
intended as a means for a thorough analysis of the concept of an intermediary.
An interesting issue in the discussion of intermediaries is the negation of

an intermediate concept. Suppose that a1 is the ground of the intermediary m
and that a2 is the consequence of m. Let m0 be the negation of m, i.e. not-m.
Is m0 an intermediate concept? If the answer is yes, what can be said about

11 Introduction and elimination rules are discussed in Lindahl & Odelstad (2008a) with
reference to Gentzen.
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its grounds and consequences? This question, which is discussed in Lindahl &
Odelstad (2008a), is complicated, especially if we turn to open intermediaries.

4.2 Open intermediaries

The concept �work of equal value�is an essential concept in the Swedish Equal
Opportunities Act. The following quotation demonstrates this (emphasis added
here):

Employers and employees shall cooperate in pursuing active e¤orts to
promote equality in working life. They shall strive in particular to prevent
and eliminate di¤erences in pay and in other conditions of employment
between women and men performing work that may be considered equal
or of equal value. They shall also promote equal opportunities for wage
growth for women and men.
Work is to be considered equal in value to other work if, based on

an overall assessment of the nature of the work and the requirements
imposed on the worker, it may be deemed to be of similar value. As-
sessments of work requirements shall take into account criteria such as
knowledge and skills, responsibility and e¤ort. When the nature of the
work is assessed, particular regard shall be taken of the working condi-
tions.

The concept �work of equal value�is an intermediary with� using the Janus-
metaphor� one face looking at the nature of and requirements for the work and
the other face looking at e¤orts to promote equality in working life, especially
equal pay for equal work. The law does not supply us with a complete set of
introduction rules for the concept. Instead it mentions some criteria that equality
of value depends on, viz. knowledge and skills, responsibility and e¤ort. However,
one can extract the following uncontroversial introduction rule: if x and y are
work that requires the same degree of knowledge, skills, responsibility and e¤ort,
then x and y are work of equal value. We can express this in a formalised style
as follows:

x �1 y & x �2 y & x �3 y & x �4 y & x �5 y �! x �� y

where
�1 is the relation �equal knowledge�
�2 is the relation �equal skills�
�3 is the relation �equal responsibility�
�4 is the relation �equal e¤ort�
�5 is the relation �equal working conditions�
�v is the relation �equal value�

Note that the equality relations �1,�2,�3,�4 and �5 are here regarded as con-
ditions and we can therefore apply Boolean operations on the equality relations,
for example construct conjunctions of them. One of the grounds of �v is thus
the condition
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�1 ^ �2 ^ �3 ^ �4 ^ �5 :

But it is also possible that work x and y are of equal value even if they
are not equal with respect to the requirements knowledge, skills, responsibility,
e¤ort and working condition. We can imagine a situation such that x requires
more knowledge than y, and y more responsibility than x but that these two
di¤erences balance out. But to turn this observation into an introduction rule
is often not possible. The applicability of the concept work of equal value in a
certain case must therefore be based on judgments of what holds in the actual
case. And even if the law does not state detailed rules for these judgments it gives
guidelines, for example in terms of what are possible inputs in such judgments
or what factors or circumstances must be taken into account.
The grounds of the concept �work of equal value�is thus only partially de-

termined by the law in the form of introduction rules. The application of the
concept in special cases deserves interpretative decisions based on the role and
function of the concept in the law. We call such intermediaries ground-open. Con-
cepts such that the consequences are only partially determined by elimination
rules are called consequence-open.
Open intermediaries are further discussed in Lindahl & Odelstad (2008a). For

a detailed discussion of the concept work of equal value, see Odelstad (2008a).

4.3 Intermediaries in normative systems

A normative system is only in rather special cases a two-sorted implicative con-
ceptual system, i.e. a system of grounds and a system of consequences. Instead,
normative systems often contain also many intermediate concepts. In more com-
plex normative systems, for example legal systems, there are usually more than
one system of intermediaries, and these systems often form a kind of network,
where between intermediaries of two di¤erent sorts there are intermediaries of a
third sort.12 Note that a rule can simultaneously be an introduction rule for one
concept and an elimination rule for another.
Intermediaries do not only exist in normative systems but in many other

msic-systems. This is discussed in Lindahl & Odelstad (1999a) p. 178.

4.4 A remark on related work

The Scandinavian discussion of intermediate concepts has had a crucial in�uence
on the theory of msic-systems put forth in this essay. The following works have
been of special signi�cance: Wedberg (1951), Ross (1951), Halldén (1978) and
Lindahl (1985). Hedenius (1941) does not consider intermediate concepts but
Hedenius�discussion about spurious and genuine norms is of great interest in this
context. The works on introduction and elimination rules in logic and philosophy

12 In Lindahl & Odelstad (2008b), this is illustrated as Figure 1. There the lines between
di¤erent nodes represent sets of introduction or elimination rules.
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b2

b1

B2
Consequences
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Grounds

Link 2 〈 b1,b2〉 Link 1 〈 a1,a2〉

Fig. 3. Norm ha1;a2i is narrower than norm hb1;b2i.

of mathematics by Gentzen, Dummett and Prawitz have, as emphasized above,
also in�uenced this work. (See Gentzen 1934, Dummett 1973 and Prawitz 1977).
There are similarities between Richard Hare�s prescriptivism and the view

of intermediaries developed in the work that Lindahl and I have conducted. In
Lindahl & Odelstad (1999a), there is a reference to Hare (1989), but the relation
between open intermediate concepts and prescriptivism ought to be investigated
in more detail.
I have been in�uenced by P.W. Bridgman�s operationalistic approach to con-

cept formation and it seems to me that operationalism and the ideas about
intermediate concepts �t well together in roughly the following manner: If a
predicative concept is neither purely normative nor operationally de�nable, con-
sider if it is an intermediate concept. To develop this dictum in detail is not,
however, within the scope of the present essay.

5 Implicative closeness between strata

One important problem area in the study of msic-systems is the �closeness�
between di¤erent strata. Some of the ideas regarding this topic will be informally
described in this section.
Consider the norms (links) from the system B1 of grounds to the system B2

of consequences. One norm can be �narrower�than another, which is illustrated
in Figure 3.13 Suppose that ha1; a2i and hb1; b2i are norms from the system of
grounds B1 to the system of consequences B2.
Figure 3 illustrates that ha1; a2i is narrower than hb1; b2i. We can say alter-

natively that ha1; a2i �lies between� b1 and b2: We de�ne the relation �at least
as narrow as�, expressed by E; in the following way:

ha1; a2i E hb1; b2i if and only if b1Ra1 and a2Rb2.
13 See Lindahl & Odelstad (2003) p. 84.
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It is easy to see that if R is a quasi-ordering, i.e. transitive and re�exive, then
E is also a quasi-ordering.
A norm that is maximally narrow is minimal with respect to the relation

�at least as narrow as�. Hence, a norm ha1; a2i is maximally narrow if there
is no norm in the system that is strictly narrower than ha1; a2i, i.e. if ha1; a2i
is a minimal element with respect to �at least as narrow as�. In a normative
system, the set of norms that are maximally narrow play a crucial role. Given
certain requirements of a well-formed normative system, all the other norms of
the system are determined by its maximally narrow norms and, therefore, any
change of such a system implies a change of at least one maximally narrow norm.
This is discussed in Odelstad & Lindahl (2002), Lindahl & Odelstad (2003) and
(2008a).
The idea behind intermediaries is that they are intermediate between di¤er-

ent strata of concepts and o¤er narrow links between the strata. It is important
to notice that the intermediaries between two strata constitute a stratum itself.
The introduction rules of the intermediaries are links from the �bottom stratum�
to the �intermediate stratum�and the elimination rules of the intermediaries are
links from the �intermediate stratum�to the �top stratum�. The introduction
rule and the elimination rule of an intermediary constitute narrow links, since
the introduction rule determines the weakest ground of the intermediary and the
elimination rule the strongest consequence. Intermediate concepts are thus stud-
ied in terms of how narrow they are the structure of grounds and the structure of
consequences. Generally, the �implicative closeness�between strata is analysed
using concepts as minimal joining, weakest ground and strongest consequence.
Figure 4 illustrates the two last mentioned notions: a1 is a weakest ground of m
if b1Rm implies a1Rb1. And a2 is a strongest consequence of m if mRb2 implies
a2Rb2. As a preliminary approximation we can say that the introduction rule
of an intermediary states its weakest ground and the elimination rule states its
strongest consequence. In Lindahl & Odelstad (2008b), this is discussed in more
detail and a rudimentary typology of intermediate concepts is established.

6 Deontic consequences

Let us for a moment return to the simple picture of a normative system consisting
of a system of grounds and a system of consequences. The consequences are
normative conditions. So far, what we have said about normative conditions is
just that they can be constructed by applying a deontic operation to descriptive
conditions. There is an extensive literature on deontic operations and it is not
intended to enter this discussion here. In this essay, the combination of deontic
and action logic developed by Stig Kanger will be used, especially the theory of
normative positions created by Kanger and Lindahl.

6.1 Deontic logic with the action operator Do

Kanger exploited the possibilities of combining the deontic operator Shall with
the binary action operator Do. The operation Do means that one sees to it
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Fig. 4. m is an intermediate concept between B1 and B2 with weakest ground a1 and
strongest consequence a2.

that something is the case (see Kanger, 1957). To be more exact, Shall Do(x; q)
means that it shall be that x sees to it that q, while for example :Shall Do(y;:q)
means that it is not the case that it shall be that y sees to it that not q. The
combination of the deontic operator Shall with the action operator Do and the
negation operation : gives us a powerful language for expressing purely nor-
mative sentences. Kanger emphasized the possibilities of external and internal
negation of sentences where these operators are combined. Using combinations
of deontic and action operators, we can formulate norms in a more e¤ective way.
A conditional norm may for example have the following form: �If p then it shall
be the case that x sees to it that q�, which thus can be written as

p! Shall Do(x; q).

In such norms, p is often a state of a¤airs which is about x and y, while q is a
state of a¤air which deals with y, i.e. p can be seen as predicate with x and y as
variables while q is a predicate with y as the only variable. Hence, a conditional
norm can have the following form:

p(x; y)! Shall Do(x;:q(y)).
A concrete example of a norm which has this form is as follows. Suppose that

p(x; y) means that x owns y and y is a dog while q(y) means that y fouls public
places. The norm above then says that the owner of a dog shall see to it that
the dog does not foul in public places.
Note that the sentence May Do(x; q) can be de�ned in terms of the operators

Shall and Do in the following way:

May Do(x; q) if and only if :Shall :Do(x; q).
It is worth noting that conditional norms have some similarities with pro-

duction rules. According to Luger (2002) p. 171, a production rule is
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a condition-action pair and de�nes a single chunk of problem-solving
knowledge. The condition part of the rule is a pattern that determines
when that rule may be applied to a problem instance. The action part
de�nes the associated problem-solving step.

The antecedent (or ground) in a norm corresponds to the condition part in a
production rule, and the consequent (or consequence) in a norm corresponds to
the action part. A production rule thus has the logical form
p! Do q

or perhaps better
p! Shall Do q.

6.2 Normative positions

In 1913, the American jurist Wesley Newcomb Hohfeld published a work in phi-
losophy of law which has been very in�uential. It carries the title Fundamental
Legal Conceptions as Applied in Judicial Reasoning and contains a character-
ization of eight fundamental legal notions, which were meant to serve as fun-
damental elements in the analysis of more complex legal relations. Inspired by
Hohfeld�s work, Kanger developed a theory of normative positions using the
deontic-action-language. Kanger�s theory of normative positions was originally
expressed as a theory of types of rights. He emphasized that the term �right�has
various meanings. For example, if Mrs. x has lent 100 dollars to Mr. y, then x
has a right of the simple type Claim against y that she gets back the money she
has lent to y. Let

q1(x; y) : x gets back the money x has lent to y:

The type of right Claim with regard to q1(x; y) is de�ned in the following
way:

Claim(x; y; q1(x; y)) if and only if Shall Do(y; q1(x; y)).

This means that y shall see to it that x gets back the money she lent y. Further,
Mrs. x has probably a right of type Immunity to walk outside Mr. y�s shop. Let

q2(x; y) : x walks outside y�s shop

Immunity with regard to q2 is de�ned as follows:

Immunity(x; y; q2(x; y)) if and only if Shall :Do(y;:q2(x; y)).
Hence, it shall be the case that y does not see to it that x does not walk outside
y�s shop. (These examples are taken from Lindahl, 1994, p. 891-892.)
Kanger�s work was considerably improved and extended into a formal theory

of normative positions in Lindahl (1977). Lindahl developed three systems of
types of normative positions. The simplest one is the system of one-agent types
of normative position, and only this system is used in this essay. The one-agent
types are constructed in the following way. Let �� stand for either of � or :�:
Starting from the scheme �May�Do(x;�q); where � stands for the two alter-
natives of a¢ rmation or negation, a list is made of all maximal and consistent
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conjunctions, �maxiconjunctions�, such that each conjunct satis�es the scheme.14

Maximality means that if we add any further conjunct, satisfying the scheme,
then this new conjunct either is inconsistent with the original conjunction or
redundant. Note that the expression :Do(x;q)& :Do(x;:q) expresses x�s pas-
sivity with regard to q. Here this expression is abbreviated as Pass(x; q). By this
procedure, the following list of seven maxiconjunctions is obtained, which are
denoted T1(x; q),. . . ,T7(x; q), see Lindahl (1977), p. 92.

T1(x; q) : MayDo(x; q) & MayPass(x; q) & MayDo(x;:q):
T2(x; q) : MayDo(x; q) & MayPass(x; q) & :MayDo(x;:q):
T3(x; q) : MayDo(x; q) & :MayPass(x; q) & MayDo(x;:q):
T4(x; q) : :MayDo(x; q) & MayPass(x; q) & MayDo(x;:q):
T5(x; q) : MayDo(x; q) & :MayPass(x; q) & :MayDo(x;:q):
T6(x; q) : :MayDo(x; q) & MayPass(x; q) & :MayDo(x;:q):
T7(x; q) : :MayDo(x; q) & :MayPass(x; q) & MayDo(x;:q):

T1,. . . ,T7 are called the types of one-agent positions.15 Given the under-
lying logic, the one-agent types are mutually disjoint and their union is ex-
haustive. i.e. constitute a partition. Note that :MayDo (x; q) & : MayPass
(x; q) & :MayDo(x;:q) is logically false, according to the logic of Shall and
May.
It is easy to see that the last three types can more concisely be described as

follows:

T5(x; q) : Shall Do(x; q):
T6(x; q) : Shall Pass(x; q):
T7(x; q) : Shall Do(x;:q):
Note that the following �symmetry principles�hold (Lindahl, 1977, p. 92):
T1(x; q) if and only if T1(x;:q)
T2(x; q) if and only if T4(x;:q)
T3(x; q) if and only if T3(x;:q)
T5(x; q) if and only if T7(x;:q)
T6(x; q) if and only if T6(x;:q)

In Lindahl & Odelstad (2004) and Odelstad & Boman (2004) the one-agent-
types in the Kanger-Lindahl theory of normative positions are used as operators
on descriptive conditions to get deontic conditions. As a simple example, suppose
that r is a unary condition. Then Tir (with 1 � i � 7) is the binary condition
such that

Tir(y; x) i¤ Ti(x; r(y));

where Ti(x; r(y)) is the ith formula of one-agent normative positions. Note that
for example T3(x; r(y)) means

14 The notion of �maxiconjunction�was introduced in Makinson (1986), p. 405f.
15 Formally, a �type�Ti (1�i�7) of one-agent positions refers to the set of all ordered
pairs hx; qi such that Ti(x; q).
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MayDo(x; r(y)) & :MayPass(x; r(y)) & MayDo(x;:r(y)):

Ti is called a one-agent position-operator. If hp; Tiri is a norm, then from
p(x1; x2) we can, by using the norm, infer Tir(x1; x2) and thus also Ti(x2; r(x1)),
which means that, with regard to the state of a¤airs r(x1), x2 has a normative
position of type Ti:
The theory of normative positions was developed during the 60s and 70s,

primarily as an analytical tool to be used in jurisprudence and political science.
The Kanger-Lindahl theory of normative positions was applied to problems in
computer science in the 90s, see Jones & Sergot (1993) and (1996), Sergot (1999)
and (2001), Krogh (1995) and Krogh & Herrestad (1999).

6.3 Normative systems as msic-systems

Conceiving of normative systems as msic-systems is a kind of representation of
normative systems. What characterizes the subclass of normative systems among
msic-systems in general are their cognitive features. A normative system con-
sists of one stratum of descriptive grounds and another stratum of normative
consequences and eventually one or more strata of intermediaries. Furthermore,
a normative system contains links or joinings between the strata. Note that the
�nal consequences are expressed in terms of normative conditions, for example
constructed by applying deontic operations to descriptive conditions. Thus, rep-
resenting normative systems in this way puts the emphasis on concepts and not
on propositions.

7 The algebraic approach to msic-systems

The study of the structure of msic-systems, especially the implicative closeness
between di¤erent strata, is one of the main goals of a series of papers co-authored
together with Lars Lindahl (see References for details).16 As tools for this en-
deavour, algebraic concepts and theories are used. In this section, two of the
structures that play a crucial role as such tools will be described brie�y. But
�rst a preliminary remark.

7.1 Set-theoretical predicates

A common way of characterizing formal theories in mathematics is described by
Suppes as follows:
16 See especially Lindahl & Odelstad (2003), (2004), (2008a) and (2008b). Technical
results in our papers include a characterization of an msic-system in terms of the
most narrow joinings between di¤erent strata, characterization of the structure of
the most narrow joinings between two strata, conditions for the extendability of
intermediate concepts, and �nally, a speci�cation of the conditions such that the
Boolean operations on intermediate concepts will result in intermediate concepts and
characterization of most narrow joinings in terms of weakest grounds and strongest
consequences.
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The kernel of the procedure for axiomatizing theories within set theory
may be described very brie�y: to axiomatize a theory is to de�ne a
predicate in terms of notions of set theory. A predicate so de�ned is
called a set-theoretical predicate. (Suppes, 1957, p. 249.)

A simple example of a set-theoretical predicate is �to be a quasi-ordering�:

De�nition 1. Let A be a set and R a binary relation on A. The relational
structure hA;Ri is a quasi-ordering if for all a; b; c in A, the following axioms
are satis�ed:
(1) aRa (re�exivity)
(2) If aRb and bRc, then aRc (transitivity).

�To be a quasi-ordering� is a predicate, which is true or false of relational
structures. This set-theoretical predicate characterizes an axiomatized theory,
the theory of quasi-orderings, and a model of that theory is a structure satisfying
the predicate �to be a quasi-ordering�.
Two set-theoretical predicates which play a crucial role in the msic-theory

will now be presented.

7.2 Boolean quasi-orderings and joining systems

De�nition 2. The relational structure hB;^;0 ; Ri is a Boolean quasi-ordering
(Bqo) if hB;^;0 i is a Boolean algebra, R is a quasi-ordering, ? is the zero
element, > is the unit element and R satis�es the additional requirements:
(1) aRb and aRc implies aR(b ^ c);
(2) aRb implies b0Ra0,
(3) (a ^ b)Ra,
(4) not >R?:

Boolean algebras are well-known structures with many applications. A Boolean
quasi-ordering is a quasi-ordering de�ned on a Boolean algebra in such a way
that it determines a new Boolean algebra related to the �rst one in a special way.
This is explained in more detail in Lindahl & Odelstad (2004). The de�nition of
a Boolean joining system, which follows below, presupposes the de�nition of a
Boolean quasi-ordering. Many normative systems can be represented as Boolean
joining systems or combinations of two or more such systems. First a reminder
of a notion discussed earlier:

De�nition 3. The narrowness-relation determined by the quasi-orderings hB1; R1i
and hB2; R2i is the binary relation E on B1 �B2 such that ha1; a2i E hb1; b2i if
and only if b1R1a1 and a2R2b2:

Note that E is a quasi-ordering on B1 �B2.

De�nition 4. A Boolean joining system (Bjs) is an ordered triple hB1;B2; Ji
such that B1 = hB1;^;0 ; R1i and B2 = hB2;^;0 ; R2i are Bqo�s and J � B1�B2,
and the following requirements are satis�ed:
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(1) for all b1; c1 2 B1 and b2; c2 2 B2; hb1; b2i 2 J and hb1; b2i E hc1; c2i implies
hc1; c2i 2 J;
(2) for any C1 � B1 and b2 2 B2; if hc1; b2i 2 J for all c1 2 C1; then ha1; b2i 2 J
for all a1 2 lubR1C1;
(3) for any C2 � B2 and b1 2 B1; if hb1; c2i 2 J for all c2 2 C2; then hb1; a2i 2 J
for all a2 2 glbR2

C2:

A norm can, as has been pointed out above, in many contexts be regarded
as consisting of two objects, a ground condition and a consequence condition
standing in an implicative relation to each other. The ground belongs to one
Boolean quasi-ordering and the consequence to another. Therefore, we can view
a normative system as a set of joinings of a Boolean quasi-ordering of grounds to
a Boolean quasi-ordering of consequences, where ^ and 0 are Boolean operations
on the conditions. A normative system N can therefore be represented as a
Boolean joining system hB1;B2; Ji where B1 = hB1;^;0 ; R1i is a Boolean quasi-
ordering of ground-conditions, B2 = hB2;^;0 ; R2i a Boolean quasi-ordering of
consequence-conditions and the set J; where J � B1 � B2, is the set of norms.
Note that the implicative relation in the system N is represented in the di¤erent
parts of the system by the relations R1, R2 and J respectively.
It is worth noting that there is a di¤erence in notational conventions between

the de�nition of a Bqo and the de�nition of a Bjs. In a Bqo, if the relation R
holds between a and b this is written aRb. If in a Bjs J holds between a1 and a2
this is written ha1; a2i 2 J . The reason is that in the intended models of Bjs�s,
the elements in J are treated as objects in a way that does not hold for the
elements in R. In a representation of a Bjs as a normative system, ha1; a2i 2 J
means that the norm ha1; a2i holds in the system, and the elements in J are
subject to comparison with respect to, for example, narrowness.
Given the narrowness relation E one can determine the set of minimal ele-

ments of J , min J , with respect to E. Under fairly general conditions, the set
min J characterizes J in the following way:

ha1; a2i 2 J i¤ 9 hb1; b2i 2 min J : hb1; b2i E ha1; a2i .

Given certain general presuppositions, one can choose a subset C of min J from
which min J can be inferred and which therefore also determines J . We call such
a set C a base of minimal elements of J . In many contexts, the elements in C can
be represented by intermediate concepts. An intermediary is determined by the
condition that constitute its maximally narrow ground and the condition that
constitutes its maximally narrow consequence. See Lindahl & Odelstad (2008a)
and (2008b) for further details.

7.3 Models and variations of the algebraic theories

As has been emphasized in earlier sections with normative systems as a key
example, one approach to the representation of msic-systems is by regarding
concepts as conditions subject to Boolean operations and with an implicative
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relation de�ned on these conditions. A Bqo or a Bjs with domains of conditions
is called a condition implication structure, abbreviated cis. A special kind of cis-
representation of a normative system is the npcis-representation of normative
conditions. In an npcis, a normative condition is constructed by applying the
one-agent position-operators to descriptive conditions (see Lindahl & Odelstad,
2004).
There are some limitations of the cis-representation of msic. One problem is

the formation of conjunctions and disjunctions of conditions of di¤erent arity.
How this can be handled is discussed in Lindahl & Odelstad (2004) section 3.
Another weakness of the cis-representation is that new conditions can only be
constructed out of given conditions by Boolean operations. As a consequence,
it is, for example, not possible to de�ne within a cis the condition �to be the
grandfather of� in terms of the conditions �to be the father of�and �to be the
mother of�. Note that if we want �grandfather�to be a condition in our cis we
can of course include it as a primitive condition.
With reference to the limitations mentioned above, it might be held that the

cis-representation is too simple to be suitable for an overall representation of an
actual legal system or a complex msic-systems of some other kind. Nevertheless,
the cis-representation is su¢ ciently rich to permit a detailed study of a number
of issues pertaining especially to intermediate concepts in a legal system.17 The
cis-representation can in a sense be viewed as an �idealized model�for studying
di¤erent phenomena in msic-systems. When judging the usefulness of the cis-
representation it is worth noting the following: Even if there are a number of
di¢ culties when it comes to a detailed representation of norms as joinings in a
Boolean joining system, it may be the case that these di¢ culties do not appear
when the objective in view is rather to construct an arti�cial normative system
regulating an arti�cial multiagent-system.
Condition implication structures are not the only kind of models of Boolean

joining systems that are interesting as representations of msic-systems. It is easy
to see that we can construct a Bqo out of a �rst order theory �. Consider the
structure hB;^;0 ; Ri where hB;^;0 i is the Lindenbaum algebra of the predi-
cate calculus. Let R be the quasi-ordering on B determined by the Lindenbaum
algebra of �: Then hB;^;0 ; Ri is a Boolean quasi-ordering.
Boolean joining systems are obviously based on the notion of a Boolean

algebra. However, it is possible to de�ne an analogous kind of systems based
on lattices. Such a system hL1;L2; Ji consists of the latticed quasi-orderings
L1 = hL1;^;_; R1i and L2 = hL2;^;_; R2i and the set J of joinings between
them and can be called a latticed joining system, abbreviated Ljs. A large fraction
of the formal result proved for Bjs�s will hold also for Ljs�s, roughly because the
complement operation in the Boolean algebras does not play a role in the proofs.
There are models of the theory of Ljs that can be interesting representations of
msic-systems. This holds, for example, when the concepts in the msic-systems

17 Cf. Lindahl & Odelstad (2006b), where it is suggested that a representation based
on cylindric algebras would be more appropriate than a representation based on
Boolean algebras.
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are not conditions but instead for instance aspects or equality relations for as-
pects.

7.4 The formal representation of msic-systems

The formal theory of msic-systems is to a large extent a question of represen-
tation. The algebraic framework for the representation of msic-systems in the
work that Lindahl and I have conducted has gone through di¤erent �stages�and
I will outline and discuss these stages here.

Stage 1: Lattice-representation In Lindahl & Odelstad (1996) and (1999a),
an msic-system is represented as a lattice hL;�i of conditions extended with a
quasi-ordering �. The lattice operations represent conjunction and disjunction
respectively. Negation is not included for purely pragmatic reasons; in the �rst
version of the theory we preferred to simplify the matter but still be able to
express our main ideas about intermediaries. The partial ordering � in the lattice
represents �logical implication�and the quasi-ordering � represent implications
in a more general sense. The relation between the partial ordering � and the
quasi-ordering � is such that the partial ordering �� generated from � by the
formation of equivalence classes is a lattice and � is a subset of ��. hL�;��i
is the quotient algebra of hL�;��i with the respect to the indi¤erence part of
�. A two-sorted conceptual system is represented as a system of two sublattices
hL1;�1i and hL2;�2i of hL;�i and the set fhx1; x2i 2 L1 � L2 j x1 �� x2g of
joinings between the sublattices.

Stage 2: Bqo-representation In Odelstad & Lindahl (1998), the formal
framework for representing msic-systems is modi�ed in some respects:
(1) We incorporate the operation of negation and suppose that the conditions
constitute a Boolean algebra hB;^;0 i.
(2) We do not make a transition to the quotient algebra of hB;^;0 i with respect
to the indi¤erence part of �. Instead we construct the Boolean quasi-ordering
hB;^;0 ; �i. The reason is that we want to distinguish between two conditions
even if they are indi¤erent with respect to �. See Lindahl & Odelstad (2004)
section 2.1.
(3) We make a clearer separation between the algebraic theories and the models
used for the representation of msic-systems. In stage 1, we regarded the lattice
operations ^ and _ as representing conjunction and disjunction of conditions,
since we only had one intended model in view. A Bqo of conditions is one kind
of Bqo-model which can be used for representing msic-systems and we do not
exclude the possibility that there can be other kinds of models.
Note that an msic-system is represented as a system of substructures of

hB;^;0 ; �i, called fragments, and the set of joinings between them. The for-
mal tools for the representation of msic-systems based on the Bqo-theory is
further developed in Odelstad & Lindahl (2000), Lindahl and Odelstad (2000)
and (2004). This Bqo-representation is used in Odelstad & Boman (2004) and
Lindahl & Odelstad (2003).
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Stage 3: Bjs-representation In the Bqo-representation ofmsic-systems, strata
of concepts of di¤erent sorts are represented as fragments of the basic Bqo
hB;^;0 ; �i. Hence, B contains conditions of di¤erent sorts. But B contains also
Boolean combinations of concepts of di¤erent sorts, i.e. compound concepts of a
�mixed sort�. In many contexts, however, concepts of such mixed sorts are not
of any interest and make the situation unnecessarily complicated. To avoid this
complication, a Bjs can be a useful tool for representations. A two-sorted con-
ceptual system is then represented as a Bjs hB1;B2; Ji consisting of two Bqo�s
B1 and B2 together with the set of joinings J between them. The Bqo�s B1 and
B2 are not necessarily fragments of one Bqo. The axioms of a Bjs are such that
two fragments of a Bqo and the joinings between them constitute a Bjs.
However, if one wants to study msic-systems containing conditions of several

di¤erent sorts, this would involve a number of Bjs�s related to each other in
a complicated way. It may then be useful to have as a background a Boolean
algebra hB;^;0 i representing the �language� of the msic-system and a binary
relation � representing the non-logical (for example normative) content of the
system. The sets of joinings between di¤erent strata of concepts will then be
contained in �. A msic-system may therefore appropriately be represented as
a supplemented Boolean algebra, abbreviated sBa, hB;^;0 ; �i with Bjs�s lying
within it. This is the approach in Lindahl & Odelstad (2008a) and (2008b).

7.5 Non-Boolean joining systems

In this section, two examples of joining systems consisting of concepts but not
constituting Bjs will be outlined brie�y.

Joining systems of equality-relations In this essay I have focused on msic-
systems where the concepts are conditions subject to the Boolean operations.
But there are kinds of conditions that do not constitute Boolean algebras. One
example is equality-relations. The term �equality-relation�here refer to a relation
of equality with respect to some aspect �, and it is presupposed in this context
that an equality-relation is always an equivalence-relation, i.e. a re�exive, tran-
sitive and symmetric relation. Let A be a non-empty set and let E (A) be the
set of equivalence relations on A. De�ne the binary relation � on E (A) in the
following way: For all "1; "2 2 E (A)

"1 � "2 i¤ x"1y implies x"2y: (1)

The reader should be reminded of the following well-known fact. E (A) =
hE (A) ;�i is a complete lattice. Note that the negation "0 of an equivalence
relation " 2 E (A) is not an equivalence relation, i.e. "0 =2 E (A). Let E1 =
hE1;�1i and E2 = hE2;�2i be disjoint complete sublattices of E (A) and con-
sider hE1; E2; Ji where J =� = (E1 (A)� E2 (A)). Given some general conditions
hE1; E2; Ji is a joining system. We have here an example of a joining system
which consists of conditions but they do not constitute a Boolean algebra.
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A Boolean quasi-ordering is a Boolean algebra extended with a quasi-ordering
satisfying certain conditions. We can de�ne an analogous structure based on
a lattice instead of a Boolean algebra. Let E (A) and � be as above and let
hE (A) ;^;_i be the lattice hE (A) ;�i expressed in terms of operations instead
of a partial ordering, i.e. "1^"2 = inf f"1; "2g and "1_"2 = sup f"1; "2g. Suppose
that R is a quasi-ordering on E (A) such that
(1) aRb and aRc implies aR(b ^ c).
(2) aRc and bRc implies (a _ b)Rc.
(3) (a ^ b)Ra.
(4) aR(a _ b):

Then hE (A) ;^;_; Ri is called a latticed quasi-ordering. The transition to the
quotient algebra of hE (A) ;^;_i with respect to the indi¤erence part of R will re-
sult in a lattice. (Cf. Lindahl & Odelstad, 1999a, p. 171.) The msic-systems con-
sisting of equality-relations can often be represented as latticed quasi-orderings,
and this also holds for msic-systems consisting of aspects.

Joining systems of aspects As pointed out above, this essay has focused
on msic-systems where the concepts are conditions. But there are other kinds
of concepts, for example aspects, in many disciplines called attributes. As ex-
amples of aspects let me mention a few: area, temperature, age, loudness and
archeological value. It is a common view of aspects that they can, in some way
or another, be represented as relational structures. In Odelstad (1992), a theory
of aspects, where aspects are represented by systems of relationals, is set out. A
relational is a function with sets as arguments and structures as values. On sets
of systems of relationals, several quasi-orderings can be de�ned but here only
one example will be given.
Let RelsD denote the set of systems of relationals whose range of de�nition is

the family D of sets. This means that for all <2RelsD it holds that < = h�iii2I
for some set I and for all A 2 D, �i (A) � A�i where �i is the arity of the
relational �i. Hence, < (A)=hA; �iii2I . Let = (< (A) ;< (B)) denote the set of
isomorphisms from < (A) to < (B). We can de�ne a relation sub on RelsD in
the following way: If <1;<22RelsD then

<2 sub <1 i¤ for all A;B 2 D : = (<2 (A) ;<2 (B)) � = (<1 (A) ;<1 (B)) : (2)

It is obvious that sub is a quasi-ordering on RelsD. It follows from Odelstad
(1992) that hRelsD; subi is a complete quasi-lattice and it is therefore possi-
ble that there are joining systems lying within hRelsD; subi.18 The relational
18 If hA;Ri is a quasi-ordering such that lubR fa; bg 6= ? and glbR fa; bg 6= ? for all
a; b 2 A, then hA;Ri will be called a quasi-lattice. If lubRX 6= ? and glbRX 6= ?
for all X � A, then a quasi-ordering hA;Ri is a complete quasi-lattice.
Suppose that hA;Ri is a quasi-lattice, Q the equality-part of R and AQ is the set

of Q-equivalence classes generated by elements of A. Then hAQ; �i, where [a]Q � [b]Q
i¤ aRb, is a lattice. If hA;Ri is a complete quasi-lattice then hAQ; �i is a complete
lattice.
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systems in hRelsD; subi can be of di¤erent sorts and it is a meaningful ques-
tion if they form joining systems or even latticed joining systems. Note that in
hRelsD; subi the implicative relation sub is not implication in the usual sense
but expresses a kind of dependence relation.

7.6 A remark on input-output logic

In a series of papers, Makinson and van der Torre have developed a highly
interesting theory called input-output logic, see for example Makinson and van
der Torre (2000) and (2003). One striking similarity between input-output logic
and the theory of msic-systems is that norms are represented as ordered pairs.
This observation raises the question if there are some deep similarities between
input-output logic and msic-theory. However, let me �rst state some obvious
di¤erences between the two theories. While msic-systems are by de�nition at
least two-sorted, this does not holds for input-output logic. A common feature
of the study of msic-systems reported here is the implicative closeness between
strata of di¤erent sorts in an msic-system. An analogous study does not seem
to have been carried out for input-output logic. The strata of an msic-system of
conditions are Boolean structures (Bqo�s to be more precise), but the strata of
msic-systems of other kinds need not be Boolean structures; instead, they can
for example be lattice-like structures. In input-output logic, the set of inputs
constitute a Boolean algebra and the same holds for the set of outputs.
The following remark sheds some light on the relation between input-output

logic and the theory of msic-systems. (Knowledge of input-output logic is pre-
supposed.) Suppose that hB1;B2; Ji is a Bjs where B1 = hB1;^;0 ; R1i and
B2 = hB2;^;0 ; R2i. Makinson and van der Torre state a number of rules for
the output operators they de�ne. Translated to a Bjs these rules are as follows:

Strengthening Input: From ha1; a2i 2 J to hb1; a2i 2 J whenever b1R1a2.
Follows from condition (1) of a Bjs.

Conjoining Input: From ha1; a2i 2 J and ha1; b2i 2 J to ha1; a2 ^ b2i 2 J .
Follows from condition (3) of a Bjs.

Weakening Output: From ha1; a2i 2 J to ha1; b2i 2 J whenever a2R2b2.
Follows from condition (1) of a Bjs.

Disjoining Input: From ha1; a2i 2 J and hb1; a2i 2 J to ha1 _ b1; a2i 2 J .
Follows from condition (2) of a Bjs.

There are three conditions on a joining space in a Boolean joining system.
The comparison with input-output logic above shows that it could be of interest
to de�ne weaker kinds of systems characterized by, for example, condition (1)
and (3).
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8 Applications of msic-systems in agent theory

8.1 Introduction

The applications of the theory of msic-systems in computer science can follow
di¤erent paths. One path goes through the representation of normative systems
as msic-systems and the applications of normative systems in computer science.
Along a related path, the focus is on intermediate concepts, which are important
in normative systems but also in other kinds of systems, for example in knowledge
representation systems. A third path is the use of conceptual structures in �elds
like the Semantic Web and information extraction. Here a few comments on the
use of msic-systems in the theory of arti�cial agents will be made, where the
msic-systems will mainly represent normative systems.

8.2 Agent oeconomicus norma

Within economic theory the consumer�s behaviour has traditionally been de-
scribed as determined by a utility function. During the last three decades there
has been a growing interest among researchers in how norms (for example rules
of law) pose restrictions on the behaviour induced by the utility function. The
behaviour of the consumers or other economic agents, according to this model,
is the result of the interplay between optimization of the utility function and
restrictions due to norms. We may perhaps speak of norm-regulated Homo oe-
conomicus. It has also been suggested that a model of this kind could be used
for regulating the behaviour of arti�cial agents. We can perhaps call this model
Agent oeconomicus norma. The role that norms will have in regulating the be-
havior of agents is, according to this model, to delimit the autonomy of the
agents. Metaphorically one can say that the norms de�ne the scope (Spielraum)
for an agent. The agent chooses the act it likes best within the scope determined
by the norms.
Norm-regulation of agents presupposes a precise and signi�cant representa-

tion of norms and normative systems. As was explained in previous sections, a
norm is here represented as an implicative sentence where the antecedent is a
descriptive condition stating the circumstances of an agent, and the consequent
is a condition expressing the normative or deontic position that the agent has
with respect to a state of a¤airs. Hence, from the norms of the system will follow
a deontic structure over possible state of a¤airs implying that some states may
be permissible while the rest are non-permissible. The �wish�or �desire�of an
agent is represented as a preference structure over possible states or situations.
The agent chooses an act which leads to one of the permissible states that it
prefers the most.
In Odelstad & Boman (2004), the ideas outlined above were developed using

the typology of normative (deontic) positions developed by Kanger and Lindahl
and the algebraic representation of normative systems that Lindahl and I have
developed. The aim of Odelstad & Boman (2004) was to present a model of
how norms can be used to regulate the behaviour of multiagent-systems on the
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assumption that the role of norms is to de�ne the Spielraum for an agent.19 An
abstract architecture was de�ned in terms of a set-theoretical predicates and a
Mas (a multiagent-system) having this architecture is called a norm-regulated
Dalmas.20 One of the results in Odelstad & Boman (2004) was a scheme for how
normative positions will restrict the set of actions that the agents are permitted
to choose from.

8.3 Normative positions regulating actions

A Dalmas is an ordered 7-tuple h
;S;A;A;�;�; � i containing

� an agent set 
 (!;{; !1; ::: elements in 
),
� a state or phase space S (r; s; s1; ::: elements in S),
� an action set A such that for all a 2 A, a : 
 � S ! S such that a(!; r) = s
means that if the agent ! performs the act a in state r, then the result will
be state s (a; b; a1; ::: elements in A),

� a function A : 
 � S ! }(A) where }(A) is the power set of A; A(!; s) is
the set of acts accessible (feasible) for agent ! in state s,

� a deontic structure-operator � : 
 � S ! D where D is a set of deontic
structures of the same type with subsets of A as domains and �(!; s) is !�s
deontic structure on A(!; s) in state s,

� a preference structure-operator � : 
�S ! P where P is a set of preference
structures of the same type with subsets of A as domains and �(!; s) is !�s
preference structure on A(!; s) in state s,

� a choice-set function � : 
 � S ! }(A) where � (!; s) is the set of actions
for ! to choose from in state s.

Note that in the de�nition the Cartesian product 
�S motivates the intro-
duction of a name for the elements in 
 � S: Let D be a Dalmas. A situation
for the system D is determined by the agent to move ! and the state s. A situ-
ation is represented by an ordered pair h!; si. The set of situations for D is thus

 � S:
The idea behind a norm-regulated Dalmas is roughly the following: What is

permissible for an agent to do in a situation h!; si is determined by a normative
system N . This idea can be explicated in the following way. Let

Tid(!1; :::; !� ; !;!; s) (3)

mean that in the situation where it is the agent !�s turn to draw and the state
of the system is s, ! has the normative position of type Ti with regard to the
state of a¤airs d(!1; :::; !�).
Prohibited!;s(a) means that in the situation where it is !�s turn to draw and

the state of the system is s, ! is prohibited to execute the act a.
19 For the use of the term �Spielraum�in this context, see Lindahl (1977) and Lindahl
(2005).

20 The term Dalmas is chosen since the architecture is constructed for the application
of deontic-action logic.
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The following seven principles establish connections between the condition
Tid and the predicate Prohibited (see Odelstad & Boman, 2004, p. 160f.):

1. From T1d(!1; :::; !� ; !;!; s) follows no restriction on the acts.
2. From T2d(!1; :::; !� ; !;!; s) follows that
if d(!1; :::; !� ; s) and :d(!1; :::; !� ; a(!; s)) then Prohibited!;s(a):

3. From T3d(!1; :::; !�!;!; s) follows that
if [d(!1; :::; !� ; s) i¤ d(!1; :::; !� ; a(!; s))] then Prohibited!;s(a):

4. From T4d(!1; :::; !� ; !;!; s) follows that
if :d(!1; :::; !� ; s) and d(!1; :::; !� ; a(!; s)) then Prohibited!;s(a):

5. From T5d(!1; :::; !� ; !;!; s) follows that
if :d(!1; :::; !� ; a(!; s)) then Prohibited!;s(a):

6. From T6d(!1; :::; !� ; !;!; s) follows that
if not [d(!1; :::; !� ; s) i¤ d(!1; :::; !� ; a(!; s)] then Prohibited!;s(a):

7. From T7d(!1; :::; !� ; !;!; s) follows that
if d(!1; :::; !� ; a(!; s)) then Prohibited!;s(a):

These principles can be used to de�ne a deontic structure-operator � such
that to each agent ! in a state s is assigned the set of feasible acts a that are
not eliminated as Prohibited!;s(a) according to the rules (1)-(7) above. Since

Prohibited!;s(a) is equivalent to :Permissible!;s(a).

it follows that

�(!; s) = fPermissible!;s(a) : a 2 Ag:

Note that at the outset, all feasible acts are permissible. The basic idea is
that we eliminate elements from the set of permissible acts for ! in s using
the norms and sentences expressing what holds for the agents with respect to
grounds in the norms.
The method used for representing norms in an architecture for norm-regulated

Mas can be of importance for the e¤ectiveness of the architecture. Here a few ex-
amples of what can be regarded as desiderata for a norm-representation method
are mentioned.

1. The system of norms is depicted in a lucid, concise and e¤ective way.
2. Changes and extensions of the normative system are easily described.
3. The normative system can be divided in di¤erent parts which can be changed
independently.

4. The multi-agent system can by itself change the normative system wholly or
partially.

The last item in the list may deserve a comment. It is often di¢ cult to predict
the e¤ect of a normative system for a Mas or the e¤ect of a change of norms.
It is therefore desirable that the Mas can by itself evaluate the e¤ect of the
normative system and compare the result with other normative systems that it
changes to. The result can be a kind of evolution of normative systems obtained
by machine learning.
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In Odelstad & Boman (2004), the npcis-model was used for representing
normative systems, which resulted in an opportunity to test some aspects of this
kind of representation in the area of multiagent-systems.

8.4 Prolog implementation of norm-regulated DALMAS

In Hjelmblom (2008), an implementation in Prolog of the theory of a norm-
regulatedDalmas is presented. The algebraic theory is instrumentalized through
an executable logic program. Important issues in the transition from a set-
theoretical description to a Prolog implementation are discussed. Results include
a general-level Prolog implementation, which may be freely used to implement
speci�c systems.
The Prolog implementation gives a procedural semantics to the algebraic

theory, see Lloyd (1987). Running the Prolog program has not only pedagog-
ical value, but can aid understanding of the implications of changing parts of
the underlying theory. The fact that the Prolog program runs without notably
long response time also testi�es, albeit informally, to the acceptable compu-
tational complexity of the canonical model. Any domain-speci�c model created
with Hjelmblom�s Prolog implementation can have its computational complexity
analysed more formally through algorithmic analysis if necessary (see Purdom
Jr. & Brown, 1985).

8.5 Norms and forest cleaning

Forest management treatments presuppose, in a state of incomplete information,
principles for choosing those trees that ought to be taken away and those that
shall be left standing. In this section, which is a report on a work in progress
carried out in cooperation with Ulla Ahonen-Jonnarth, the question is raised
whether those principles can be structured as a combination of a normative
system and a utility function. Of special interest is the possibility to evaluate
the e¢ ciency of the normative system and the utility function and, furthermore,
suggest improvements of them.21

In the forest industry there is an increasing interest in the automation of
forest management treatments, perhaps with the ultimate goal that autonomous
robots will be able to do a substantial part of such work. But before robots of this
kind can be constructed many di¢ cult problems must be solved, for example how
the robots will perceive the environment and how they will transport themselves.
But there are also decision-making problems involved. Three important kinds of
forest management treatments are cleaning, thinning and harvesting, and they
all require methods or principles for making decisions about which trees shall
be removed and which will be left standing. Such �remove-decisions�must be
made on-line with information based only on the robot�s nearest vicinity and
about that part of the stand already cleared. The treatment cannot be evaluated

21 This section is based on Ahonen-Jonnarth & Odelstad (2005), Ahonen-Jonnarth &
Odelstad (2006) and Odelstad (2007).
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until the actual stand is completely cleared. Testing and evaluating principles
for remove-decisions by �eld experiments is expensive and time-consuming. It is
therefore an interesting question wether evaluating experiments could be made
in silico, i.e. through simulation.
In Ahonen-Jonnarth & Odelstad (2005), a platform for simulation of young

forest stands is presented. Given �eld data of a special type of young forest, for
example a 10-year-old, somewhat damp, spruce forest at 200 meters above sea
level in the middle of Sweden, it is possible to simulate di¤erent stands of this
type of forest. Field data of a few di¤erent types of young forests has so far been
used for simulation. As a base for the simulation of di¤erent stands of the same
forest type, it is of course also possible to use man-made, arti�cial data, or to
assign values to the parameters that govern the simulation.
One of the goals of our present work on automation of forest cleaning is to

formulate di¤erent principles for making the remove-decisions, test the principles
in simulated forests of di¤erent types and evaluate and compare the results. We
are especially interested in the possibility that, given a method for evaluating
the result of cleaning, the system can improve the decision-making principles
and even suggest new ones on the basis of machine learning. How the principles
for the remove-decisions ought to be formally represented seems to be a compli-
cated question. One possibility we want to investigate is to use norm-regulated
Dalmas as the architecture for a cleaning agent. At this preliminary stage, a
cleaning agent is regarded as �a solitary being�and, hence, a cleaning Dalmas
is a one-agent-system (thus more correctly a Daloas), but we will here regard
a one-agent-system as a degenerated MAS. But at a later stage, more then one
agent may be involved, for example can �nature�be regarded as an agent or can
individual trees be regarded as agents. The last mentioned alternative is espe-
cially interesting if the growth of a forest stand is incorporated in the simulation.
A Dalmas can achieve the cleaning-decisions for a stand p in the following

way. The stand is divided into n di¤erent areas. A state for the system is the
stand with i areas cleaned, where 1 � i � n, and a speci�cation of what area to
clean next. The initial state is the stand with 0 areas cleaned and the �nal state
is the state with n areas cleaned. Let each area be denoted by a unique number
between 1 and n, and let Si be the ith state. Ci denotes the set of cleaned areas
and Ui the set of uncleaned areas in Si. Thus, Ci[Ui = f1; 2; : : : ; ng and Ci\Ui =
;. Ci contains i numbers and Ui contains n�i numbers. Si = hCi; Ui; ji where j is
the area which will be cleaned next, i.e. j 2 Ui and Si+1 = hCi [ fjg; Uinfjg; ki
for some k 2 Uinfjg.
A few examples of possible norms regulating a cleaning Dalmas are given

below:

(a) If there is only one undamaged tree in the area to be cleaned with a diameter
within the desirable range, then this tree shall be saved.

(b) If there is at least one undamaged tree in the area to be cleaned with a
diameter within the desirable range, then a damaged tree with a diameter
below the desirable range may be taken away.
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(c) If, in the area to be cleaned, a tree t is damaged and is closer than 0.5m
to an undamaged tree with a diameter within the desirable range and with
distances to other undamaged trees larger than 0.5m, then t may not be
saved.

In many situations, the norms of a Dalmas do not determine the action
to be taken in each state, but utility considerations are also necessary. Given a
utility function we can search for the optimal way of cleaning the actual area,
on the assumption that the cleaning satis�es the given norms.
For the possibility of using norms in the automation of forest cleaning in

the way outlined above, it may be an important issue whether the cleaning sys-
tem can optimize the system of norms regulating its remove-decisions. This is
a special case of a more general problem: Suppose that D is a Dalmas, where
the agents cooperate to solve a problem. Which normative system will lead to
the most e¤ective behavior of the system? It is desirable that D itself could
determine the optimal normative system for the task in question. Given a set of
grounds and a set of consequences, which together constitute the vocabulary of
the system, D can test all possible sets of minimal norms (in many cases satisfy-
ing certain constraints, for example represented by intermediaries). If there is a
function for evaluating the result of a run of D, then di¤erent normative systems
can be compared and the best system can be chosen. A change of vocabulary
corresponds to a �mutation�among normative systems and can lead to dramatic
changes in the e¤ectiveness. Note that, in principle, the evaluation function can
be very complicated, for example it can be multi-dimensional.
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Argumentation based Resolution of Conflicts Between
Desires and Normative Goals

Sanjay Modgil and Michael Luck

Department of Computer Science, Kings College London

Abstract. Norms represent what ought to be done, and their fulfillment can be
seen as benefiting the overall system, society or organisation. However, individ-
ual agent goals (desire) may conflict with system norms. If a decision to com-
ply with a norm is determined exclusively by an agent or, conversely, if norms
are rigidly enforced, then system performance may be degraded, and individual
agent goals may be inappropriately obstructed. To prevent such deleterious effects
we propose a general framework for argumentation-based resolution of conflicts
amongst desires and norms. In this framework, arguments for and against com-
pliance are arguments justifying rewards, respectively punishments, exacted by
‘enforcing’ agents. The arguments are evaluated in a recent extension to Dung’s
abstract argumentation framework, in order that the agents can engage in met-
alevel argumentation as to whether the rewards and punishments have the re-
quired motivational force. We provide an example instantiation of the framework
based on a logic programming formalism.

1 Introduction

Requirements for conflict resolution arise in open multi-agent systems in which goals
of individual agents conflict with norms imposed by the system to regulate individual
agent behaviour. If the decision to comply with a norm is determined exclusively by
an individual, then system performance may be degraded. Hence, institutional or social
pressure to comply may be brought about by system agents exacting punishments and
grants rewards [17, 11]. This may be appropriate for closed static systems, but compro-
mises the flexibility of dynamic open systems in which rigid enforcement of norms may
lead to both unwarranted obstruction of agent goals and degraded system performance.
For example, an agent’s goal may be obstructed by enforcing compliance with a norm
that is justified by system-held beliefs about the context. However, these beliefs may be
erroneous. In addition, it may not always be able to anticipate at design time, contexts
in which compliance with norms does or does not coincide with the best interests of
the system, and when enforcement mechanisms have insufficient motivational force. In
such cases, an agent might appeal to higher level motivations [9], arguing that in pur-
suing its own goal it is indeed acting in the interests of the system as a whole, or that
exacted punishments (or rewards) for non-compliance (or compliance) are outweighed
by the benefits of pursing its own goal.

In this paper we propose a general argumentation-based framework that evaluates
arguments for and against compliance with norms, in order to prevent unwarranted
obstruction of individual goals and degraded system performance. As in [11, 6], norms
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are interpreted as system goals that individual agents are required to realise, and that
may conflict with the individual goals or desires of an agent. Punishments and rewards
are the individual goals of system agents responsible for enforcement. In general, an
argument for a goal justifies realisation of that goal based on beliefs that are themselves
the outcome of argumentation based reasoning about what is the case. An argument for
a system goal may then mutually attack an argument for a conflicting individual goal,
and arguments for punishment and reward goals attack the argument for an individual
goal. It is the success of these attacks that determines which of the arguments prevail
and thus whether or not there is a reasoned case for compliance1. In general, an attack
succeeds as a defeat if the attacked argument is not stronger than or preferred to its
attacker [1]. As in [4], preferences may be derived from a relative ordering on the values
that the arguments promote. In this paper, preferences among arguments for goals are
similarly evaluated. For example, a ‘reward argument’ will successfully attack (defeat)
an argument for an individual goal if an agent is persuaded that the reward is of greater
utility to it than the individual goal it is required to abandon in favour of compliance
with the system goal. The proposed framework will thus need to account for:

1. Social mechanisms for enforcing compliance: An agent Ag’s argument for an
individual goal g may be attacked by arguments for the (punishment and reward)
goals g′, . . . of other agents, where the attacks are not based on direct conflicts
between g and g′, . . .. For example, a reward (punishment) may facilitate (hinder)
some other goal that Ag is already committed to realising.

2. Motivational argumentation: Flexible and adaptive agents need to engage in mo-
tivational argumentation over the respective merits of goals. Hence, argumentation
frameworks in which preferences [1] and value orderings [4] on arguments are
‘given’, and not themselves subject to reasoning, do not suffice. Rather, there is a
requirement for argumentation based reasoning over the preferences themselves.

Existing work addresses argumentation-based resolution of conflicts among goals
([2], [10], [16]), and [16] explicitly considers conflicts between individual goals and
norms. However, no existing work accounts for social mechanisms, whereby an agent’s
decision as to which goals to pursue is influenced by other agents’ goals. Only [10]
accounts for argumentation over preferences, but does so in the object level logic pro-
gramming language, whereby rules express priorities over other rules. In this paper, we
aim at an abstract framework in which preferences are not restricted to rule priorities,
but can account for any criteria for valuating argument strength, including those that
relate to the argument as a whole (e.g., as in [4]). We therefore make use of a recent ex-
tension to Dung’s seminal abstract argumentation semantics [8]. In a Dung framework,
arguments are related by a binary conflict-based relation, and the winning (justified) ar-
guments under different extensional semantics are evaluated. The underlying logic, and
definition of the logic’s constructed arguments and conflict relation, is left unspecified,
enabling instantiation by various logical formalisms. Dung’s semantics thus serves as
a general framework capturing various species of non-monotonic reasoning [5], and,
more generally for conflict resolution. Hence, approaches to argumentation based agent

1 In philosophical parlance we are adopting an externalist rather than internalist view, where the
latter consider norms to be intrinsically motivating.
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reasoning often conform to these semantics, whereby an agent’s inferences (e.g. denot-
ing beliefs or goals) can be defined in terms of the claims of the justified arguments
constructed from the underlying theory (an argument essentially being a proof of a can-
didate inference — the argument’s claim — in the underlying logic). In [12, 13], Dung’s
semantics have been extended to accommodate arguments that express preferences be-
tween other arguments, where no assumption is made as to how these preferences are
defined in the instantiating formalism.

In Section 2 we review the extended semantics described in [12, 13]. The main
contributions of this paper are then described in Sections 3, 4 and 5. In Section 3 we
describe a general framework for argumentation based resolution of conflicts between
system norms and agent goals. Specifically, we combine the extended argumentation
semantics with the normative model of [11] in which compliance with norms is en-
forced through punishments and rewards modelled as the goals of enforcement agents.
The framework thus provides for social mechanisms for enforcing compliance, and mo-
tivational argumentation. Section 4 then describes a logic programming instantiation of
the general framework. Section 5 illustrates the instantiation with an extended example.
Finally, Section 6 concludes with a discussion of related and future work.

2 Extended Argumentation Frameworks for Agent Reasoning

2.1 Dung’s Argumentation Framework

A Dung argumentation framework is a tuple (Args,R) where R ⊆ (Args × Args)
can denote either an ‘attack’ or ‘defeat’ relation, and where the latter can be understood
as an attack that succeeds given the available preference information. An argument
A ∈ Args is defined as acceptable w.r.t. some S ⊆ Args, if for every B such that
(B, A) ∈ R, there exists a C ∈ S such that (C,B) ∈ R. Intuitively, C ‘reinstates’ A.
Dung then defines the acceptable extensions of (Args,R) under different extensional
semantics. In this paper we focus on the admissible and preferred semantics. Letting
S ⊆ Args be conflict free if no two arguments in S are related by R, then:

Definition 1. Let S ⊆ Args be a conflict free set.

– S is admissible iff each argument in S is acceptable w.r.t. S
– S is a preferred extension iff S is a set inclusion maximal admissible extension

An argument is said to be justified if it belongs to all preferred extensions of a frame-
work.

2.2 Motivating Extended Argumentation Frameworks

We now motivate extending Dung’s framework with the following example (that will
be referred to later in Section 3).
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Example 1. Consider two agents Ag1 and Ag2 exchanging arguments A, B . . . about
the weather forecast for Hawaii.
Ag2 : “According to the BBC it will be cool in Hawaii” = A
Ag1 : “According to CNN it will be hot in Hawaii” = B
Ag2 : “But the BBC are more trustworthy than CNN” = C
Ag1 : “However, statistics show CNN are more accurate than the BBC” = D
Ag1 : “And a statistical comparison is more rigorous and rational than basing a com-
parison on your instincts about their relative trustworthiness” = E

Arguments A and B symmetrically attack, i.e., (A,B),(B, A) ∈ R. {A} and {B}
are the preferred extensions, and so neither argument is justified. We then have argument
C claiming that A is preferred to B. Hence B does not successfully attack (defeat) A,
but A does defeat B. Intuitively, C is an argument for A’s repulsion of, or defence
against, B’s attack on A; i.e., C attacks B’s attack on A (∆2 in Figure 1a)) so that B’s
attack on A does not succeed as a defeat. B’s attack on A is, as it were, cancelled out,
and we are left with A defeating B. Evaluating the preferred extensions on the basis of
R denoting the defeat relation, we now have the single preferred extension containing
A. Now, given D claiming a preference for B over A and so attacking A’s attack on B,
neither defeat the other and so once again we have two preferred extensions. Since C
and D claim contradictory preferences they attack each other (∆3). These attacks can
themselves be subject to attacks in order to determine the defeat relation between C and
D and, in so doing A and B. E attacks the attack from C to D (∆4), so that D defeats
C, B defeats A, and Ag1’s argument that it will be hot in Hawaii is now justified.
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Fig. 1. Motivating EAFs
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2.3 Defining Extended Argumentation Frameworks

Example 1 illustrates requirements for arguments attacking attacks. Hence, as in [12,
13], an Extended Argumentation Framework is defined as follows:

Definition 2. An Extended Argumentation Framework (EAF) is a tuple (Args, R, D)
such that Args is a set of arguments, and:

– R ⊆ Args×Args
– D ⊆ (Args×R)
– If (C, (B,A)), (D, (A,B)) ∈ D then (C,D), (D,C) ∈ R

Notation 1 We may write A ⇀ B to denote (A,B) ∈ R. If in addition (B, A) ∈ R,
then A  B. Also, D ³ (A ⇀ B) denotes (D, (A,B)) ∈ D

The defeat relation is now parameterised w.r.t. some set S of arguments. This accounts
for an attack’s success as a defeat being relative to preference arguments already ac-
cepted in some set S, rather than relative to some externally given preference ordering.

Definition 3. A defeatsS B, denoted by A →S B, iff (A,B) ∈ R and ¬∃D ∈ S s.t.
(D,(A,B)) ∈ D.

Referring to Example 1, A defeats∅ B but A does not defeat{D} B. The notion of a
conflict free set S of arguments is now defined. Notice that it may be that an argument
A asymmetrically attacks an argument B, so that given D ³ (A ⇀ B), neither A
nor B defeatS each other if D ∈ S. This means that both A and B may be accepted
together in the same extension (where any extension is required to be conflict free). For
example, if B is an argument for an action, and A claims that (for example) the action is
too costly, it may be that an agent decides to execute the action while accepting that it is
expensive (in value based argumentation [4], D is an argument claiming that the value
promoted by B’s action is greater than A’s value of ‘cost’). In the following section we
will show that such preference dependent asymmetric attacks are also appropriate when
resolving conflicts between norms and desires.

Definition 4. S is conflict free iff ∀A,B ∈ S: if (A,B) ∈ R then (B,A) /∈ R, and
∃D ∈ S s.t. (D,(A,B)) ∈ D.

The definition of acceptability of an argument A w.r.t. a set S for an EAF is mo-
tivated in some detail in [12, 13]. It references the notion of a reinstatement set for a
defeat, in order that an intuitive requirement on what it means for an argument to be
acceptable w.r.t. an admissible set S of arguments is satisfied: if A is acceptable with
respect to S, then S∪{A} is admissible (referred to as the fundamental lemma in Dung
[8]).

Definition 5. Let S ⊆ Args in (Args,R,D). Let RS = {X1 →S Y1, . . . , Xn →S Yn}
where for i = 1 . . . n, Xi ∈ S. Then RS is a reinstatement set for C →S B, iff:
• C →S B ∈ RS , and
• ∀X →S Y ∈ RS , ∀Y ′ s.t. (Y ′,(X, Y )) ∈ D, ∃X ′ →S Y ′ ∈ RS
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Definition 6. Let (Args,R,D) be an EAF. A ∈ Args is acceptable w.r.t. S ⊆ Args
iff ∀B ∈ Args s.t. B →S A, ∃C ∈ S s.t. C →S B and there is a reinstatement set for
C →S B.

In Figure 1b), A1 is acceptable w.r.t. S1. We have that B1 →S1 A1, and A1 →S1

B1. The latter defeat is itself challenged by B2. However, A2 →S1 B2, which in turn
is challenged by B3. But then, A3 →S1 B3. We have the reinstatement set {A1 →S1

B1, A2 →S1 B2, A3 →S1 B3} for A1 →S1 B1. Also, A is acceptable w.r.t. S2 given
the reinstatement set {C →S2 B,C1 →S2 B1, C2 →S2 B2} for C →S2 B. Finally
A1 is not acceptable w.r.t S3 since no argument in S3 defeatsS3 B4.

Admissible and preferred semantics for EAFs are now given by Definition 1, where
conflict free is defined as in Definition 4. (In [12, 13], the complete, stable and grounded
semantics are similarly defined for EAFs, i.e., in the same way as for Dung frame-
works). Referring to Example 1, {B,D, E} is the single preferred extension. In [12,
13] we show that EAFs inherit many of the fundamental results holding for extensions
of a Dung framework. This suggests that much of the work building on Dung’s frame-
work can readily be reformulated for EAFs, including work on argument game proof
theories and dialogue frameworks. In particular, Dung’s fundamental lemma is satisfied,
implying that the set of all admissible extensions of an EAF form a complete partial or-
der w.r.t. set inclusion, and so for each admissible S there exists a preferred extension
S′ such that S ⊆ S′.

To conclude, the extended semantics accommodates arguments that express prefer-
ences between other arguments, while preserving the abstraction of a Dung framework;
no commitments are made to how preferences are defined in the instantiating logical
formalism. We now make use of the extended semantics in a framework for conflict
resolution in normative systems, and show that the ability to engage in argumentation
based reasoning about, as well as with, defeasible and possibly conflicting preference
information, provides for agent flexibility and adaptability.

3 A Framework for Conflict Resolution in Normative Systems

This section describes a framework in which agents engage in dialogues to decide which
amongst conflicting desire based and normative goals are to be pursued. Agent submit
arguments for goals, where these arguments attack each other, and then engage in moti-
vational argumentation over the relative utility of states in which the goals are realised.
This equates to arguing over preferences between arguments, and so which attacks suc-
ceeds as defeats. The arguments and attacks defined in the course of a dialogue thus
instantiate an EAF, and the goals to be pursued are those claimed by the justified argu-
ments of the EAF. Note that the agents also argue over the beliefs justifying adoption
of goals. In this way, the agents are first required to agree that the goal being proposed
for adoption is indeed warranted by what is believed to be the case. Section 3.1 first sets
out some general assumptions about the kinds of agents modelled by the framework,
and the dialogues these agents participate in. Section 3.2 then describes how conflicts
between individual agent goals and system norms are resolved through argumentation
based dialogues over beliefs, and goals proposed by individual agents and agents acting
on behalf of the system.
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3.1 Agents and Dialogues

The proposed framework abstracts from the logics for agent reasoning, assuming only
BDI type agents (e.g. those instantiating the BOID architecture [7]) and a declarative
interpretation of goals as beliefs holding in some future state. Each agent has a belief
base consisting of facts and rules, and a goal base containing rules for deriving goals.
From amongst all the goals that are derivable, those that an agent commits to realising
are referred to as intentions. An intention persists in an agent’s intention base until such
a time as it is realised by a plan (the agent’s planning component is not modelled here).

As in [11]’s model of normative multi-agent systems, four types of goal are distin-
guished. Individual agent goals, which we refer to here as desires, may conflict with nor-
mative goals. For example, an agent Ag1’s desire to stay on Waikiki beach in Hawaii,
may conflict with the normative goal of staying in a cheap hotel. Ag1 may decide to
comply or not comply with the norm, based on rewards and punishments exacted by
system agents (specifically enforcement agents). Rewards and punishments are also in-
dividual goals of enforcement agents, but are punishment, respectively reward goals,
from the perspective of the agent being punished, respectively rewarded. Punishment
goals hinder the punished agent’s intentions if that agent decides not to comply with
the norm. For example, a punishment may be to deny the funding that Ag1 needs to
fulfill its intention to visit Leipzig for a meeting. Reward goals benefit the achievement
of the rewarded agent’s intentions if it decides to comply. For example, a reward for an
agent who intends to have a laptop, may be to provide the agent with a laptop.

In general, goals are derived by rules whose antecedents refer to what the agent
believes and its current intentions. Extending the scenario described in Example 1, sup-
pose agent Ag1 believes it will be hot in Hawaii, and it intends to attend a conference in
Hawaii. Then it derives the desire to stay on Waikiki beach. The goals of system agents
are derived in the same way, and may additionally refer to the intentions of other agents.
For example, if Ag1 intends to attend a conference, then the normative goal of staying
in a cheap hotel is derived (in either Ag1’s goal base or the goal base of a system agent
responsible for informing other agents of their obligations). An enforcement agent AgP

may derive the punishment goal of denying Ag1 the funding for a meeting, given Ag1’s
intention to attend the meeting, and AgP ’s belief that the meeting is not related to an EU
project. Rules in the goal base can also capture the sub-goal relationship. For example,
if Ag1 intends to visit Leipzig for a meeting, then it derives the sub-goal goal of having
funding for the visit. Finally, we assume argument construction from agents’ bases is
defined in some underlying logic.

Definition 7. Let {Ag1, . . . , Agn} be a set of agents, where for i = 1 . . . n, Agi is
equipped with a belief base Bi, an intention base Ii, and a goal base Gi. For i = 1, let
argument A be constructed from Bi ∪ Gi ∪⋃n

i=1 Ii.
If A is constructed only from Bi, then A is a belief argument of Agi, otherwise A is a
goal argument of Agi.
In general, we write bel(A) to denote the beliefs in A. We also write claim(A) to identify
an argument A’s claim.

The basic idea is that individual and system agents engage in argumentation-based
conflict resolution (persuasion) dialogues to determine which amongst the arguments
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for beliefs and goals are justified in the EAFs of Section 2. The goals that are the claims
of justified arguments are then adopted as intentions. In persuasion dialogues (reviewed
in [3]) a proponent makes a claim — the topic of the dialogue — and (one or more)
opponents attempt to persuade the proponent that the claim does not hold. In general
such a dialogue d is a sequence of moves m1, . . . , mi, . . ., where the first move m1 is a
locution introducing the topic as an assertion or claim of an argument. Here, we simply
assume that the topic of d can be referred to as topic(d). Dialogue protocols vary from
model to model, and specify the legal moves at each stage of the dialogue, where a
move can be an assertion of a proposition or an argument, a challenge to a premise in
an argument, a concession of a proposition or argument, and so on. Models also vary on
the rules for termination of a dialogue. However, in general, the arguments submitted
and constructed (from the propositions asserted) during the course of a dialogue can
be organised into an argumentation framework [15]. If an argument for the topic is
justified, then the proponent wins the dialogue. Formalising dialogue models is to be
addressed in future work. Here, we refer only to an EAF constructed on the basis of a
dialogue.

Definition 8. Let d = m1, . . . , mn be a terminated dialogue where topic(d) = α, and
AG = {Ag1, . . . , Agm} the participants in d. We say that the EAF ∆ = (Args,R,D)
constructed on the basis of d, is:

– a belief EAF iff every argument in Args is a belief argument of some Ag ∈ AG
– a goal EAF iff every argument in Args is either a belief or goal argument of some

Ag ∈ AG 2

3.2 Arguing about Beliefs and Goals

An agent’s argument A for a desire may conflict with (and so mutually attack) an argu-
ment B for a normative goal. Arguments for punishment and reward goals may in turn
attack A and so reinstate the argument B for the normative goal. The success of these
attacks as defeats depends on argumentation over preferences between the arguments
(corresponding to meta-level motivation-based argumentation over the relative utility
of states in which the goals are realised).

Prior to agents submitting goal arguments in a dialogue, the beliefs in the argument
justifying the goal may themselves by subject to debate 3. In our running example,
Ag1’s desire to stay on Waikiki beach is contingent on its belief that it will be hot in
Hawaii. A system agent may successfully persuade Ag1 that it will be cool in Hawaii.
Hence Ag1 will not submit the argument for its desire, precluding the possibility of
norm violation (in Example 1 the outcome is in favour of Ag1’s argument that it will
be hot). Furthermore, the beliefs in arguments for system goals may be challenged.

2 Of course, in the limiting case where only arguments can be submitted as locutions, then each
mi in d corresponds to an argument in Args, and a protocol for d would require that mi attack
some mj , j < i, or some attack between mj and mk, j < i, k < i

3 Arguing over beliefs justifying a goal prior to arguing over the relative merits of goals pre-
cludes ‘wishful thinking’; i.e., one wouldn’t want that argumentation over which goals to adopt
(which future state to realise) influences what is believed about the current state of the world.
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Thus, an agent may successfully argue that the beliefs justifying a normative goal may
be erroneous; hence the normative goal does not have to be adopted and unwarranted
obstruction of the conflicting desire is prevented. Suppose arguments A and B for the
conflicting goals of staying on Waikiki and staying at a cheap hotel have been submitted.
AgP will not submit an argument C for the punishment goal of denying Ag1 funding
for the Leipzig meeting, if Ag1 successfully persuades AgP that the meeting is related
to an EU project. Again, this prevents unwarranted obstruction of Ag1’s intention to
attend the meeting. Of course, AgP may then be motivated to submit an argument for
an alternative punishment goal to enforce compliance.

Definition 9. Let AG = {Ag1, . . . , Agn}. Then A is an agreed goal argument of Ag ∈
AG if for every α ∈ bel(A):
if there is a terminated dialogue d with topic α, participants AG ⊆ {Ag1, . . . , Agn},
and ∆ is a belief EAF constructed on the basis of d, then α is the conclusion of a
justified argument of ∆.

We now describe how argumentation over goals proceeds. Consider the case where
a normative goal g′ conflicts with a desire g (in the simplest case g′ ≡ ¬g in the
underlying logic). In general, we say that the goal argument A′ for g′ conflicts with the
goal argument A for g. In a goal EAF, A and A′ attack each other since an agent can
either adopt g and not g′, or g′ and not g.

Suppose such an EAF , where Ag1 submits A claiming ‘stay on Waikiki beach’,
and A′ claiming ‘stay in cheap hotel’, mutually attacks A. An enforcement agent can
then submit an argument P for a punishment goal p, that, in the terminology of [11],
hinders some intention of Ag1. In our running example, p = ‘deny funding for meeting’.
Now P does not directly attack on A’s goal; it does so in the sense that if the attack
succeeds, then Ag1 will not pursue its desire, and will comply with the norm. Note
also, that the attack is a preference dependent asymmetric attack. Ag1 might argue (B)
that it is of more value to him to stay on Waikiki beach then attend the meeting. That is,
B ³ (P ⇀ A), and it may now be that A and P are justified; Ag1 adopts its desire, and
accepts the punishment. An alternative punishment may then need to be submitted to
see if it has the required enforcing effect. Finally, an enforcement agent can submit an
argument R for a reward goal r, that, in the terminology of [11], benefits some intention
of Ag. For example r = ‘provide the agent with a laptop’, benefiting Ag1’s intention to
have a laptop. R symmetrically attacks A. Either Ag1 accepts the reward and drops the
desire, or vice versa.

Definition 10. Let AG = {Ag1, . . . , Agn} be a set of agents. Let ArgsG =
⋃

i=1...n{A|A
is a goal argument for Agi}. Let IAG =

⋃
i=1...n Ii. Then:

– conflicts ⊆ ArgsG ×ArgsG

– hinders ⊆ ArgsG × IAG

– benefits ⊆ ArgsG × IAG
4

4 Note that an agent’s desires may ‘internally’ conflict. We so not here directly address conflict
resolution in such cases. Note also that an agent’s goals may benefit/hinder its own intentions.
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Definition 11. Let AG = {Ag1, . . . , Agn}, and for some Ag ∈ AG, let A be a goal
argument of Ag, I the intention base of Ag.
Let A′ be the goal argument of some Ag′ ∈ AG, Ag′ 6= Ag. Then:

– A′ goal attacks A and A goal attacks A′ if conflicts(A′, A) or benefits(A′, ι) for
some ι ∈ I

– A′ goal attacks A if hinders(A′, ι) for some ι ∈ I
We now specify some constraints on a dialogue that begins with a topic that is a

goal proposed for adoption as an intention. We do so by expressing constraints on the
goal EAF constructed on the basis of the dialogue. These are that the goal arguments are
agreed, and can only be attacked by goal arguments as defined above, and only belief
arguments are used in arguing over the relative merits of the goals.

Definition 12. Let AG = {Ag1, . . . , Agn} be a set of agents. Let d be a terminated
dialogue with topic α, and participants AG′ ⊆ AG, where:

– α is the conclusion of an agreed goal argument A of some agent Ag ∈ AG′.
– ∆ = (Args,R,D) is the goal EAF constructed on the basis of d, where:

i) for any goal arguments B, A ∈ Args, (B, A) ∈ R iff A and B are agreed goal
arguments, and B goal attacks A.
ii) If (C,(B, A)) ∈ D then C is a belief argument for some agent in AG′

If the topic α of the dialogue is an agent’s desire, and α is the claim of a justified
argument in the dialogue’s goal EAF, then α is updated to the agent’s intention base,
and any punishment goal that is the claim of a justified argument is updated to the
corresponding enforcement agent’s intention base. If α is not the claim of a justified
argument, and there is a justified argument for a normative goal β, then β is updated to
the agent’s intention base, and any reward goal that is the claim of a justified argument
is updated to the corresponding enforcement agent’s intention base.

4 Instantiating the Framework

In this section we describe an example instantiation of the framework. Agent goals,
beliefs and intentions are represented in [14]’s argument based logic programming
with defeasible priorities (ALP-DP). An ALP-DP theory’s arguments are defined as
sequences of chained rules. Some rules can express priorities on other rules, so that one
can construct priority arguments whose claims determine preferences between other
mutually attacking arguments. Preferences between priority arguments can also be es-
tablished on the basis of other priority arguments. [14] then defines the justified ar-
guments of a theory under Dung’s grounded semantics. In [12, 13] the arguments and
attacks defined by an ALP-DP theory instantiate an EAF, and an equivalence result with
the EAF’s justified arguments (under the grounded semantics) is shown. By giving an
EAF semantics for ALP-DP one can, unlike [14], also:

1. characterise the justified arguments of an ALP-DP theory under the preferred se-
mantics; and
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2. model preference dependent asymmetric attacks.

Both these features are employed when instantiating an EAF. Note that ALP-DP models
both negation as failure and strict negation. To simplify the presentation, we describe
a restricted version of ALP-DP — ALP-DP* — which does not include negation as
failure.

Definition 13. Let (S, D) be a ALP-DP* theory where S is a set of strict rules of the
form s : L0∧ . . .∧Lm → Ln, D a set of defeasible rules r : L0∧ . . .∧Lj ⇒ Ln, and:

– Each rule name r (s) is a first order term. Henceforth, head(r) denotes the conse-
quent Ln of the rule named r.

– Each Li is an atomic first order formula, or such a formula preceded by strong
negation ¬.

Strict rules represent information that is beyond debate (note that neither → nor ⇒
admit contraposition). We also assume that the language contains a two-place predicate
symbol≺ for expressing priorities on rule names, and that any S includes the following
strict rules expressing the properties of a strict partial order on ≺:

• o1 : (x ≺ y) ∧ (y ≺ z) → (x ≺ z)
• o2 : (x ≺ y) ∧ ¬(x ≺ z) → ¬(y ≺ z)
• o3 : (y ≺ z) ∧ ¬(x ≺ z) → ¬(x ≺ y)
• o4 : (x ≺ y) → ¬(y ≺ x)

Definition 14. An argument A based on the theory (S,D) is:

1. a finite sequence [r0, . . . , rn] of ground instances of rules such that
– for every i (0 ≤ i ≤ n), for every literal Lj in the antecedent of ri there is a

k < i such that head(rk) = Lj .
We say that claim(A) = head(rn), and if head(rn) = x ≺ y then A is called a
‘singleton priority argument’.

– no distinct rules in the sequence have the same head
or

2. a finite sequence [r01 , . . . rn1 ,. . .,r0m , . . . rnm ], such that for i = 1 . . . m, [r0i , . . . rni ]
is a singleton priority argument. We say that A is a ‘composite priority argument’
and claim(A) = head(rn1 ). . .head(rnm

) is the ordering claimed by A

In [14], arguments are exclusively defined by item 1. We additionally define composite
priority arguments so that an ordering, and hence a preference, can be claimed by a
single argument rather than a set of arguments (as in [14]).

Definition 15. For any arguments A, A′ and literal L:

– A is strict iff it does not contain any defeasible rule; it is defeasible otherwise.
– L is a conclusion of A iff L is the head of some rule in A
– If T is a sequence of rules, then A + T is the concatenation of A and T
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Note that an argument has only one claim, but may have many conclusions corre-
sponding to the heads of the contained rules. We now instantiate the abstract definition
7 of an agent and its constructed arguments. Note that intentions are represented by
the goal arguments that have previously been used to justify their adoption. Hence, an
agent’s goal arguments will be constructed from its belief and goal base, and the claims
(named by the name of the rule whose head is the claim) of intention arguments in all
agents’ intention bases.

Definition 16. Let {Ag1, . . . , Agn} be a set of agents, where for i = 1 . . . n:
- Bi and Gi are ALP-DP* theories, and Ii is a set of arguments.
- A is a belief argument of Agi iff it is based on Bi

- A is a goal argument of Agi iff it is based on Bi ∪ Gi∪
⋃

i=1...n{r : claim(B)|B ∈
Ii, head(r) = claim(B)}
[14] motivates definition of attacks between arguments that account for the ways in
which arguments can be extended with strict rules:

Definition 17. A1 attacks A2 on the pair (L,¬L) if there are sequences S1 and S2 of
strict rules such that A1 + S1 is an argument with conclusion L and A2 + S2 is an
argument with a conclusion ¬L.

In the following example illustrating attacks between belief arguments, we will
without loss of generality simply assume that all beliefs are contained in a single theory.
Only in the example at the end of this section, in which we illustrate argumentation over
goals, will we identify the individual agents involved. Following [14], every rule with
terms t1, . . . , tn is named with a function expression r(t1, . . . , tn) where r is the rules’s
informal name. For example, r(p(X, Y ), q(X, Y )) names the rule p(X, Y ) ⇒ q(X,Y ).
To maintain readability we will only write the function-symbol part of the rule name,
and as an abuse of notation, arguments will be represented as sequences of rule names
rather than the rules these names identify.

Example 2. Let tr(X, Y ), st(X, Y ) and ra(X, Y ) respectively denote that X is more
trustworthy, statistically accurate, and rational than Y .
Let S = {o1 . . . o4} ∪ {s1 : temp(X, cool) → ¬temp(X, hot),

s2 : temp(X,hot)→ ¬temp(X, cool)}.
Let D = {bbc :⇒ temp(hawaii, cool),

cnn :⇒ temp(hawaii, hot),
c1 :⇒ tr(bbc, cnn),
d1 :⇒ st(cnn, bbc),
c2 : tr(X, Y ) ⇒ Y ≺ X,

d2 : st(X, Y ) ⇒ Y ≺ X,

e1 :⇒ ra(d2, c2),
e2 : ra(X,Y ) ⇒ Y ≺ X}

A = [bbc], B = [cnn], C = [c1, c2], D = [d1, d2].
E = [e1, e2] with conclusions ra(d2, c2) and c2 ≺ d2, and claim c2 ≺ d2.
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A and B attack each other since A + s1 has conclusion
¬temp(hawaii, hot) and B has conclusion temp(hawaii, hot). C and D attack each
other since C has conclusion cnn ≺ bbc and D + o4 has conclusion ¬(cnn ≺ bbc)

We now define the relations conflicts, hinders and benefits, and goal attacks for
ALP-DP* goal arguments. Note that the notion of benefits requires that a goal argument
of a rewarding agent be extended (as in the definition of attack) with strict rules that link
the reward goal to the intention that it benefits (this will be illustrated in the example
concluding this section).

Definition 18. Let A be a goal argument of an agent Ag and I the intention base of
Ag.
Let B be any goal argument of an agent Ag′, where B′ = (S′, D′) is the belief base of
Ag′. We say that:
• conflicts(B, A) if B attacks A as in definition 17.
For any I ∈ I:
• hinders(B, I) if B attacks I as in definition 17
• benefits(B, I) if claim(B+S1) = claim(I) for some possibly empty sequence of strict
rules S1 in S′

Then:

– B and A goal attack each other on the pair
(claim(B), claim(A)) if conflicts(B, A)

– B and A goal attack each other on the pair
(claim(B), claim(A)) if benefits(B, I) for some I ∈ I

– B goal attacks A on the pair
(claim(B), claim(A)) if hinders(B, I) for some I ∈ I
To determine a preference amongst attacking arguments, [14] defines the sets of rel-

evant defeasible rules to be compared, and an ordering on these sets. Here, the ordering
on such sets is based on the ordering claimed by a given priority argument.

Definition 19. If A+S is an argument with conclusion L, the defeasible rules RL(A+
S) relevant to L are:

1. {rd} iff A includes defeasible rule rd with head L
2. RL1(A + S) ∪ . . . ∪ RLn(A + S) iff A is defeasible and S includes a strict rule s

: L1 ∧ . . . ∧ Ln → L

Definition 20. Let C be a priority argument claiming the ordering ≺. Let R and R′ be
sets of defeasible rules. Then R′ > R iff ∀r′ ∈ R′, ∃r ∈ R such that r ≺ r′.

Intuitively, R can be made better by replacing some rule in R with any rule in R′,
while the reverse is impossible. Now, given two arguments A and B, it may be that
for belief arguments they attack on more than one conclusion. For goal arguments they
goal attack on a single pair of conclusions (the goals claimed by the arguments). Given
a priority ordering ≺ claimed by argument C, we say that A is preferred≺ to B if for
every pair (L,L′) of conclusions on which they attack, the set of A’s defeasible rules
relevant to L is stronger (>) than the set of B’s defeasible rules relevant to L′.

13



Definition 21. Let C be a priority argument claiming ≺. Let (L1, L
′
1), . . . , (Ln, L′n)

be the pairs on which A attacks, or goal attacks B, where for i = 1 . . . n, Li and L′i
are conclusions in A and B respectively. Then A is preferred≺ to B if for i = 1 . . . n,
RLi(A + Si) > RL′i(B + S′i)

In example 2, C and D attack each other on the pair (cnn ≺ bbc, ¬(cnn ≺ bbc)),
and Rcnn≺bbc(C) = {c2}, R¬(cnn≺bbc)(D) = {d2}. E claims c2 ≺ d2, and so D is
preferredc2≺d2 to C. Note also, that given C, A is preferredcnn≺bbc to B, and given D,
B is preferredbbc≺cnn to A. We can now instantiate an EAF with the arguments, their
attacks, and priority arguments claiming preferences and so attacking attacks:

Definition 22. The EAF (Args, R, D) for a theory (S, D) is defined as follows. Args
is the set of arguments given by definition 14, and ∀A,B,C ∈ Args:

1. (C,(B, A)) ∈ D iff C claims ≺ and A is preferred≺ to B
2. (A,B),(B,A) ∈ R if A and B attack as in definition 17, or A and B goal attack

as in definition 18

The belief EAF obtained by the arguments and attacks for our running example is
shown in figure 1a). {E, D,B} is the single preferred extension of the EAF. We can
now constrain a goal EAF constructed on the basis of a dialogue between agents, as
defined in definition 12.

5 An Extended Example

We now illustrate the previous section’s formalism with an extended version of our
Hawaiian example, in which we assume that every goal argument is agreed.

In what follows we use the following shorthand:
ha = ‘Hawaii’, wa = ‘Waikiki beach’, le = ‘Leipzig’, att, = ‘attend’, conf = ‘confer-
ence’, meet, = ‘meeting’, cheap = ‘cheap hotel’, lap = ’laptop’, fund = ‘have funding’,
and deny f = ‘deny funding’.
Also, predicates may refer to the agents themselves. For example, att(ag, conf, ha) de-
notes the goal of ag to attend a conference in Hawaii. Also, variables will begin with up-
percase letters and constants with lowercase letters. For example, deny f(agP , AgX,
meet, L) denotes the goal of agent agP to deny funding for any agent AgX to attend a
meeting in some location L.
Let {aga, agN , agP , agR} be a set of agents. We describe each agent’s knowledge
bases. Note that we may not show all the goal rules used to construct arguments in
the intention base of each agent. Also, as before, we may simply write the rule name
rather than the rule the name identifies.
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aga:
I =
{ [ia1 :⇒ att(aga, conf, ha)], [ia2 :⇒ att(aga,meet, le)],
[ia2 :⇒ att(aga, meet, le), ia3 : att(aga,meet, le) ⇒ funds(aga,meet, le)],
[ia4 :⇒ have(aga, lap)] }
G =
{ ga1 : temp(ha, hot) ∧ att(aga, conf, ha) ⇒ stay(aga, wa)}
B =
{ ba0 :⇒ temp(ha, hot),
ba1 :→ norm des(gn1, ga1),
ba self : norm des(X, Y ) ⇒ X ≺ Y ,
ba2 :⇒ project funds(high),
ba3 : project funds(high) ⇒ except(ba self, bn social),
ba excep : except(X, Y ) ⇒ Y ≺ X ,
ba4 :⇒ gp1 ≺ ga1}
agN :
I = ∅
G = { gn1 : att(AgX, conf, L) ⇒ stay(AgX, cheap, L)}
B = { bn1 : stay(AgX, cheap, ha) → ¬stay(AgX, wa),
bn2 :→ norm des(gn1, ga1),
bn social : norm des(X, Y ) ⇒ Y ≺ X }
agP :
I = ∅
G = { gp1 : att(AgX, meet, L) ∧ ¬type(meet, eu, L)
⇒ deny f(agP , AgX,meet, L)}
B = { bp1 :⇒ ¬type(meet, eu, le),
bp2 : deny f(agP , AgX,meet, L) → ¬funds(AgX, meet, L)}
agR:
I = ∅
G = { gr1 : have(AgX, lap) ⇒ provide(agR, AgX, lap)}
B = { br1 : provide(agR, AgX, lap) → have(AgX, lap),
br2 :→ rew des(gr1, ga1),
br rew suffice : rew des(X, Y ) ⇒ Y ≺ X }
1) aga initiates a dialogue with goal argument A1 = [ba0, ia1, ga1] claiming the goal
stay(aga, wa), having already persuaded a system agent that it will indeed be hot in
Hawaii.
2) agN submits A2 = [ia1,gn1] (AgX = aga, L = ha), where A2 and A1 goal attack
each other (see figure 2) on the pair
(stay(aga, cheap, ha), stay(aga, wa)).
This symmetric goal attack is based on conflicts (A2, A1) which obtains because A2 +
[bn1] and A1 attack (as in def.17) on the conclusion pair (¬stay(aga, wa), stay(aga, wa))
agN also submits the social ordering argument B1 = [bn2, bn social] claiming ga1 ≺
gn1, and so B1 ³ (A1 ⇀ A2).
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Fig. 2. EAF based on argumentation based dialogue over goals

3) aga submits:
- the selfish ordering argument B2 = [ba1, ba self ] claiming gn1 ≺ ga1, and so
B2 ³ (A2 ⇀ A1)
- an argument claiming that the selfish behaviour type is preferred to the social be-
haviour type given the exceptional circumstances in which the remaining project budget
is high:
C1 = [ba2, ba3, ba excep,] claiming bn social ≺ ba self , and so C1 ³ (B1 ⇀ B2).
The single preferred extension contains A1
4) agP attempts to enforce compliance by submitting A3 = [ia2, bp1, gp1] given that it
is agreed that the meeting is not an Eu project meeting.
A3 + [bp2] attacks (as in def.17), and so hinders, aga’s intention [ia2, ia3]. Hence, A3
goal attacks A1 on the pair (deny f(agP , aga, meet, le), stay(aga, wa)).
5) However, aga prefers to stay on the beach and be denied funding by agP for the
leipzig meeting. It may be that aga has another source of funding in mind. We do not
encode the rationale for the preference, but simply assume the priority argument B3
= [ba4] claiming gp1 ≺ ga1. Hence B3 ³ (A3 ⇀ A1). Since A3’s attack on A1 is
asymmetric:
The single preferred extension contains A1 and A3
6) agR attempts to enforce compliance with A4 = [ia4, gr1] offering to provide aga

with a laptop. This benefits aga’s intention to have a laptop since claim([ia4, gr1] +
[br1]) = claim[ia4]. Hence, A4 and A1 goal attack each other (A4  A1) on the pair
(provide(agR, aga, lap), stay(aga, wa)).
agR believes the reward is of sufficient strength that aga will prefer the reward to stay-
ing on Waikiki beach. agR submits B4 = [br2, br rew suffice] claiming ga1 ≺ gr1.
Hence, B4 ³ (A1 ⇀ A4). This is accepted by aga and the dialogue terminates.
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The single preferred extension contains A2 and A4
aga’s intention set can then be updated with A2. agR’s intention set can then be updated
with A4. aga intends now to book a cheap room in Hawaii, and agR intends to provide
aga with a laptop.

6 Conclusions

In this paper we have proposed a framework for argumentation-based resolution of con-
flicts in normative multi-agent systems, and have illustrated instantiation of the frame-
work with a logic programming formalism. The framework provides for agents to argue
over the beliefs justifying goals, conflicting preferences brought to bear in argumenta-
tion over beliefs, and metalevel motivational argumentation over the states represented
by desire based goals, and normative, punishment and reward goals argued for by other
agents. In this way, unwarranted obstruction of individual agents’ desires is precluded,
and enforcement of compliance can appropriately account for the motivations of the
agents and erroneously held beliefs about the contexts in which the agents find them-
selves.

As mentioned in Section 1, existing approaches to argumentation-based resolution
of conflicts amongst goals ([2],[10],[16]) do not model social mechanisms deployed
to enforce compliance with norms. In [16], norms are represented as bridge rules that
describe the relationships between mental attitudes. Argumentation based resolution of
conflicts amongst goals derived using these rules exploits a preference relation on these
rules. In [2], only conflicts amongst desire based goals are addressed. Argumentation
over the beliefs that justify desires conforms to the Dung semantics. However selection
of desires does not account for their relative importance and does not conform to the
Dung semantics. Rather, the maximal (under set inclusion) sets of desires that can be
consistently realised are chosen. However, goal selection does account for the feasibility
of plans for realising goals, and this is a factor that our work needs to account for in
future work.

Future work will also investigate instantiation of the framework by formalisms with
explicit BDI type modalities. Further work is also required before evaluation of the
framework based on prototypical implementations can proceed. In particular, we intend
development of argument game proof theories, algorithms and dialogue protocols for
EAFs. Since EAFs inherit the fundamental results shown for Dung frameworks, our
approach will adopt the methodologies deployed in specification of game based algo-
rithms [18] and protocols [15] based on the Dung semantics. We also believe that our
approach is applicable to resolution of conflicts arising between an individual agent’s
conflicting desires, and between conflicting norms. Both cases often require reasoning
about abstract values and motivations. Furthermore, conflict resolution may lead to re-
finement and evolution of a system’s norms. Finally, one of the key novel features of
our framework is that an agent’s decision as to which goals to pursue is influenced by
other agents’ goals. We believe that we can abstract from the normative application of
the framework to consider other contexts in which the impact of other agents’ goals can
be modelled through argumentation based mechanisms.
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Abstract. We explore a rule-based formalisation for contracts: the rules
capture conditional norms, that is, they describe situations arising during
the enactment of a multi-agent system, and norms that arise from these
situations. However, such rules may establish conflicting norms, that is,
norms which simultaneously prohibit and oblige (or prohibit and permit)
agents to perform particular actions. We propose to use a mechanism to
detect and resolve normative conflicts in a preemptive fashion: these
mechanisms are used to analyse a contract and suggest “amendments”
to the clauses of the contract. These amendments narrow down the scope
of influence of norms and avoid normative conflicts. Agents propose rules
and their amendments, leading to a contract in which no conflicts may
arise.

1 Introduction

We explore a rule-based formalisation for contracts: the rules capture conditional
norms, that is, they describe situations arising during the enactment of a multi-
agent system (MAS), and norms that arise from these situations. However, such
rules may establish conflicting norms, that is, norms which simultaneously pro-
hibit and oblige (or prohibit and permit) agents to perform particular actions.
We propose to use a mechanism to detect and resolve normative conflicts in a
preemptive fashion: these mechanisms are used to analyse a contract and suggest
“amendments” to the clauses of the contract. These amendments narrow down
the scope of influence of norms and avoid normative conflicts.

We envisage a scenario in which agents propose rules which will make up a
contract. Agents, however, may already be committed to existing contracts when
they are negotiating the terms of a new contract. Furthermore, these agents may
not want to divulge the terms of the contracts they have established, that is, they
may not want to justify why they need to propose amendments to a contract.
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The structure of this paper is as follows. In Section 2 we introduce norm-
governed multi-agent systems, also presenting our account of norms and their
formal underpinnings. Section 3 formally presents the syntax and semantics of
contracts as a set of rules; additionally that section provides a computational
model for contract enactments. In Section 4 we present mechanisms to detect and
resolve normative conflicts, using unification and constraint satisfaction tech-
niques. In Section 5 we introduce our preemptive approach to contract forma-
tion, whereby agents exchange messages with contract clauses and amendments
to these. We compare our approach with related work in Section 6 and conclude
in Section 7, where we also give directions for future work.

2 Norm-Governed Multi-Agent Systems

The design of complex multi-agent systems is greatly facilitated if we move away
from individual components and, instead, regard them as belonging to stereo-
typical classes or categories of components. One way to carry out this classifica-
tion/categorisation is through the use of roles as introduced in, e.g., [4, 17] – an
agent takes on a role within a society or an organisation, and this role defines a
pattern of behaviour to which any agent ought to conform. For instance, within
a humanitarian relief force, there are roles such as medical assistant, member
of mine clearance team, and so on, and agents adopt these roles (possibly more
than one) as they join the force. When agents adopt roles they commit them-
selves to the roles’ expected behaviours, with associated sanctions and rewards.
We shall make use of two finite, non-empty sets, Agents = {a1, . . . , an} and
Roles = {r1, . . . , rm}, representing, respectively, the sets of agent identifiers and
role labels.

The building blocks of our formalism are terms :

Definition 1. A term, denoted as τ , is any variable x, y, z (with or without
subscripts) or any construct fn(τ1, . . . , τn), where fn is an n-ary function symbol
and τ1, . . . , τn are terms.

Terms f0 stand for constants and will be denoted as a, b, c (with or without sub-
scripts). We shall also make use of numbers and arithmetic functions to build our
terms; arithmetic functions may appear infix, following their usual conventions.
We adopt Prolog’s convention [1] using strings starting with a capital letter to
represent variables and strings starting with a small letter to represent con-
stants. Some examples of terms are Price (a variable) and send(a, B, inform(c))
(a function).

We also define atomic formulae:

Definition 2. An atomic formula, denoted as ϕ, is any construct pn(τ1, . . . ,
τn), where pn is an n-ary predicate symbol and τ1, . . . , τn are terms.

When the context makes it clear what n is we can drop it. p0 stands for proposi-
tions. We shall employ arithmetic relations (e.g., =, 6=, and so on) as predicate
symbols, and these will appear in their usual infix notation. We also make use
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of atomic formulae built with arithmetic relations to represent constraints on
variables – these atomic formulae have a special status, as we explain below. We
give a definition of our constraints, a subset of atomic formulae:

Definition 3. A constraint γ is an infix binary atomic formula τ C τ ′, where
C is any of the symbols =, 6=, >,≥, <, or ≤.

We shall denote a possibly empty set of constraints as Γ = {γ0, . . . , γn} and
it stands for a conjunction of the constraints, that is,

∧n
i=0 γi. Some sample

constraints are X < 120 and X < (Y + Z). To improve readability, constraints
of the form {10 ≤ X, X ≤ 45} will be written as {10 ≤ X ≤ 45}.

We need an account of those actions performed by agents:

Definition 4. An action tuple is 〈a :r, ϕ̄〉 where

– ϕ̄, a ground first-order atomic formula, representing an action
– a ∈ Agents is the agent who did ϕ̄
– r ∈ Roles is the role played by the agent a when it did ϕ̄

Agents perform their actions in a distributed fashion, contributing to the overall
enactment of the MAS. However, for ease of presentation, we make use of a
global (centralised) account for all actions taking place; therefore, it is important
to record the authorship of actions.

2.1 A Representation for Norms

In this section we introduce our representation of norms. We extend our previous
work [22, 23], adopting the notation of [17] for specifying norms, complement-
ing it with constraints [9]. Constraints are used to further refine the scope of
influence of norms on actions.

We associate constraints with first-order formulae, imposing restrictions on
their variables. We represent this association as ϕ ◦ Γ , as in, for instance,
deploy(s1, X, Y ) ◦ {10 ≤ X ≤ 50, 5 ≤ Y ≤ 45}. When Γ is empty, we will
simply drop it from our formulae. Norms are thus defined:

Definition 5. A norm ω is any construct

– Oα:ρϕ ◦ Γ (an obligation),
– Pα:ρϕ ◦ Γ (a permission), or
– Fα:ρϕ ◦ Γ (a prohibition),

where α, ρ are terms, ϕ is a first-order atomic formula and Γ is a possibly empty
set of constraints.

Term α identifies the agent(s) to whom the norm is applicable and ρ is the role
of such agent(s). Oα:ρϕ ◦ {γ0, . . . , γn} thus represents an obligation on agent α
taking up role ρ to bring about ϕ, subject to all constraints γi, 0 ≤ i ≤ n. The
γi terms express constraints on variables of ϕ.

For simplicity, in our discussion we assume an implicit universal quantifi-
cation over variables in ω. For instance, PA:Rdeploy(X, b, c) stands for ∀A ∈
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Agents.∀R ∈ Roles .∀X.PA:Rdeploy (X, b, c). However, our proposal can be nat-
urally extended to cope with arbitrary quantifications. Obligations normally
require the arguments of their actions to be existentially quantified, as in, for
instance

∀A ∈ Agents.∀R ∈ Roles .∃X.∃Y.∃Z.OA:Rdeploy(X, Y, Z)

Quantifications on agent ids and role labels may be universal or existential, and
the relative ordering of quantifications defines the applicability of the norm,
following the usual first-order logic semantics [5, 15].

We propose to formally represent from a global perspective the normative
positions [19] of all agents taking part in a virtual society. By “normative posi-
tion” we mean the “social burden” associated with individuals [6], that is, their
obligations, permissions and prohibitions.

2.2 Substitutions, Unification and Constraint Satisfaction

We use first-order unification [5] and constraint satisfaction [10] as the building
blocks of our mechanisms. Unification allows us (i) to detect whether norms are
in conflict and (ii) to detect the set of actions that are under the influence of a
norm. Initially, we define substitutions:

Definition 6. A substitution σ is a finite and possibly empty set of pairs x/τ ,
where x is a variable and τ is a term.

We define the application of a substitution in accordance with [5]. In addition,
we describe how substitutions are applied to sets of constraints and norms (X
stands for O, P or F):

1. c · σ = c for a constant c.
2. x · σ = τ · σ if x/τ ∈ σ; otherwise x · σ = x.
3. pn(τ0, . . . , τn) · σ = pn(τ0 · σ, . . . , τn · σ).
4. {γ0, . . . , γn} · σ = {γ0 · σ, . . . , γn · σ}
5. (Xα:ρϕ ◦ Γ ) · σ = (X(α·σ):(ρ·σ)(ϕ · σ) ◦ (Γ · σ)).

A substitution σ is a unifier of two terms τ1, τ2, if τ1 ·σ = τ2 ·σ. Unification is a
fundamental problem in automated theorem proving and many algorithms have
been proposed [5]; recent work offers means to obtain unifiers efficiently. We use
unification in the following way:

Definition 7. unify(τ1, τ2, σ) holds iff τ1 · σ = τ2 · σ, for some σ. unify(pn(τ0,
. . . , τn), pn(τ ′0, . . . , τ

′
n), σ) holds iff unify(τi, τ

′
i , σ), 0 ≤ i ≤ n.

The unify relationship checks if a substitution σ is indeed a unifier for τ1, τ2, but
it can also be used to find σ. We assume that unify is a suitable implementation of
a unification algorithm which (i) always terminates (possibly failing, if a unifier
cannot be found); (ii) is correct; and (iii) has a linear computational complexity.

We make use of existing constraint satisfaction techniques [9, 10] to imple-
ment a satisfy predicate which checks if a given set of constraints admits one
solution, that is, the predicate holds if the variables of the constraints admit at
least one value which simultaneously fulfills all constraints:
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Definition 8. satisfy({γ0, . . . , γn}) holds iff
∧n

i=0(γi · σ) is true for some σ.

This predicate can be implemented via different “off-the-shelf” constraint satis-
faction libraries; for instance, it can be defined via the built-in call residue

vars/2 predicate, available in SICStus Prolog [21] as:

satisfy({γ0, . . . , γn})← call residue vars((γ0, . . . , γn), )

Predicate call residue vars(Goals ,Vars) evaluates if Goals admit one possible
solution, collecting in Vars the list of residual variables that have blocked goals
or attributes attached to them. In our definition above, the value of Vars is not
relevant, as we simply want to know if Goals are satisfiable.

2.3 Meaning of Norms

We explain the meaning of our norms in terms of their relationships with action
tuples of global enactment states. We define when an individual action tuple is
within the scope of influence of a norm – we do so via the logic program of Fig. 1.
It defines predicate inScope which holds if its first argument, an action tuple (in

1 inScope(Action, ω)←
2 Action = 〈a :r, ϕ̄〉 ∧
3 ω = Xα:ρϕ ◦ Γ∧
4 unify(〈a, r, ϕ̄〉, 〈α, ρ, ϕ〉, σ)∧
5 satisfy(Γ · σ)

Fig. 1. Check if Action is within Influence of a Norm

the format of Def. 4), is within the influence of a norm ω (in the format of Def. 5),
its second parameter. Lines 2 and 3 define, respectively, the format of Action
and ω (where X is either P, F or O). Line 4 tests (i) if the agent performing the
action and its role unify with α, ρ of ω and (ii) if the actions ϕ̄ and ϕ unify. Line
5 checks if the constraints on ω (instantiated with the substitution σ obtained
in line 4) can be satisfied.

Agents may experience difficulties if an action is simultaneously within the
scope of influence of a prohibition and an obligation (or a prohibition and a
permission). In such circumstances, whatever the agents do or refrain from doing,
may give rise to an enactment state that is not norm-compliant. The agents will
thus violate a norm, and will be subject to sanctions.

If an agent has a set of candidate actions subject to a set of conflict-free
norms, then predicate inScope can be used to select among the actions, namely
those that are not within the scope of any prohibitions. Alternatively, agents
can use the mechanism above to select those actions that are within the scope
of obligations, and hence should be given priority. These strategies have been
explored in [6].
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3 Contracts as Rules for Managing Enactment States

In this section we introduce a rule-based language for the explicit management of
events generated by agents and the effects they cause – we introduced alternative
versions of this formalism in [7, 8]: rules depict how norms should be inserted
and removed as a result of agents’ actions. A contract is a set of such rules,
specifying how agents’ normative positions change as a result of their actions.

For our computational model we propose a global account of all actions
performed, as well as all norms which currently hold. We make use of the set
∆ to store action tuples and norms – it represents a trace or a history of the
enactment of a society of agents from a global point of view:

Definition 9. A global enactment state ∆ is a finite, possibly empty, set of
action tuples 〈a :r, ϕ̄〉 and norms ω.

A global enactment state ∆ can be “sliced” into many partial states ∆a = {〈a :
r, ϕ̄〉 ∈ ∆ | a ∈ Agents} containing all actions of a specific agent a. Similarly,
we could have partial states ∆r = {〈a : r, ϕ̄〉 ∈ ∆ | r ∈ Roles}, representing
the global state ∆ “sliced” across the various roles. We make use of a global
enactment state to simplify our exposition; however, a fully distributed (and
thus more scalable) account of enactment states can be achieved by slicing them
as above and managing them in a distributed fashion1.

Figure 2 depicts how our computational model works. An initial enactment
state ∆0 (possibly empty) is offered (represented by “V”) to a set of agents
(ag1, . . . , agn). These agents can add their events (Ξ0

1 , . . . , Ξ0
n) to the state of

∆0 V

∆0

Ξ0

1 , · · · , Ξ0

n

l l
ag

1
· · · ag

n

∗
 ∆1 V

∆1

Ξ1

1 , · · · , Ξ1

m

l l
ag

1
· · · ag

m

∗
 · · ·

Fig. 2. Semantics as a Sequence of ∆’s

affairs (via “l”). Ξj
i is the (possibly empty) set of events added by agent i at

state of affairs ∆j . After an established amount of time, we perform an exhaustive

application of rules (denoted by “
∗
 ”) to the enactment state ∆0∪Ξ0

1 ∪· · ·∪Ξ1
n,

yielding a new enactment state ∆1. This new state will, on its turn, be offered
to the agents for them to add their events, and the same process will go on.

3.1 A Rule Language for Managing Normative Positions

Our rules are constructs of the form LHS  RHS , where LHS contains a repre-
sentation of parts of the current enactment state which, if they hold, will cause

1
In [6] we present a distributed architecture for electronic institutions [4], in which global enactment
states are broken down into scenes, that is, agent sub-activities with specific purposes, such as
the registration process in a virtual auction room, the auction itself and the settlement of bills
(and delivery of goods).
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the rule to be triggered. RHS describes the updates to the current enactment
state, yielding the next enactment state:

Definition 10. A rule R is defined by the following grammar:

R ::= LHS  RHS
LHS ::= LHS ∧ LHS | ¬LHS |Action |ω | γ
RHS ::= RHS ∧ RHS | ⊕ ω | 	 ω

Intuitively, the left-hand side LHS describes the conditions the current enactment
state ought to have for the rule to apply. The right-hand side RHS describes
the updates to be performed to the current enactment state, yielding the next
enactment state.

3.2 Semantics of Rules

As suggested in Figure 2, we define the semantics of our rules as a relation-
ship between the current enactment state and the next enactment state. In this
section we define this relationship.

We first define the semantics of the LHS of a rule, that is, how a rule is
triggered:

Definition 11. sl(∆,LHS , σ) holds between an enactment state ∆, the left-hand
side of a rule LHS and a substitution σ depending on the format of LHS:

1. sl(∆,LHS ∧ LHS ′, σ) holds iff sl(∆,LHS , σ′) and sl(∆, LHS′ · σ′, σ′′) hold,
σ = σ′ ∪ σ′′.

2. sl(∆,¬LHS , σ) holds iff sl(∆,LHS , σ) does not hold.

3. sl(∆,Action , σ) holds iff Action · σ ∈ ∆.

4. sl(∆, ω, σ) holds iff ω · σ ∈ ∆.

5. sl(∆, γ, σ) holds iff satisfy({γ · σ}).

Case 1 depict the semantics of conjunctions and how their individual substitu-
tions are combined. Case 2 introduces the negation by failure: a negated action
is true if, and only if, it has not taken place, that is, it is not found in the enact-
ment state. Case 3 holds when an action is found in the enactment state. Case 3
holds when a norm is found in the enactment state. Case 5 holds if a constraint
is satisfiable, after applying a substitution σ to it.

We now define the semantics of the RHS of a rule:

Definition 12. Relation sr(∆,RHS , ∆′) mapping an enactment state ∆, the
right-hand side of a rule RHS and a new enactment state ∆′ is defined as:

1. sr(∆,RHS ∧RHS ′, ∆′′) holds iff sr(∆,RHS , ∆′) and sr(∆
′,RHS ′, ∆′′) hold.

2. sr(∆,⊕ω, ∆ ∪ {ω}) holds.

3. sr(∆,	ω, ∆ \ {ω}) holds.
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Case 1 decomposes a conjunction and builds the new state by merging the partial
states of each update. Case 2 caters for the insertion of norms and case 3 defines
how a norm is deleted.

Our rules are exhaustively applied on the enactment states thus considering
all matching atomic formulae. We thus need relationship s∗l (∆,LHS , Σ) which
obtains in Σ = {σ0, . . . , σn} all possible matches of the left-hand side of a rule:

Definition 13. s∗l (∆,LHS , Σ) holds, iff Σ = {σ1, . . . , σn} is the largest non-
empty set such that sl(∆,LHS , σi), 1 ≤ i ≤ n, holds.

In the complete definition of the rule system, we define the semantics of our rules
as relationships between enactment states: rules map an existing enactment state
to a new enactment state. We adopt the usual semantics of production rules [14],
that is, we exhaustively apply each rule by matching its LHS against the current
state and use the values of variables obtained in this match to instantiate RHS .

3.3 An Interpreter for Contracts

The semantics above provides a basis for an interpreter for rules, shown in Fig. 3
as a logic program, interspersed with built-in Prolog predicates; for easy refer-
encing, we show each clause with a number on its left. Clause 1 contains the top

1. s∗(∆,Rs, ∆′)←
findall(〈RHS, Σ〉, (member((LHS  RHS),Rs), s∗l (∆,LHS , Σ)),RHSs),
s′r(∆,RHSs, ∆′)

2. s∗l (∆,LHS , Σ)← findall(σ, sl(∆,LHS , σ), Σ)
3. sl(∆, (Action ∧ LHS), σ1 ∪ σ2)← sl(∆,Action , σ1), sl(∆,LHS , σ2)
4. sl(∆,¬LHS, σ) ← ¬sl(∆,LHS , σ)
5. sl(∆, Action, σ) ← member(Action · σ, ∆)
6. sl(∆, ω, σ)← member(ω · σ, ∆)
7. sl(∆, γ, σ) ← satisfy({γ · σ})

8. s′r(∆,RHS , ∆′)←
findall(∆′′, (member(〈RHS , Σ〉,RHSs), member(σ, Σ), sr(∆,RHS · σ, ∆′′)),AllDeltas),
merge(AllDeltas, ∆′)

9. sr(∆, (U ∧ RHS), ∆1 ∪∆2)← sr(∆,U , ∆1), sr(∆, RHS, ∆2)
10. sr(∆,⊕ω, ∆ ∪ {ω}))←
11. sr(∆,	ω, ∆ \ {ω}))←

Fig. 3. An Interpreter for Contracts

most definition: given a ∆ and a set of rules (a contract) Rs , it shows how we
can obtain the next state ∆′ by finding (via the built-in findall predicate2) all
those rules in Rs (picked by the member built-in) whose LHS holds in ∆ (checked
via the auxiliary definition s∗l ). This clause then uses the RHS of those rules with
their respective sets of substitutions Σ as the arguments of s′r to finally obtain
∆′.

Clause 2 implements s∗l : it finds all the different ways (represented as indi-
vidual substitutions σ) that the left-hand side LHS of a rule can be matched in

2
ISO Prolog built-in findall/3 obtains all answers to a query (2nd argument), recording the values
of the 1st argument as a list stored in the 3rd argument.
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an enactment state ∆ – the individual σ’s are stored in sets Σ of substitutions,
as a result of the findall/3 execution. Clauses 3-7 are adaptations of Def. 11.

Clause 8 shows how s′r computes the new enactment state using the current
enactment state and a list RHSs of pairs 〈RHS , Σ〉 (obtained in the second
body goal of clause 1): it picks out (via predicate member/2) each individual
substitution σ ∈ Σ and uses it in RHS to compute via sr a partial new state ∆′′

which is stored in AllDeltas . AllDeltas contains a set of partial new states and
these are combined together via the merge/2 predicate – it joins all the partial
states, removing any replicated components. Clauses 9-11 are adaptations of
Def. 12.

4 Norm Conflicts

This section provides definitions for norm conflicts, enabling their detection and
resolution. Constraints confer more expressiveness and precision on norms, but
mechanisms for detection and resolution must factor them in.

4.1 Conflict Detection

A conflict arises when an action is simultaneously prohibited and permitted/obliged,
and its variables have overlapping values. The variables of a norm specify its
scope of influence, that is, which agent/role the norm concerns, and which
values of the action it addresses. In Fig. 4, we show two norms over action
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OA1:R1
deploy(s1, X1, Y1) ◦ {10 ≤ X1 ≤ 50, 5 ≤ Y1 ≤ 45}

FA2:R2
deploy(s1, X2, Y2) ◦ {5 ≤ X2 ≤ 60, 15 ≤ Y2 ≤ 40}
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Fig. 4. Conflict Detection: Overlap in Scopes of Influence

deploy(S, X, Y ), establishing that sensor S is to be deployed on grid position
(X, Y ). The norms are

OA1:R1
deploy(s1, X1, Y1) ◦ {10 ≤ X1 ≤ 50, 5 ≤ Y1 ≤ 45}

FA2:R2
deploy(s1, X2, Y2) ◦ {5 ≤ X2 ≤ 60, 15 ≤ Y2 ≤ 40}

Their scopes are shown as rectangles filled with different patterns. The overlap
of their scopes is the rectangle in which both patterns are superimposed. Norm
conflict is formally defined as follows:
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Definition 14. Norms ω, ω′ ∈ ∆, are in conflict under substitution σ, denoted
as conflict(ω, ω′, σ), X being O or P, iff:

– ω = Fα:ρϕ ◦ Γ , ω′ = Xα′:ρ′ϕ′ ◦ Γ ′ or
– ω = Xα:ρϕ ◦ Γ , ω′ = Fα′:ρ′ϕ′ ◦ Γ ′

and the following conditions hold:

1. unify(〈α, ρ, ϕ〉, 〈α′, ρ′, ϕ′〉, σ) and
2. satisfy((Γ ∪ Γ ′) · σ)

That is, a conflict occurs between a prohibition and either an obligation or a
permission if 1) a substitution σ can be found that unifies the variables of the
two norms, and 2) the constraints from both norms can be satisfied (taking σ
under consideration).

The norm conflict of Fig. 4 is indeed captured by Definition 14. We can obtain
a substitution σ = {X1/X2, Y1/Y2} and this is a first indication that there may
be a conflict or overlap of influence between both norms regarding the defined
action. The constraints on the norms may restrict the overlap and, therefore,
leave actions under certain variable bindings free of conflict. We, therefore, have
to investigate the constraints of both norms in order to see if an overlap of
the values indeed occurs. In our example, the obligation has constraints {10 ≤
X1 ≤ 50, 5 ≤ Y1 ≤ 45} and the prohibition has constraints {5 ≤ X2 ≤ 60, 15 ≤
Y2 ≤ 40}. By using the substitutions we can “merge” the constraints as {10 ≤
X2 ≤ 50, 5 ≤ X2 ≤ 60, 5 ≤ Y2 ≤ 45, 15 ≤ Y2 ≤ 40}; the overlap of the merged
constraints is 10 ≤ X2 ≤ 60 and 15 ≤ Y2 ≤ 40 and they represent ranges of
values for variables X1, X2 and Y1, Y2 where a conflict will occur.

For convenience (and without any loss of generality), we assume that our
norms are in a special format: all terms τ occurring in ω are replaced by a
fresh variable x (not occurring anywhere in ω) and a constraint x = τ is added
to Γ . This is an extended form of explicit unification [20] and the transforma-
tion of formulae from their usual format to this extended explicit unification
format can be easily automated by scanning ω from left to right, collecting all
terms {τ1, . . . , τn}; then we add {x1 = τ1, . . . , xn = τn} to Γ . For example,
norm PA:Rdeploy (s1, X, Y ) ◦ {X > 50} becomes PA′:R′deploy(S, X ′, Y ′) ◦ {A′ =
A, R′ = R, S = s1, X

′ = X, Y ′ = Y, X > 50}. Although some of the added
constraints x = y may seem superfluous, they are required to ensure that un-
constrained variables are properly dealt by our conflict resolution mechanism
presented below.

4.2 Conflict Resolution

We resolve conflicts by manipulating the constraints associated to the norms’
variables, removing any overlap in their values. In Fig. 5 we show the norms
of Fig. 4 without the intersection between their scopes of influence3 – the pro-
hibition has been curtailed, its scope being reduced to avoid the values that

3
For clarity, in this example we show the norms in their usual format without explicit unifications.
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OA1:R1
deploy(s1, X1, Y1) ◦ {10 ≤ X1 ≤ 50, 5 ≤ Y1 ≤ 45}

10 605

5

15

40

45

50

FA2:R2
deploy(s1, X2, Y2) ◦ {5 ≤ X2 < 10, 15 ≤ Y2 ≤ 40}

FA2:R2
deploy(s1, X2, Y2) ◦ {50 < X2 ≤ 60, 15 ≤ Y2 ≤ 40}

Fig. 5. Conflict Resolution: Curtailment of Scopes of Influence

the obligation addresses. Specific constraints are added to the prohibition in or-
der to perform this curtailment; these additional constraints are derived from
the obligation, as we explain below. In our example, we obtain two prohi-
bitions, viz., FA2:R2

deploy(s1, X2, Y2) ◦ {5 ≤ X2 < 10, 15 ≤ Y2 ≤ 40} and
FA2:R2

deploy(s1, X2, Y2) ◦ {50 < X2 ≤ 60, 15 ≤ Y2 ≤ 40}.
We formally define below how the curtailment of norms takes place. It is

important to notice that the curtailment of a norm creates a new set Ω of
curtailed norms:

Definition 15. Relationship curtail(ω, ω′, Ω), where

– ω = Xα:ρϕ ◦ {γ0, . . . , γn} and
– ω′ = X′α′:ρ′ϕ′ ◦ {γ′0, . . . , γ

′
m}

X and X′ being either O, F or P, holds iff Ω is a possibly empty and finite set of
norms obtained by curtailing ω with respect to ω′. The following cases arise:

1. If conflict(ω, ω′, σ) does not hold then Ω = {ω}; that is, the curtailment of
a non-conflicting norm ω is ω itself.

2. If conflict(ω, ω′, σ) holds, then Ω = {ωc
0, . . . , ω

c
m}, where ωc

j = Xα:ρϕ ◦
({γ0, . . . , γn} ∪ {¬(γ′j · σ)}), 0 ≤ j ≤ m.

In order to curtail ω, thus avoiding any overlapping of the values its variables may
have with those variables of ω′, we must “merge” the negated constraints of ω′

with those of ω. Additionally, in order to ensure the appropriate correspondence
of variables between ω and ω′ is captured, we must apply the substitution σ
obtained via conflict(ω, ω′, σ) on the merged negated constraints.

We combine the constraints of ω = Xα:ρϕ ◦ {γ0, . . . , γn} with the negated
constraints of ω′ = X′α′:ρ′ϕ′ ◦ {γ′0, . . . , γ

′
m}. If we regard the set of constraints as

a conjunction of constraints, that is, {γ0, . . . , γi} is seen as
∧n

i=0 γi, and if we
regard “◦” as the conjunction operator ∧, then the following equivalences hold

Xα:ρϕ ∧ (
n∧

i=0

γi ∧ ¬(
m∧

j=0

γ′j · σ)) ≡ Xα:ρϕ ∧ (
n∧

i=0

γi ∧ (
m∨

j=0

(¬γ′j · σ)))
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We can rewrite the last formula as

m∨

j=0

(Xα:ρϕ ∧ (

n∧

i=0

γi ∧ ¬(γ
′
j · σ)))

That is, each constraint on ω′ leads to a possible solution for the resolution
of a conflict and a possible curtailment of ω, as it prevents the overlap among
variables. The curtailment thus produces a set of curtailed norms

m⋃

j=0

ωc
j =

m⋃

j=0

{Xα:ρϕ ◦ ({γ0, . . . , γn} ∪ {¬(γ
′
j · σ)})}

Although each of the ωc
j , 0 ≤ j ≤ m, represents a solution to the norm conflict,

all of them are added to Ω in order to replace the curtailed norm. This allows the
preservation of as much of the original scope of the curtailed norm as possible.
Fig. 5 illustrates this: the result of the curtailment are two new prohibitions
applicable to all those coordinates of the original prohibition which are not
covered by the obligation, rather than just one of them. However, replacing the
original prohibition with one of its curtailed versions would resolve the conflict.

5 Preemptive Normative Conflict Resolution

The rules of a contract create and remove norms. When new norms are intro-
duced, they may conflict with each other. A post-conflict approach would invoke
the norm curtailment mechanism above whenever a conflict arises during the
enactment of a multi-agent system which is subject to a contract. We have pur-
sued in [23] this approach: when a new norm is added to a set of norm, it is
checked for conflicts and, depending on explicit policies, either the new norm is
curtailed or existing norms are curtailed. When a norm is removed, any previ-
ous curtailments it caused on other norms are undone, this being achieved via
a “roll back”/“roll forward” mechanism: the sequence (i.e., the history) of all
enactment states is maintained and we roll back to the state before the norm
to be removed was introduced, then skip the following state and roll forward,
introducing all the norms from that point onwards.

However, this approach is computationally very expensive, as we reported
in [23]. We thus suggest a preemptive approach whereby rules are analysed be-
forehand for their potential conflicts, and then the norms appearing on their
right-hand sides are curtailed, thus preventing any normative conflicts in the
future.

Two rules R, R′ have the potential for raising a normative conflict if i) their
RHSs add conflicting norms to the enactment state and i) their LHS s can be
simultaneously triggered. The first check is straightforward: we can scan the
RHSs of the rules, collect their norms, and compare them two by two. The
second check, however, is much trickier as we cannot in general decide if two
LHSs will be simultaneously triggered: this check would require the exhaustive

12



generation of all histories (i.e., sequences of enactment states) and this could be
prohibitively costly or, in the case of MASs which should run forever, impossible.

We address the second check in a conservative fashion: instead of checking
whether the two LHS ’s simultaneously trigger, we check if the situations they
describe can possibly appear together. For instance, a if rule R has send(Ag1 :
R1,Ag2 : R2, offer(X)) on its LHS and rule R′ has ¬send(Ag1 : R1,Ag2 :
R2, offer(X)) on its LHS , then we know for sure that these rules will never
trigger simultaneously.

Given two rules R = LHS  RHS and R′ = LHS ′  RHS ′, we propose
the compatible(LHS ,LHS ′) predicate to check if there could be an enactment
state in which both LHS and LHS ′ holds. This predicate works by incrementally
building an enactment state, adding to it all the actions, norms and constraints
from LHS that are checked for, then extending the enactment state with the
actions, norms and constraints that are checked for in LHS ′. In this approach,
we also add negated actions and norms to the state being built, so as to check if
the state has a pair 〈Action,¬Action〉, 〈ω,¬ω〉 or 〈γ,¬γ〉; if any of these appear
in the state, then the rules are not compatible.

We not formally define the potential conflicts between two rules of a contract:

Definition 16. Two rules R = LHS  RHS and R′ = LHS ′  RHS ′ are
potentially in conflict, denoted as conflictr

p(R, R′, σ), iff compatible(LHS ,LHS ′)

holds, ⊕ω occurs in RHS, ⊕ω′ occurs in RHS ′, and conflict(ω, ω′, σ).

For the sake of simplicity, we assume in this paper that individual rules do not
add conflicting norms. However, the mechanism we describe below could also be
used to help engineers design individual rules, automatically spotting conflicts
and suggesting changes to the rules.

5.1 Contract Formation via Preemptive Conflict Resolution

If two rules are found to be potentially in conflict, then their norm conflict(s) can
be preemptively resolved by having the norms being added on their right-hand
side curtailed using the mechanism presented above.

In this paper, we address the scenario in which two or more agents attempt
to form a contract free from potential normative conflicts. The agents may have
their own private contract(s) which they will need to take into account when
forging new contracts. We consider two possible scenarios, explained below.

In the first scenario, an initiator agent ag1 sends a proposal to another agent
ag2, consisting of a single rule R to become part of a contract between ag 1 and
ag2. Agent ag2, the contacted agent, receives the rule and checks it against any
of its current norms as well as rules of other contracts it has forged previously.
Agent ag2 then sends back a set Rc = {Rc

1, . . . , R
c
n} of alternative versions of

rule R, in which some of its added norms have been curtailed. The proposing
agent ag1 then chooses one of the rules from Rc and sends a message to ag2

to inform its choice. This protocol is repeated again until the agents have a
complete contract.
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The other scenario is similar to the previous one, however, in addition to the
set Rc = {Rc

1, . . . , R
c
n} of alternative versions of the proposed rule, agent ag 2

also provides a rationale or justification for the suggestions. This rationale is in
the form of ag2’s rules which have potential conflicts with R. When ag1 receives
the set Rc with the justifications, then (as in the previous scenario) it can accept
the suggestions or, more interestingly, ag1 may, on its turn, propose changes in
the rules ag2 used as rationale. This scenario may lead to longer interactions
through which a new contract is forged via the revision of existing contracts.
The revision of existing contracts use the same mechanism described here.

We present in Fig. 6 an algorithm which allows agents to analyse a proposed
set of rules R with respect to another (pre-existing) set of rules R′, providing a

algorithm preempt(R,R′,Rc)
input a proposed set of new rules R, and a set of old rules R′

output a revised set of proposed rules Rc

1 begin

2 Rc ← ∅
3 for each R′ ∈ R′, R′ = LHS ′

 RHS ′, do

4 begin

5 conflict flag ← false

6 Rt ← ∅
7 for each R ∈ R, R = LHS  RHS , do

8 if conflictr
p(R, R′, σ) then

9 begin

10 conflict flag ← true

11 for each ⊕ω′ ∈ {RHS ′} do

12 for each ⊕ω ∈ {RHS} do

13 begin

14 curtail(ω, ω′, Ω)
15 for each ωc ∈ Ω do

16 begin

17 {RHS t} ← {RHS} \ {⊕ω} ∪ {⊕ωc}
18 Rt ← Rt ∪ {LHS  RHS t}
19 end

20 end

21 end

22 if ¬conflict flag then

23 begin

24 Rc ← Rc ∪ {R}
25 R ← R \ {R}
26 end

27 else

28 R ← R \ {R} ∪ Rt

29 end

30 end

Fig. 6. Algorithm for Preemptive Contract Formation

set of recommended changes Rc to R. These changes will guarantee that there
will be no normative conflicts when the agent takes part in enactments of multi-
agent systems regulated by the contracts Rc and R′

In the algorithm we make use of {RHS} to refer to the set with all the
components of the right-hand side of the rule. More formally, we have:

Definition 17. If RHS = ⊗ω1 ∧ · · · ∧ ⊗ωn (where ⊗ is either ⊕ or 	) then
{RHS} = {⊗ω1, . . . ,⊗ωn}.

The algorithm of Fig. 6 works by comparing each rule from R′ with the
candidate rules of R. The algorithm makes use of a temporary set of changed
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rules Rt which is initialised to ∅, the empty set, in line 6 at the start of each
loop with R ∈ R′. The algorithm also makes use of a flag conflict flag which is
set true if there is a potential conflict between any rule R′ ∈ R′, that is, a rule
from the set of old rules, and R ∈ R a new candidate rule – the flag is initialised
to false in line 5 (with each new rule R′ ∈ R′), and switched to true in line 10,
when a potential conflict is detected.

Loop 3–29 goes through the old rules R′ ∈ R′ and compares each of them with
the new rules R ∈ R (loop 7–21). For each pair R, R′ (respectively members from
sets R′ and R), the algorithm checks for potential conflicts (line 8). If there is a
potential conflict (cf. Def 16), lines 11-20 scan the RHS of both rules, obtaining
a set Ω (line 14; cf. with Def. 14) which is the result of the curtailment of norm
ω (from a new rule R ∈ R) with respect to ω′ (from an old rule R′ ∈ R′).

For each curtailed norm ωc ∈ Ω (lines 15–19), the algorithm creates an
alternative RHS , replacing the old ⊕ω with ⊕ωc (line 17). Line 18 updates the
temporary set Rt of curtailed rules, adding the new rules obtained by replacing
⊕ω with ⊕ωc. Lines 22–28, executed after the loop of lines 7–21, update the set
Rc of rules free from potential conflicts. Line 24 adds R to Rc, since it is free
from potential conflicts, and line 25 removes R from the set R; if however, there
has been a conflict, the set R should be updated, removing the conflicting R
from it, and adding all the alternative formulations to R assembled in Rt.

For the algorithm to work we make two assumptions. Firstly, we assume that
the rules in R do not add norms with conflicts in their RHSs. Secondly, we as-
sume that the rules in R do not have potential conflicts among themselves. The
second assumption can be accommodated in a realistic setting if rules (possibly
conflicting) are submitted one at a time to the algorithm; the first assumption
requires the adaptation of the algorithm to address the design of rules, interleav-
ing design with verification, a topic we elaborate further when we discuss future
work below.

6 Related Work

In this section we refer to related work addressing aspects of contracts and
normative systems.

A closely related work is that of [16]. The framework proposed in that pa-
per includes contract specification, negotiation and monitoring, as well as the
appropriate agent architecture to handle these aspects. However, in that paper
issues of contract formation are not explored.

The work in [13] presents legal issues and surveys efforts at standardising
contracts for electronic commerce. However, that paper does not propose a for-
mal representation for contracts, nor does it investigate how contracts can be
forged in an interactive way.

There are various other formulations for norms in the literature, as well as
different ways to represent clauses of contracts using norms. In [8] we compare a
rule-based formalism (notably more sophisticated than the one presented in this
paper) with a number of alternative approaches. We show that it is possible to
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capture various normative phenomena with a rule-based formalism. Moreover,
the rule-based formulation proves to be more compact, elegant, and intuitive
than other formulations.

Our work is not concerned with contract negotiation based in game theoreti-
cal aspects, as explored in [2]. However, it has not escaped our attention that [2]
employs a rule-based formalism, although their notion of norms is quite differ-
ent from the one presented here; their conflicts are solved by means of priorities,
which are used to choose a course of action.

Our approach to norm conflict detection and resolution can be contrasted
with the work described in [11, 12]: the norms in their policies, although in an
alternative syntax, have the same components as the norms presented in this
paper, and hence the same expressiveness. However, conflicts are resolved in a
coarser fashion: one of the conflicting norms is “overridden”, that is, it becomes
void. It is not clear how constraints in the norms of [11, 12] affect conflict, nor
how conflicts are detected – from the informal explanation given, however, only
direct conflicts are addressed. Our conflict resolution is finer-grained: norms are
overridden for specific values (and not completely).

The work described in [3] analyses different normative conflicts – in spite of
its title, the analysis is an informal one. That work differentiates between ac-
tions that are simultaneously prohibited and permitted – these are called deontic
inconsistencies – and actions that are simultaneously prohibited and obliged –
these are called deontic conflicts. The former is merely an “inconsistency” be-
cause a permission may not be acted upon, so no real conflict actually occurs.
On the other hand, those situations when an action is simultaneously obliged
and prohibited represent conflicts, as both obligations and prohibitions influence
behaviours in an incompatible fashion. Our approach to detecting conflicts can
capture the three forms of conflict/inconsistency of [18], viz. total-total, total-
partial and intersection, respectively, when the permission entails the prohibi-
tion, when the prohibition entails the permission and when they simply overlap.

7 Summary, Conclusions and Future Work

We presented formal means to represent norms, that is, prohibitions, permis-
sions, and obligations, and how these can be combined with a rule-based formal-
ism to specify contracts. The left-hand side of our rule describe the circumstances
which ought to arise for a norm to be revoked (removed) or introduced; the right-
hand side of our rules specify which norms are to be revoked or introduced; we
provided a simple semantics for our norms and rules.

Our norm representation uses constraints: these allow for a fine-grained con-
trol of the scope of the norm, that is, the values of the variables the norm refers
to. These constraints are also useful when conflicts arise: we propose the res-
olution of normative conflicts via the careful manipulation of constraints. We
provide means to detect normative conflicts and how to resolve them, and use
these to propose a preemptive approach to contract formation, whereby agents
exchange rules of a contract, checking these against any existing norms or other
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previously forged contracts. Our approach can be said to be preemptive because
normative conflicts are considered before the contract is enacted and hence before
any actual normative conflict arises.

We are exploring the proposed preemptive approach within the context of the
ITA research project4. More specifically, we want to support coalition of human
and software agents from disparate organisations (hence with different degrees
of loyalty and willingness to share information and assets) to agree on the terms
of a mission.

We want to adapt and extend the rule-based approach presented in this
paper, using instead a logical approach. We envisage the clauses of a contract
represented as formulae of a decidable fragment of first-order logic; in this ap-
proach a contract would be interpreted as a logical theory. Normative conflict
can be detected via the reasoning mechanism of the logic, and the manipulation
of constraints could still be used to resolve the conflicts.
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Distrust is not Always the Complement of Trust
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Abstract. We believe that distrust can be as important as trust when agents are
making a decision. An agent may not trust a source because of lack of positive
evidence, but this does not necessarily mean the agent distrusts the source. Trust
and distrust have to be considered as two separate concepts which can coexist.
We are aware that an adequate way to take this fact into account is by considering
explicitly not only the agent’s degree of trust in a source but also its indepen-
dent degree of distrust. Explicitly taking distrust into account allows us to mark
a clear difference between the distinct notions of negative trust and insufficient
trust. More precisely, it is possible, unlike in approaches where only trust is ex-
plicitly accounted for, to “weigh” differently information from helpful, malicious,
unknown, or neutral sources.

1 Introduction and Motivations

Interaction is fundamental in a multi-agent system, allowing agents to cooperate to
achieve their goals. When interchanging information, the extent to which a rational
agent changes its beliefs may depend on several factors, like, for example, the trustwor-
thiness of the agent providing new information, the agent’s attitude towards information
coming from unknown agents, or agents the agent knows as being malicious, or agents
the agent knows as providers of usually correct information, and so on.

The main lack in most existing works on trust or using trust is the way the con-
cept of distrust is implicitly considered, that is, as the complement of trust (trust =
1 − distrust). However, things are not always so simple. Trust and distrust may derive
from different kinds of information (or from different sides of the personality) and,
therefore, can coexist without being complementary [4, 9, 15]. For instance, one may
not trust a source because of lack of positive evidence, but this does not necessarily
mean (s)he distrusts it. Taking distrust explicitly into account allows an agent, e.g.,
to avoid dropping a goal just because favorable information comes from an unknown
agent (neither trusted nor distrusted) — the absence of trust does not always mean full
distrust.

We believe that an adequate way to take these facts into account is by considering
explicitly not only the agent’s trust degree in other agents but also its independent de-
gree of distrust. The trustworthiness of a source can be represented as a (trust, distrust)
pair, and intuitionistic fuzzy logic [1] can be used to represent the uncertainty on the
trust degree introduced by the explicit presence of distrust.

Dagstuhl Seminar Proceedings 09121 
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Example John thinks his house has become too small for his growing family and would
like to buy a larger one. Of course, John wants to spend as little money as possible. A
friend who works in the real estate industry tells John prices are poised to go down. Then
John reads in a newspaper that the real estate market is weak and prices are expected to
go down. Therefore, John’s desire is to wait for prices to lower before buying. However,
John later meets a real estate agent who has an interesting house on sale, and the agent
tells him to hurry up, because prices are soaring. On the way home, John hears a guy
on the bus saying his cousin told him prices of real estate are going up.

We will see below which degrees could be assign by John to these different sources
of information. Note that here, although numerical, the source degrees have only an
ordinal significance.

2 Related Work: From Trust to Distrust

2.1 From Trust . . .

The term trust has a variety of meanings in the literature [14]. Demolombe [5] defines
trust as a mental attitude of an agent with respect to another agent. He considers the
agent’s attitudes as a sort of belief about some property about another agent. He started
by proposing a definition of trust as a binary concept (an agent trusts or does not trust
another agent); then he introduced the notion of graded trust which is more suited to
representing real situations where trust is perceived as less rigid. He also proposed a
formal defintion for both trust with respect to topics and conditional trust.

Definition 1 (trust with respect to topics)
The fact that an agent a trust the agent b with respect to prop for the topic t, Tpropa,b(t),
is defined as follow:

Tpropa,b(t) ≡ ∀“p′′(A(t, “p′′) → Tpropa,b(p),

where A(t, “p′′) means that the sentence named by “p′′ is about the topic t.

The justification for this first proposal is that in general an agent trusts another agent
for all the propositions related to a given topic.

Definition 2 (Conditional Trust)
The fact that an agent a trust the agent b for p in the circumstances represented by q,
Tpropa,b(p|q), is defined as follow:

Tpropa,b(p|q) ≡ Ka(q → prop(p)),

where prop(p) is any property about p.

The justification for this second proposal is that, in real life, there are many situa-
tions where an agent trusts another only in some particular circumstances. This is called
for example, context-awareness trust [17] or decision trust [11].

Castelfranchi and Falcone [2] claimed that trust is much more than a subjective
probability and pointed out to the necessity for a cognitive view of trust as a complex
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structure of beliefs (and goals) determining both a “degree of trust” (instead of a simple
probability factor) and an estimation of risk. However, they expressed their awareness
that in some situations, it should be important to consider the absolute values of some
parameters independently from the values of the others. They present the following jus-
tification to this claim [7]: “For example it is possible that the value of the damage
per se (in case of failure) is too high to choose a given decision branch, and this inde-
pendently either from the probability of the failure (even if it is very low) or from the
possible payoff (even if it is very high). In other words, that danger might seem to the
agent an intolerable risk” .

Inspired by Castelfranchi and Falcone, Jøsang and colleagues [11] argued that an ex-
plicit distintion between context-independent trust, (which they called reliability trust),
and context-dependent trust, (which they called decision trust), should be done when
using the term trust. They adopt the definition proposed by Gambetta [8] as the defini-
tion of reliability trust.

Definition 3 (Reliability Trust)
Reliability trust is the subjective probability by which an individual, A, expects that
another individual, B, performs a given action on which its welfare depends;

and before introducing the concept of decision trust, they propose the following exam-
ple which can help us to understand the difference between reliability trust and decision
trust:

Consider a person who distrusts an old rope for climbing from the third floor of a house
during a fire exercise. Imagine now that the same person is trapped in a real fire in the
same house, and that the only escape is to climb from the third floor window with the
same old rope. In a real fire, most people would trust the rope. Although the reliability
trust in the rope is the same in both situations, the decision trust changes as a function
of the utility values associated with the possible courses of action.

Decision trust is then defined as:

Definition 4 (Decision Trust)
Decision trust is the extent to which a given party is willing to depend on something or
somebody in a given situation with a feeling of relative security, even though negative
consequences are possible.

The relation between trust and risk in decision making is also considered by Jøsang
and Lo Presti in [10]. They propose one of the first models for trust in which a relation
between trust and risk is considered explicitely. Their paper analyses the relationship
between the two concepts by first looking at how a decision is made to enter into a
transaction based on the risk information.

2.2 . . . to Distrust

While some researchers believe distrust simply means a low level of trust, others believe
distrust is a concept entirely separate from trust. Here, we propose a non-exhaustive de-
scription of some works which share to some extent our viewpoint on trust and distrust.
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Lewicki and colleagues [12] proposed a theoretical framework for understanding
simultaneous trust and distrust within relationships. They assert that both trust and dis-
trust involve movements toward certainty: trust concerning expectations of things hoped
for and distrust concerning expectations of things feared. Like us, they belong to the
thinking school which considers that trust and distrust are separate but linked dimen-
sions, but not necessarly the opposite ends of a single continuum. Indeed, the elements
which contribute to the growth and decline of trust can be different from those which
contribute to the growth and decline of distrust.

Griffiths [9] shown how agents can use trust to manage risk when cooperating. He
proposed an approach which (i) uses fuzzy logic to represent trust and distrust; and
(ii) allows agents to reason with uncertain and imprecise information regarding other’s
trustworthiness. He claimed that distrust is not simply a negation of trust, but rather, an
explicit belief that an agent will act against the best interest of another. This is in line
with Lewicki and colleagues’ opinion and also with our opinion. The difference from
our opinion is that we consider that distrust should not be always perceived as a reason
to necessarily associate malicious intentions to the trustee. In case of interaction with a
neutral trustee, that is, when the weight of the trustor’s reasons to trust is the same as
the weight of the trustor’s reasons to distrust, automatically associating malicious (or
helpful) purposes to the trustee would not be fair. In that case, decisions should be taken
based upon other parameters. For example, an optimistic trustor would underestimate
the reasons to distrust: “an optimist is one who will look for the best in those with whom
s(he) interacts”[13]. A pessimistic trustor instead, would underestimate the reasons to
trust.

McKnight and Cheverny [15] argued that trust and distrust are separate constructs
that may exist simultaneously. They claimed that “distrust is not only important be-
cause it allows one to avoid negative consequences, but because general distrust of
other people and institutions is becoming more prevalent which means that it may, to
an extent, be displacing trust as a social mechanism for dealing with risk. Indeed, un-
der certain conditions, distrust may already be more useful or beneficial than trust.”
They underline that “without properly defining trust and distrust, it would be hard to
tell which is more important and when.”

3 Towards an Explicit Representation of Distrust

Existing computational models usually deal with trust in a binary way: they assume
that a source is either to be trusted or not, and they compute the probability that the
source can be trusted. However, sources can not always be divided into trustworthy and
untrustworthy in a clear-cut way. Some sources may be trusted to a certain extent. To
take this fact into account, we think that trust and distrust should be represented as fuzzy
degrees.

3.1 Basic Considerations

Fuzzy sets, introduced by Zadeh [19], are a generalization of classical sets obtained by
replacing the characteristic function of a set A with a membership function µA, which
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can take up any value in [0, 1]. Let X be the universe of discourse and x ∈ X . The
value µA(x) or, more simply, A(x) is the membership degree of element x in A, i.e.,
the degree to which x belongs in A.

In [1], Atanassov extended the fuzzy set theory by introducing Intuitionistic Fuzzy
Set (IFS for short) theory. In fuzzy set theory, it is implicitely assumed that the fact that
an element x “belongs” with a degree µA(x) in a fuzzy set A, follows that x should “not
belong” to A to the extent 1− µA(x). An intuitionistic fuzzy set F , instead, explicitely
assigns to each element x of the considered universe both a degree of membership
µF (x) ∈ [0, 1] and one of non-membership νF (x) ∈ [0, 1] which are such that:

µF (x) + νF (x) ≤ 1.

Obviously, when µF (x)+νF (x) = 1 for all the elements of the universe, the traditional
fuzzy set concept is recovered.

Deschrijver and Kerr showed in [6] that IFS theory is formally equivalent to Interval
Valued Fuzzy Set (IVFS) theory which is another extention of fuzzy set theory in which
the membership degrees are subintervals instead of numbers from [0, 1] [18]. The IFS
pair (µF (x), νF (x)) corresponds to the IVFS interval [µF (x), 1 − νF (x)], indicating
that the degree with which x “belongs in F is ranged from µF (x) to 1 − νF (x). They
defined the hesitation degree, h ∈ [0, 1], as the length of such an interval. It is given
by h = 1 − µF (x) − νF (x). The longer the interval, the more doubt about the actual
µF (x) value.

3.2 The Trustworthiness of a Source

The trustworthiness of a source (or of another agent) may be defined as, [4]:

Definition [Trustworthiness of a Source]
Let t ∈ [0, 1] be the degree of trust the agent has in a source, and d ∈ [0, 1] be its
degree of distrust in the same source. The trustworthiness of that source for the agent is
represented by pair (t, d), whith t + d ≤ 1.

Following Deschrijver and Kerr’s viewpoint, the trustworthiness (t, d) of a source
corresponds to the interval [t, 1 − d], indicating that the trust degree can range from t
to 1 − d. Therefore, the hesitation degree h = 1 − t − d represents the uncertainty,
or doubt, about the actual trust value. E.g., if a source has trustworthiness (0.2, 0), this
means that the agent trusts the source to degree 0.2, but possibly more, because there
is much doubt (h = 0.8). More precisely, it means that the agent may trust the source
to a degree varying from 0.2 to 1. Instead, if the trustworthiness is (0.6, 0.4), the agent
trusts the source to degree 0.6 but not more (h = 0).

Thanks to these considerations, we can represent the trustworthiness of a source
more faithfully than as it is proposed in existing approaches. For example, we can ex-
plicitly represent the following cases of trustworthiness:

(0, 1): the agent has reasons to fully distrust the source, hence it has no hesitation (h = 0),
(0, 0): the agent has no information about the source and hence no reason to trust the

source, but also no reason to distrust it; therefore, it fully hesitates in trusting it
(h = 1),
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(1, 0): the agent has reasons to fully trust the source, hence it has no hesitation (h = 0).

As we can see, by considering both (and not neccessarily related concepts) trust and
distrust, it is possible to differentiate between absence of trust caused by presence of
distrust (e.g., information provided by a malicious source) versus by lack of knowledge
(e.g., as towards an unknown source).

The sources can be classified in:

– helpful source: a source for which the reasons to believe in are stronger than the
reasons to reject its information;

– malicious source: a source for which the reasons to reject its information are stronger
than the reasons to believe it;

– unknown source: a source which never provided information to the agent before;
– neutral source: a source which provided to the agent as much true information as

false.

Example Contiunued To sum up, John got information from four sources with different
scores. The first source is friendly and competent; therefore, its score is (1, 0). The
second is supposedly competent and hopefully independent: therefore, its score might
be something like ( 1

2 , 1
4 ). The third source is unknown, but has an obvious conflict

of interest; therefore John assigns it a score of (0, 1). Finally, the guy on the bus is
a complete stranger reporting the opinion of another complete stranger. Therefore, its
score cannot be other than (0, 0).

4 Summary and Perspectives for a Normative Multiagent System

Taking distrust explicitly into account can help when making decisions in a situa-
tion where the agents are collaborative, that is, those which are considered as helpful
sources; wary, which are suited to contexts where competition is the main theme; and
utility-driven, for which a gain corresponds to a loss for its counterparts.

It would be interesting to take these considerations into account in the case of a
Normative Multiagent System, where the behaviour of an agent depends on its internal
components but also on the society it is part of.

Luck and colleagues [16], for example, proposed to analyse the agent’s behaviour
(reasoning) thanks to a three-dimensional space model, Figure 1, with motivations (axis
x), norms (axis y), and trust (axis z). Each vertex in the space represents a kind of
society. In particular, an increase in the value of x represents a prevalence of malicious
motivations, indicating that agents are more likely to defect if they see more utility in
alternative interactions; an increase in the value of y indicates the prevalence of stricter
norms and enforcement which can constraint the motivations of agents and prevent
them from acting maliciously if they intend to do so; finally, an increase in the value of
z indicates an increase in the trust that agents place in other agents and, therefore, an
increase in willingness to cooperate with others.
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Fig. 1. Three-dimensional space model with norms, motivations and trust.
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Abstract

Building on a simple modal logic of context, the paper presents a dynamic logic
characterizing operations of contraction and expansion on theories. We investigate
the mathematical properties of the logic, and use it to develop an axiomatic and
semantic analysis of norm change in normative systems. The proposed analy-
sis advances the state of the art by providing a formal semantics of norm-change
which, at the same time, takes into account several different aspects of the phe-
nomenon, such as permission and obligation dynamics, as well as the dynamics of
classificatory rules.

1 Introduction
Normative systems [4] have become a valuable abstraction for the design of multi-
agent systems, and logic-based studies of norms have obtained increasing attention, in
particular for their usefulness in providing computational models of norm-based inter-
action grounded on logical semantics (e.g. [1]). Taking up on pioneering work such as
[3], the topic of how norms change over time has also become a topic of interest (e.g.
[8]) given its relevance for understanding the ways social interaction evolves within
multi-agent systems.

The aim of this work is to study norm change as a special instance of context
change. Following [9] normative systems are, in a nutshell, logical theories concerning
complex ways of classifying states of affairs as legal or illegal. As a consequence, each
normative system specifies a context with respect to which rules of classification hold.
Once such perspective is assumed, existing formal accounts of belief and knowledge
dynamics can be transferred to study context change and, thus, norm change. We
focus on dynamic epistemic logic (DEL) [17], and study two specific context change
operations which can successfully account for norm change:

• Context expansion acounting for norm promulgation,

• Context contraction accounting for norm derogation.
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In both cases, it is assumed that the authority of a normative system makes a procla-
mation in such a way that the norms of the normative system are modified. In the
former case, the authority proclaims that from now on “a certain fact ϕ implies a vio-
lation”, expanding the current set of obligations of the normative system. For example,
the authority of a normative system might proclaim that from now on “driving faster
than 110 km/h on a highway implies a violation”. After this norm promulgation, it is
obligatory to drive at most 110 km/h. In the latter case, the authority proclaims that
“a certain fact ϕ does not imply a violation”, contracting the current set of obligations
of the normative system (and consequently making the normative system more ‘per-
missive’). For example, the authority of a country might proclaim that from now on
‘encrypting email does not imply a violation’ by derogating the previous norm which
forbade encryption in written communication. After this proclamation, it is permitted
to encrypt email.

We start from the modal logic presented in [9]. This logic is based on a set of modal
operators [X] where X is a label denoting the context of a theory, i.e., in our case, the
context of a normative system. A formula [X]ϕ reads ‘in the context of normative
system X it is the case that ϕ’. Our aim in this paper is to extend this logic with two
special kinds of events of the form X+ψ and X−ψ, and corresponding modal operators
[X+ψ] and [X−ψ]. The former are similar to the operators for announcement studied
in DEL [17]. Their function is to restrict the space of possible worlds accepted by the
normative system X to the worlds where ψ is true. We use these operators to model
norm promulgation. The function of modal operators of type [X−ψ] is to add to the
space of possible worlds accepted by the normative system X some worlds in which ψ
is false. We use them to model norm derogation.

The paper is organized as follows. In Section 2 we will briefly present the modal
logic of context of [9]. Section 3 is devoted to extend this logic with the two events
X+ψ and X−ψ which allow to model context dynamics. Finally, in Section 4, we
will apply our logical framework to norm change, i.e.norm promulgation and norm
derogation.

2 A modal logic of context
The logic presented in this section is a simple modal logic designed to represent and
reason about a localized notion of validity, that is, of validity with respect to all models
in a given set. Such a given set is what is here called a context, in accord with much
literature in artificial intelligence and linguistics on context theory (see, for instance,
[14, 7]).

Let Φ = {p, q, . . .} be a countable non-empty set of propositional letters, and let
C = {X,Y, . . .} be a countable set of contexts. LProp denotes the propositional lan-
guage.

2.1 Models
Definition 1. A context model (Cxt-model)M = (W,R, I) is a tuple such that:

• W is a nonempty set of possible worlds;
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• R : C −→ 2W maps each context X to a subset of W ;

• I : Φ −→ 2W is a valuation.

We write RX for R(X) and w ∈ M for w ∈ W . For w ∈ M, the couple (M, w) is a
pointed context model.

A Cxt-model represents a logical space together with some of its possible restric-
tions, i.e., the contexts. In our case, contexts are used to represent the restrictions
to those sets of propositional models satisfying the rules stated by a given normative
system [9]. Let us illustrate how they can be used to model normative systems.

Example 1. Consider a normative system according to which: motorized vehicles must
have a numberplate ; motorized vehicles must have an insurance; bikes should not have
an insurance; bikes are classified as not being a motorized vehicle. Once a designated
atom V is introduced in the language, which represents a notion of “violation” [5], the
statements above obtain a simple representation:

Rule 1: (mt ∧ ¬pl)→ V

Rule 2: (mt ∧ ¬in)→ V

Rule 3: (bk ∧ in)→ V

Rule 4: bk → ¬mt

A Cxt-modelM = (W,R, I) where I maps atoms mt , pl , in , bk and V to subsets of
W models the normative system above as a context X if RX coincides with the subset
of W where Rules 1-4 are true according to propositional logic.

2.2 Logic
The logic Cxt is now presented which captures the notion of validity with respect to
a context, thereby allowing to represent situations such as Example 1 in our language.
To talk about Cxt-models we use a modal language LCxt containing modal operators
[X] for every X ∈ C, plus the universal modal operator [U]. The set of well-formed
formulae of LCxt is defined by the following BNF:

LCxt : ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | [U]ϕ | [X]ϕ

where p ranges over Φ and X over C. The Boolean connectives >,∨,→,↔ and the
dual operators 〈X〉 are defined as usual within LCxt as: 〈X〉ϕ = ¬[X]¬ϕ, for X ∈
C ∪ {U}.

We interpret formulas of LCxt in a Cxt-models as follows: the [U] operator is in-
terpreted as the universal modality [6], and the [X] operators model a restricted notion
of validity.

Definition 2. LetM be a Cxt-model, and let w ∈M.
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M, w |= [X]ϕ iff for all w′ ∈ RX ,M, w′ |= ϕ;
M, w |= [U]ϕ iff for all w′ ∈W ,M, w′ |= ϕ;
M, w |= p iff w ∈ I(p).

and as usual for the Boolean operators. Formula ϕ is valid in M, noted M |= ϕ,
iff M, w |= ϕ for all w ∈ M. ϕ is Cxt-valid, noted |=Cxt ϕ, iff M |= ϕ for all
Cxt-modelsM.

Cxt-validity is axiomatized by the following schemas:

(P) all propositional axiom schemas and rules
(4XY ) [X]ϕ→ [Y ][X]ϕ
(5XY ) 〈X〉ϕ→ [Y ]〈X〉ϕ

(TU) [U]ϕ→ ϕ

(KX) [X](ϕ→ ϕ′)→ ([X]ϕ→ [X]ϕ′)
(NX) IF ` ϕ THEN ` [X]ϕ

where X,Y ∈ C ∪ {U}. The [X] and [Y ] operators are K45 modalities strengthened
with the two inter-contextual interaction axioms 4XY and 5XY . [U] is an S5 modality.
Provability of a formula ϕ, noted `Cxt ϕ, is defined as usual.

Logic Cxt is well-behaved from the point of view of both axiomatizability and
complexity.

Theorem 1 ([9]). |=Cxt ϕ iff `Cxt ϕ.

Theorem 2. Deciding Cxt-validity is coNP-complete.

Sketch of proof. Satisfiability of S5 formulas is decidable in nondeterministic polyno-
mial time [6]. Let L[U] be the language built from the set of atoms Φ∪ C (supposing Φ
and C are disjoint) and containing only one modal operator [U]. That is:

L[U] : ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | [U]ϕ

where p ranges over Φ∪C. It gets a natural interpretation on context models where [U] is
the global modality. Then one can show that the following is a satisfiability-preserving
polytime reduction f of LCxt to L[U]: f(p) = p; f(¬ϕ) = ¬f(ϕ); f(ϕ ∧ ϕ′) =
f(ϕ) ∧ f(ϕ′); f([U]ϕ) = [U]f(ϕ); f([X]ϕ) = [U](X → f(ϕ)).

The same argument can be used to prove linear time complexity if the alphabet Φ
is finite.

Another interesting property of Cxt is that every formula of LCxt is provably
equivalent to a formula without nested modalities, as the following proposition shows.
We first formally define the language without nested modalities:

L1
Cxt : ϕ ::= α | [X]α | [U]α | ¬ϕ | ϕ ∧ ϕ

where α ranges over LProp and X over C.

Proposition 1. For all ϕ ∈ LCxt there is ϕ1 ∈ L1
Cxt such that `Cxt ϕ↔ ϕ1.
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Proof. By induction on ϕ. The Boolean cases clearly work. If ϕ is of the form [X]ψ
with X ∈ C ∪ {U} then by IH there are αk, αij , β

i ∈ LProp such that
ϕ↔ [X]

∧
k∈Nl

(αk ∨
∨

i∈Nnk

([Xi]αi1 ∨ . . . ∨ [Xi]αini
∨ 〈Xi〉βi))).

However, using (4XY ) and (5XY ), one can easily show that
`Cxt [X](αk ∨

∨
i∈Nnk

([Xi]αi1 ∨ . . . ∨ [Xi]αini
∨ 〈Xi〉βi)))↔

([X]αk ∨
∨

i∈Nnk

([Xi]αi1 ∨ . . . ∨ [Xi]αini
∨ 〈Xi〉βi))).

We will use this result in the completeness proof of the dynamic extension of Cxt
(Proposition 3).

2.3 Normative systems in Cxt

We are ready to provide an object-level representation of Example 1. The contextual
operators [X] and the universal operator [U] can be used to define the concepts of
classificatory rule, obligation and permission which are needed to model normative
systems. Classificatory rules are of the form “ϕ counts as ψ in the normative systemX”
and their function in a normative systems is to specify classifications between different
concepts [12]. For example, according to the classificatory rule “in the context of
Europe, a piece of paper with a certain shape, color, etc.counts as a 5 Euro bill”, in
Europe a piece of paper with a certain shape, color, etc. should be classified as a 5 Euro
bill. The concept of classificatory rule is expressed by the following abbreviation:

ϕ⇒X ψ
def
= [X](ϕ→ ψ)

where ϕ ⇒X ψ reads ‘ϕ counts as ψ in normative system X’. As done already in
Example 1, by introducing the violation atom V we can obtain a reduction of deontic
logic to logic Cxt along the lines first explored by Anderson [5]. As far as obligations
are concerned, we introduce operators of the form OX which are used to specify what
is obligatory in the context of a certain normative system X:

OXϕ
def
= ¬ϕ⇒X V

According to this definition, ‘ϕ is obligatory within context X’ is identified with ‘¬ϕ
counts as a violation in normative system X’. Note that we have the following Cxt-
theorem:

`Cxt ((ϕ⇒X ψ) ∧ (ϕ⇒X ¬ψ))→ OX¬ϕ(1)

This will be of use in Section 4. Every OX obeys axiom K and necessitation, and is
therefore a normal modal operator.

`Cxt OX(ϕ→ ψ)→ (OXϕ→ OXψ)(2)
IF `Cxt ϕ THEN `Cxt OXϕ(3)

Note that the formula OX⊥ is consistent, hence our deontic operator does not satisfy
the D axiom.
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We define the permission operator in the standard way as the dual of the obligation
operator: “ϕ is permitted within context X”, noted PXϕ. Formally:

PXϕ
def
= ¬OX¬ϕ

PUϕ should be read “ϕ is is deontically possible”.

Example 2. Consider again the normative system of Example 1. We can now express
in Cxt that Rules 1-4 explicitly belong to context X:

Rule 1′: OX(mt → pl)

Rule 2′: OX(mt → in)

Rule 3′: OX(bk → ¬in)

Rule 4′: bk ⇒X ¬mt

Rules 1′-4′ explicitly localize the validity of Rules 1-4 of Example 1 to context X .
Logic Cxt is therefore enough expressive to represent several (possibly inconsistent)
normative systems at the same time.

The context representations enabled by Cxt are inherently static. The next section
investigates context dynamics.

3 Dynamic context logic

3.1 Two relations on models

We first define the relations
X+ψ−→ and

X−ψ−→ on the set of pointed Cxt-models.

Definition 3. Let (M, w) = (W,R, I, w) and (M′, w′) = (W ′, R′, I ′, w′) be two
pointed Cxt-models, and let ϕ ∈ LCxt and X ∈ C.

We set (M, w)
X+ψ−→ (M′, w′) iff W = W ′, w = w′, I = I ′, and

• R′Y = RY if Y 6= X;

• R′X = RX ∩ ||ψ||M.

We set (M, w)
X−ψ−→ (M′, w′) iff W = W ′, w = w′, I = I ′, and

• R′Y = RY if Y 6= X;

• R′X =
{
RX ifM, w |= ¬[X]ψ ∨ [U]ψ
RX ∪ S otherwise, for some ∅ 6= S ⊆ ||ψ||M

In case (M, w)
X+ψ−→ (M′, w′) (resp. (M, w)

X−ψ−→ (M′, w′)), we say that M′ is a
(context) expansion (resp. contraction) ofM.
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In the above definition, ||ψ||M = {w ∈ M : M, w |= ψ}. So in both cases, it is
only the context X which changes fromM toM′. In the first case, it is restricted to
the worlds that satisfy ψ, and in the second case, it is enlarged with some worlds which
satisfy ¬ψ, except if such worlds do not exist in the model ([U]ψ) or if ¬ϕ is already
consistent with the context (¬[X]ψ). Note that there might be several contractions of

a given Cxt-model but there is always a unique expansion. The relation
X−ψ−→ thus

defines implicitly a family of contraction operations. The following proposition shows

that
X−ψ−→ is essentially the converse relation of

X+ψ−→.

Proposition 2. Let (M, w) and (M′, w′) be two pointed Cxt-models and ψ ∈ LCxt.

Then (M, w)
X+ψ−→ (M′, w′) iff

(M′, w′) X−ψ−→ (M, w) andM′, w′ |= [X]ψ.

3.2 Logic
The language of the logic DCxt is obtained by adding the dynamic operators [X+ψ]
and [X−ψ] to the language LCxt:

LDCxt : ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | [X]ϕ | [U]ϕ | [X+ψ]ϕ | [X−ψ]ϕ

where p ranges over Φ, X over C and ψ over LCxt. [X+ψ]ϕ reads ‘after the expansion
of the context X by ψ, ϕ is true’, and [X−ψ]ϕ reads ‘after any contraction of the
context X by ψ, ϕ is true’.

Definition 4. LetM be a Cxt-model. The truth conditions for LDCxt inM are those
of Definition 2, plus:

M, w |= [X+ψ]ϕ iff M′, w′ |= ϕ for all Cxt-models (M′, w′)
such that (M, w)

X+ψ−→ (M′, w′);
M, w |= [X−ψ]ϕ iff M′, w′ |= ϕ for all Cxt-models (M′, w′)

such that (M, w)
X−ψ−→ (M′, w′).

As before,M |= ϕ iffM, w |= ϕ for all w ∈ M, and ϕ is DCxt-valid (|=DCxt ϕ)
iffM |= ϕ for all Cxt-modelsM.

The operator [X−ψ] is thus useful if we want to have general properties about
our family of contractions or about a situation; for example, given some formulas
ψ1, . . . , ψn, what would be true after any sequence of contractions and expansions
by these formulas? Can we get an inconsistency with a specific choice of contractions?

In order to axiomatize the DCxt-validities we define for every X ∈ C two auxil-
iary languages L6=X and L=X :

L=X : ϕ ::= [X]α | ¬ϕ | ϕ ∧ ϕ
L6=X : ϕ ::= α | [Y ]α | ¬ϕ | ϕ ∧ ϕ

where α ranges over LProp and Y over (C ∪ {U})− {X}.
Logic DCxt is axiomatized by the following schemata:
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(Cxt) All axiom schemas and inference rules of Cxt

(R+1) [X+ψ]ϕ6=X ↔ ϕ6=X

(R+2) [X+ψ][X]α↔ [X](ψ → α)
(R+3) [X+ψ]¬ϕ↔ ¬[X+ψ]ϕ
(R−1) [X−ψ](ϕ6=X ∨ ϕ=X)↔ (ϕ6=X ∨ [X−ψ]ϕX)
(R−2) ¬[X−ψ]⊥
(R−3) [X−ψ]([X]α1 ∨ . . . ∨ [X]αn ∨ 〈X〉α)↔

((¬[X]ψ ∨ [U]ψ) ∧ ([X]α1 ∨ . . . ∨ [X]αn ∨ 〈X〉α))
∨ (([X]ψ ∧ ¬[U]ψ) ∧
((
∨
i

([X]αi ∧ [U](ψ ∨ αi))) ∨ 〈X〉α ∨ [U](ψ ∨ α)))

(K+) [X+ψ](ϕ→ ϕ′)→ ([X+ψ]ϕ→ [X+ψ]ϕ′)
(K−) [X−ψ](ϕ→ ϕ′)→ ([X−ψ]ϕ→ [X−ψ]ϕ′)

(RRE) Rule of replacement of proved equivalence

where X ∈ C, ϕ,ϕ′ ∈ LDCxt, ψ ∈ LCxt, ϕ=X ∈ L=X , ϕ6=X ∈ L6=X , and
α, αi . . . ∈ LProp.

Note that from (R−1) and (R−2) one can deduce [X−ψ]ϕ6=X ↔ ϕ6=X . The above
are reduction axioms:

Proposition 3. For all ϕDCxt ∈ LDCxt there is ϕCxt ∈ LCxt such that `DCxt

ϕDCxt ↔ ϕCxt.

Sketch of proof. (By induction on the number of occurrences of dynamic operators.)
Let ϕDCxt ∈ LDCxt and ϕ′DCxt be one of its sub-formulas of the form [X+ψ]ϕCxt

or [X−ψ]ϕCxt, with ϕCxt ∈ LCxt. By Proposition 1, there is ϕ1
Cxt ∈ L1

Cxt such
that `Cxt ϕCxt ↔ ϕ1

Cxt. So `DCxt [X+ψ]ϕCxt ↔ [X+ψ]ϕ1
Cxt by (REE) and (K+).

Now, thanks to axioms (R+1), (R+2) and (R+3) and because ϕ1
Cxt ∈ L1

Cxt, one can
easily show that there is ψCxt ∈ LCxt such that `DCxt [X+ψ]ϕ1

Cxt ↔ ψCxt. For
the case [X−ψ]ϕCxt we apply the same method using (R−1), (R−2) and (R−3). So
`DCxt ϕ

′
DCxt ↔ ψCxt. Now we replace ϕ′DCxt by ψCxt in ϕDCxt. This yields an

equivalent formula (thanks to (RRE)) with one dynamic operator less. We then apply
to this formula the same process we applied to ϕCxt until we get rid of all the dynamic
operators.

For example, `DCxt [X−α]¬[X]α ↔ 〈U〉¬α. As in DEL, soundness and com-
pleteness follow from Proposition 3:

Theorem 3. |=DCxt ϕ iff `DCxt ϕ.

Theorem 4. Deciding DCxt-validity is decidable.

Finally, we could perfectly enrich this formalism with specific contraction opera-
tors. For example we could add to LDCxt the contraction operator [X $ ψ]ϕ whose
semantics would be defined as follows: for M = (W,R, I), M, w |= [X $ ψ]ϕ
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iff M′, w |= ϕ, where M′ = (W,R′, I) with R′Y = RY for Y 6= X and R′X =
RX ∪ {w ∈ W | M, w |= ¬ψ}. To get a complete axiomatization, we just have
to add to DCxt the following axiom schemas: (1) [X $ ψ]ϕ6=X ↔ ϕ6=X ; (2)
[X $ ψ]¬ϕ ↔ ¬[X $ ψ]ϕ; (3) [X $ ψ][X]α ↔ [X]α ∧ [U](¬ψ → α); and
the distribution axiom (K$). In fact this contraction $ belongs to the family of con-
tractions defined in Definition 3, and so we have `DCxt [X−ψ]ϕ→ [X $ ψ]ϕ.

4 A logical account of norm change
Just as we defined the static notions of obligation and classificatory rules on the basis
of Cxt, we can in the same spirit define the dynamic notions of promulgation and
derogation of obligation and classificatory rules on the basis of DCxt:

+(ϕ⇒X ψ)
def
= X+(ϕ→ ψ)

+OXψ
def
= X+(¬ψ → V)

−(ϕ⇒X ψ)
def
= X−(ϕ→ ψ)

−OXψ
def
= X−(¬ψ → V)

[+(ϕ ⇒X ψ)]χ (resp. [−(ϕ ⇒X ψ)]χ) should be read ‘after the promulgation (resp.
after any derogation) of the classificatory rule ϕ⇒X ψ, χ is true’. Likewise, [+OXψ]ϕ
(resp. [−OXψ]ϕ) should be read ‘after the promulgation (resp. after any derogation)
within context X of the obligation ψ, χ is true’. Then we have the following intuitive
DCxt-theorems:

`DCxt [+(ϕ⇒X ψ)]ϕ⇒X ψ(4)
`DCxt [+OXψ]OXψ(5)
`DCxt PU¬ψ → [−OXψ]PX¬ψ(6)

In particular, DCxt-theorem (6) says that “If ¬ψ is deontically possible then after any
derogation within context X of the obligation ψ, ¬ψ is permitted”.

Example 3. In Example 2, after the legislator’s proclamation that motorized vehicles
having more than 50cc (mf ) are obliged to have a numberplate (event +OX((mt ∧
mf )→ pl ) and that motorized vehicles having less than 50cc (¬mf ) are not obliged to
have a numberplate (event−OX((mt ∧¬mf )→ pl ) we should expect that motorbikes
having more than 50cc have the obligation to have a numberplate and motorbikes
having less than 50cc have the permission not to have a numberplate. This is indeed
the case:

`DCxt PU(mt ∧ ¬mf ∧ ¬pl)→ ([+OX((mt ∧mf )→ pl)]

[−OX((mt ∧ ¬mf )→ pl)]OX((mt ∧mf )→ pl)∧

PX(mt ∧ ¬mf ∧ ¬pl)).

We now consider two types of normative inconsistency, classificatory dilemma and
normative dilemma, and show how they might arise from promulgation and derogation.
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Classificatory dilemna By classificatory dilemma we mean that a certain fact ϕ is
classified by a normative system both under ψ and under ¬ψ, i.e. (ϕ⇒X ψ)∧ (ϕ⇒X

¬ψ). An example of classificatory dilemma is the case of someone who finds an object
in the sea and is classified by the normative system as the owner of the object. At
the same time, someone who claims having lost the object and can prove this, is also
classified as the owner of the object. Finally, according to the normative system, there
is no more than one owner of an object. If a person finds an object in the sea and another
person claims that she has lost this object and can prove that, we incur a classificatory
dilemma: the former person is classified as the owner of the object and, at the same
time, she is classified as not being the owner of it.

Example 4. In Example 2, after the legislator’s proclamation that bikes with an engine
must be classified as a motorized vehicles (event+((bk ∧ en)⇒X mt), bikes with an
engine are classified as motorized vehicles and, at the same time, they are classified as
not being motorized vehicles. This is a classificatory dilemma:

[+((bk ∧ en)⇒X mt)](((bk ∧ en)⇒X mt)∧

((bk ∧ en)⇒X ¬mt)).

Example 4 illustrates the following DCxt-theorem:

`DCxt (ϕ⇒X ψ)→ [+(ϕ⇒X ¬ψ)]
((ϕ⇒X ψ) ∧ (ϕ⇒X ¬ψ))

(7)

The Cxt-theorem (1) tells us that a classificatory dilemma implies OX¬ϕ. It follows
that if the normative system X is expanded with ϕ then ⊥ becomes true in X , that is,
the normative system becomes inconsistent:

`DCxt ((ϕ⇒X ψ) ∧ (ϕ⇒X ¬ψ))→ [X+ϕ][X]⊥(8)

Thus, changes generating classificatory dilemmas can be considered as badly designed
normative modifications.

Normative dilemna By normative dilemma we mean a situation in which a nor-
mative system prescribes that a certain fact ψ must be true under a certain condition
ϕ and at the same time ¬ψ must be true under the same condition, i.e. OX(ϕ →
ψ)∧OX(ϕ→ ¬ψ). An example of normative dilemma is the case of a soldier having
at the same time the obligation to kill his enemies during a war and the obligation for
every person not to shoot other people. If a soldier is classified as a person and enemies
are classified as people, we incur a normative dilemma: a soldier has the obligation to
shoot his enemies and the obligation not to shoot his enemies. Note that OX¬ϕ implies
OX(ϕ→ ψ) ∧OX(ϕ→ ¬ψ) for every ψ. So, to be more precise, we should exclude
from the previous definition of normative dilemna the situation in which OX¬ϕ holds.

Example 5. In Example 2, after the legislator’s proclamation that every bike must have
an insurance (event+OX(bk → in) ), bikes have the obligation to have an insurance
and the obligation not have it, which is a normative dilemma:

[+OX(bk → in)](OX(bk → in) ∧OX(bk → ¬in)).
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Example 5 illustrates the following DCxt-theorem:

`DCxt OX(ϕ→ ψ)→ [+OX(ϕ→ ¬ψ)]
(OX(ϕ→ ψ) ∧OX(ϕ→ ¬ψ))

(9)

It is to be noted that, if a normative dilemma OX(ϕ→ ψ) ∧OX(ϕ→ ¬ψ) holds
and the normative system is expanded with ϕ then every fact χ becomes obligatory in
X:

`DCxt (OX(ϕ→ ψ) ∧OX(ϕ→ ¬ψ))→ [X+ϕ]OX⊥(10)

It is worth stressing the similarity between DCxt-theorem (8) and DCxt-theorem
(10). While a classificatory dilemma results in an empty context (DCxt-theorem (8))
under the assumption of the antecedent, a normative dilemma results in a context where
legality is impossible (DCxt-theorem (10)).

Finally, we have shown by DCxt-theorems (7) and (9) that if we want to change
a norm (a classificatory rule or an obligation) to a contrary norm by a sole act of norm
promulgation we end up with a dilemma (either classificatory or normative). Thus, to
avoid dilemmas, we must first derogate the old norm and then promulgate the contrary
norm. This observation is formally expressed by the following DCxt-theorems:

`DCxt ((ϕ⇒X ψ) ∧ 〈U〉¬(ϕ→ ψ))→
[−(ϕ⇒X ψ)][+(ϕ⇒X ¬ψ)]
¬((ϕ⇒X ¬ψ) ∧ (ϕ⇒X ψ))

(11)

`DCxt (OX(ϕ→ ψ) ∧PU¬(ϕ→ ψ))→
[−OX(ϕ→ ψ)][+OX(ϕ→ ¬ψ)]
¬(OX(ϕ→ ¬ψ) ∧OX(ϕ→ ψ))

(12)

Note that by definition of −, these general results hold for any derogation (stemming
from a contraction of Definition 3).

5 Related works
Formal models of norm change have been drawing attention since the seminal work
of Alchourrón and Makinson on the logical structure of derogation in legal codes [3]
which expanded into a more general investigation of the logic of theory change (alias
belief change) [2]. AGM models are about the contraction ofLProp-theories, and focus
on minimal change. In contrast, we here consider a modal language LCxt.1 And our
modal operator−allows to express properties about a family of contractions, which ac-
tually do not necessarily satisfy the AGM criteria of minimal change. However, the va-
lidity ¬[X]ψ → (ϕ↔ [X−ψ]ϕ) captures one of these minimality criteria. Another one
is expressed by the valid formulas α→ [X−ψ][X+ψ]α and [Y ]α→ [X−ψ][X+ψ][Y ]α
, with α ∈ LProp, which correspond to the AGM principle of recovery. The invalid
¬[X]p→ [X−p][X+p]¬[X]p demonstrates that the above formula does not generalize
to all α in LCxt.

1In fact, our formalism satisfies the same dynamic properties about Moore sentences as DEL [17].
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Although formal analysis of norm change are available in the literature, the issue
of a formal semantics for the dynamics of norms is relatively new. Indeed, most work
in deontic logic is about defining formal semantics describing static deontic concepts.
From this perspective, our research strategy is close in spirit to Segerberg’s [13], who
argued for an integration of AGM belief revision with Hintikka-like static logics of
belief: we here do the same for deontic logic.

Among the few attempts to provide a formal semantics to norm change we here
consider the approach proposed in [11]. There, an extension of the dynamic logic of
permission (DLP) of [16] with operations of granting or revoking a permission was
proposed. They call DLPdyn this DLP extension. Their operations are similar to our
operations of norm promulgation and norm derogation. DLP is itself an extension of
PDL (propositional dynamic logic) [10] where actions are used to label transitions from
one state to another state in a model. The DLPdyn operation of granting a permission
just augments the number of permitted transitions in a model, whereas the operation
of revoking a permission reduces the number of permitted transitions. However there
are important differences between our approach and Pucella & Weissman’s. For us,
normative systems are more basic than obligations and permissions, and the latter are
defined from (and grounded on) the former. Moreover, dynamics of obligations and
permissions are particular cases of normative system change (normative system expan-
sion and contraction). Thus, we can safely argue that our approach is more general
than Pucella & Weissman’s in which only dynamics of permissions are considered. It
is also to be noted that, while in our approach classificatory rules and their dynamics
are crucial concepts in normative change, in DLPdyn they are not considered and even
not expressible. In future work we will analyze the relationships between DLPdyn and
our logic, and possibly a reduction of DLPdyn to our logic DCxt.

While Pucella & Weissman’s revocation of permissions corresponds to public an-
nouncements in DEL, no DEL approaches have proposed the counterpart of their oper-
ation of granting permissions, alias contractions (with the exception of [15], but in the
framework of a logic of preference). Probably the reason for that is that it is difficult to
define contraction operations both preserving standard properties of epistemic models
such as transitivity and Euclidianity and allowing for reduction axioms. As we have
shown, this is possible in our logic DCxt thanks to the intercontextual interaction
axioms.

6 Conclusions
We have introduced a dynamic logic accounting for context change, and have analyzed
several aspects of norm change, viz. the dynamics of permissions, obligations and clas-
sificatory rules. Although the logic has been applied here only to provide a formal anal-
ysis of norm-change, it is clear that its range of applications is much broader. Viewed
in its generality, the logic is a logic of the dynamics of propositional theories, and as
such, can be naturally applied to formal epistemology by studying theory-change, or
to non-monotonic reasoning by studying how the context of an argumentation evolves
during, for instance, a dialogue game. This kind of applications are future research.
Another line of research would be to study the interaction between contexts, and so in
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a dynamic setting. Notice, in particular, that it would be straightforward to define a set
algebra on contexts.
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Abstract. Developing decision support systems is a complex process. It 
involves stakeholders with diverging interpretations of the task and domain. In 
this paper, we propose to use ontology mapping to make a detailed analysis of 
the overlaps and differences between mental models of stakeholders. The 
technique is applied to an extensive case study about EU customs regulations. 
Companies which can demonstrate to be ‘in control’ of the safety and security 
in the supply chain, may become ‘Authorized Economic Operator’ (AEO), and 
avoid inspections by customs. We focus on a decision support tool, AEO 
Digiscan, developed to assist companies with an AEO self-assessment. We 
compared the mental models of customs officials, with mental models of the 
developers of the tool. The results highlight important differences in the 
interpretation of the new regulations, which will lead to adaptations of the tool.   

Keywords:  e-government, shared mental models, decision support systems 

1   Introduction 

The creation, implementation and enforcement of legislation are complex processes 
that involve a large amount of people, parties and disciplines [8]. In this paper we 
discuss a decision support system to assist in such a complex regulatory environment. 
The European Union has drafted new customs legislation intended to make supply 
chains more secure.  Trustworthy companies are certified by customs authorities to 
become ‘Authorized Economic Operator’ (AEO1 2) and benefit from reduced customs 
inspections [1]. The AEO legislation has to be implemented by national customs, 
enforced by regional customs authorities and understood and applied by businesses. 
As a result, we observe the introduction of several decision support systems which try 
to support these tasks. To align the tasks of the stakeholders in the certification 
process, such decision support systems have to take complex stakeholder 
characteristics into account.  

The phase of early requirements engineering aims to analyze stakeholder interests 
and how they might be addressed or compromised by system requirements [23] [5]. A 
well known approach to early requirements engineering is the i*  framework [23] 
which proposes an actor-oriented approach, based on the goals and intentions of an 
actor. It consists of two main modeling components: the Strategic Dependency (SD) 
model contains dependency relationships among actors in an organizational context, 
while the Strategic Rationale (SR) model   describes stakeholder interests and 

                                                           
1 http://www.douane.nl/zakelijk/aeo/en 
2 http://ec.europa.eu/taxation_customs/customs/policy_issues/customs_security 
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concerns, and how they are addressed by the system. An important issue that is not 
addressed by early requirements methods like i* , is the existence of overlap or 
differences in the interpretations of the various stakeholders. Much work in 
requirements engineering implicitly assumes that mental models of the task and 
domain are shared among stakeholders. In practice however, this assumption is not 
always warranted. Overlap in task-specific knowledge structures or having a ‘shared 
mental model’ is argued to have a positive influence on performance and 
effectiveness in collaborative situations [8] [4] [14]. We argue therefore that early 
requirements engineering should involve identification of the differences and 
similarities that exists among the mental models of the stakeholders. With the 
differences clarified, the stakeholders become aware about each other’s mental model 
constructs, which they in turn can use to align their approaches. Unlike some of the 
empirical work on shared mental models, however, we are not satisfied with mere 
lists of differences. Instead we propose to use conceptual models in the form of 
ontologies, in the sense of CommonKADS [17], as well as ontology mapping 
techniques, to detect divergent or synonymous concepts in two or more ontologies in 
a systematic and precise way. 

The need to analyze mental models of stakeholders is particularly important in the 
development of innovative e-government solutions.  E-government solutions aim to 
modernize and reorganize the public sector though new methods of governmental 
business [15]. Examples are one-stop government shops, public-private partnerships 
or outsourcing to the customer [20]. Especially in public-private partnerships, 
multiple parties are involved with different interests and backgrounds, leading to 
different interpretations.  Moreover, the legislation involved in e-government 
solutions is often new or still evolving, which makes its interpretation also difficult 
for the regulator.  This suggests that the regulator should be modeled like any other 
actor, with its own specific interests and beliefs about the task and domain. The idea 
to treat the regulator as any other actor is advocated by Boella et al [2].  Using 
Normative Multiagent Systems (NMAS), they analyze various regulative 
environments and study the interactive ‘games’ which agents play to determine 
whether it is in their interest to obey a norm or not, and for regulators, whether to 
enforce a norm or not, depending on the expected behavior of the other agents. For 
such games, the actual norms do not matter much; what matters are the perceptions 
agents have of the other agents’ mental models of the norms.   

In this paper we discuss the initial results of our research on assessing overlap in 
mental models. The research method is qualitative and empirical. We focus on a 
decision support system called ‘AEO Digiscan’ that supports companies in 
performing the self-assessment, which is required to obtain AEO certification. We 
have conducted interviews with experts from both the Dutch Customs and Tax 
Administration (DTCA) and from the consultancy firm Deloitte, who have developed 
the tool and who are using it to assist their clients in the AEO certification process.  
We compare the interview results to identify differences in the expert interpretation of 
the AEO self-assessment task and in the requirements to obtain AEO certification.  To 
structure the analysis of the expert interpretations, we use conceptual models taken 
from the CommonKADS methodology [17] and from the literature on risk 
management.  Overlaps and differences between interpretations are mapped, using 
ontology mapping [18] [12].    
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The remainder of the paper is organized as follows: Section 2 describes our 
approach towards a conceptual model of mental model mappings; Section 3 describes 
our analysis of the case study of AEO self-assessment. The paper ends with a 
discussion and conclusion of our results. 

2   Towards a conceptual model 

To identify requirements for an innovative E-government solution that concerns 
public-private partnerships, such as the AEO certification procedure, we propose 
Normative Multiagent Systems (NMAS) as a starting point for an analysis. Each 
stakeholder is viewed as an autonomous agent that can act, perceive its environment, 
communicate with others and has skills to achieve its goals and tendencies [22]. 
Although agents are autonomous, their behavior must be restricted by norms. The 
regulator, which enforces the norms, is also seen as one of the agents and not as a 
separate entity [2].  This makes sense in our case, because for public-private 
partnerships, both regulator and businesses have to interpret the legislation to apply it 
in practice.  Figure 1 shows a situation in which two agents ‘A’ and ‘B’ must 
collaborate. To do so, they must interpret norms, and implement them in practice. For 
each agent we draw two ‘thinking balloons’: the agent’s own interpretation of the 
norms, and the agent’s beliefs about the other agent’s interpretation of the norms. 

 
Fig. 1. Agents’ beliefs about the norms, and about each other’s beliefs of the norms 
 
We suggest that for successful collaboration both agents must have either a shared 

interpretation of the norms or that their mental models are transparent for the other, so 
that other agents can adjust their behavior and overcome differences. Uschold and 
Gruninger [20] also argue that for software agents or IT systems to successfully 
communicate with each other, they need to be semantically integrated. Successful 
exchange of information means that agents understand each other and accuracy is 
guaranteed [20]. This requires that agents must agree on a communication standard or 
protocol and a common ontology. However in the real world often various ontologies 
exist about a single topic, so we better speak of semantic heterogeneity than of 
semantic interoperability [12] .We therefore include a need for transparency in our 
model. The assumption is that if agents have knowledge about each others’ 
interpretation of the norms, they can predict each others’ behavior and task 
performance, and can adjust their actions accordingly. 
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To analyze the expected effectiveness of the collaboration we can therefore 
compare the thinking balloons in two ways (see Figure 1): arrow 1 compares the 
agent’s mental models of the norms, and arrow 2A en 2B compare the mental model 
with the beliefs the other agent has about the mental model. We also note that the 
agent’s mental model and the belief about the other agent’s model can influence each 
other but this interaction is not addressed in this paper.  To assess overlap between the 
mental models and the beliefs about the mental models we use a technique from 
software engineering: ontology mapping [18] [12]. Ontology mapping techniques and 
formalisms are intended to overcome the issue of heterogeneity by identifying the 
differences and similarities between ontologies. We view the agents in our example as 
two agents that need to have a (partial) mapping of their ontologies to communicate 
and collaborate effectively. To promote the merger of ontologies towards 
semantically interoperable ontologies a first step is to identify the overlapping 
concepts and key differences. With the differences and commonalities made explicit, 
the agents become aware about each others mental models, which can in turn help 
them to more effectively discuss and overcome the differences.  

There are various techniques for finding correspondences between semantically 
related entities of different ontologies. Most matching techniques require the 
existence of a commonly shared body of knowledge, structure, language or syntax. 
However in an innovative public private partnership where both the businesses and 
government have to adapt to their new roles, commonly known responsibilities and 
ways of interaction do not exist yet. The shared body of knowledge is evolving as best 
practices are developed, procedures are maturing and lessons are learned based on 
experiences in the field. Research with a multi agent systems viewpoint does address 
this issue with the introduction of meaning negotiation or semantic negotiation [3] [6]. 
These techniques offer a dynamic and flexible form of semantic coordination for 
situations in which no a priori coordination exists. Bouquet et al. introduce in [3] a 
method that makes the meaning of nodes in structured semantic models explicit by 
combining three types of knowledge: lexical, domain and structural knowledge. They 
combine the knowledge sources to build a new representation of the problem, where 
the meaning is encoded as a set of logical formulae.  Another approach to match 
ontologies is provided by instance based methods [7] [16]. These methods focus on 
the most active parts of the ontologies and reflect the semantics of the concepts as 
they are actually being used [16]. Instance-based ontology matching techniques 
determine the similarity between concepts of different ontologies by examining the 
extensional information of concepts [7]. Various approaches to instance based 
methods exist:  in [7] machine learning techniques are used to identify mappings and 
in [16] a lexical search engine is used to map instances from different ontologies. 
Concept classification information is exchanged between these mapped instances, to 
generate an artificial set of common instances shared by concepts from two 
ontologies, so that simple similarity measures can be applied. The advantages of this 
method are that it does not depend on the availability of concept labels or a rich 
ontology structure.  

For the matching of mental models of agents in a regulatory setting in which no 
prior coordination model exist we propose a combination of techniques and different 
knowledge sources.  To construct the mental models in a structured way and to 
function as a common reference model we propose the use of generic knowledge 
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model templates, from knowledge engineering methods such as CommonKADS [17]. 
The domain independent nature of such templates provides a good basis for the agent 
specific models. In line with the CommonKADS method, the agent’s models we 
construct will therefore consist of three knowledge categories: domain knowledge, 
task knowledge and inference knowledge [17]. Besides that we use legislation and 
norm frameworks as background domain knowledge to assess the validity of 
mappings. Then we can determine if concepts relate to the same topic and have a 
similar or compatible meaning. Furthermore we use instances, implementations of the 
norms, to derive concepts and mappings. We illustrate the method by a short example 
of different interpretations of risk assessment, taken from the case study.  

The ‘Assessment’ knowledge model template [17] will function as a starting point 
to model the risk assessment approaches of a company and the regulator. We can then 
compare the deviations of the approaches with the original model and since the 
skeleton is similar we can also compare both risk assessment approaches.  To assess 
the validity of matched concepts we use legislation to determine the meaning. For 
example the concept security can be aimed at preventing theft, taking goods out of the 
supply chain or preventing smuggling and terrorism, adding things to the supply 
chain, or a combination of both.  Furthermore we use observations in the real world to 
trace back to which concepts they refer. For example a gate can be seen as an instance 
of the concept measure to prevent intruders from entering a company’s premises. 
While a personal policy can also be seen as a measure to avoid the hiring of 
untrustworthy personnel.            

Combining these issues, we come to a three step approach to analyze and compare 
mental models of agents. Step 1 is to develop generic domain, task and inference 
models based on knowledge templates from CommonKADS [17]. These generic 
models are used as a starting point for constructing the agent’s specific mental 
models. Step 2 is to use the generic models to externalize, analyze and compare 
individual agent’s mental model constructs. Step 3 is to build a conceptual model that 
presents the encountered differences and similarities of the mental models of the 
agents. This model makes the differences in mental models transparent, which makes 
it easier to overcome the heterogeneity or to adjust the models accordingly. The 
following section describes the application of this approach to a case study.  

3   Case study: AEO self-assessment of a petrochemical company 

We use the approach described in the previous section to analyze a specific case of an 
AEO self-assessment, which is part of the application procedure for companies to 
qualify for AEO. The AEO self-assessment is a nice example of collaboration 
between public and private parties, because a traditionally public task (AEO 
assessment) is partly delegated to a private party (a company). The private party 
therefore needs insight in the mental model of the public party (customs authority) to 
perform the task according to their standards. The customs, on the other hand, are 
interested in the mental model of the company, because the legislation is new and 
customs need to learn from best practices of early AEO applicants. The next 
paragraph provides a short introduction to the AEO legislation and certification 
procedure. 
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3.1   AEO legislation and certification 
An Authorized Economic Operator (AEO) can be defined as a company that is 
reliable throughout the EU in the context of its customs related operations [9] [10] ¹². 
The holder of an AEO certificate will receive several benefits in customs handling 
within all EU member states that can lead to considerable cost-reductions for 
businesses. The degree to which a company is granted these facilities depends on the 
type of certificate: ‘Customs simplifications’, ‘Security and safety’ or ‘Combined’. 
For non-certified enterprises customs will continue to carry out the traditional 
supervision. The flow of goods for customs will therefore consist of two parts: goods 
from AEOs and goods from non-certified companies. Customs can direct their efforts 
towards non-certified companies to increase the security of international supply 
chains, while at the same time reducing the administrative burden for AEOs. 

To qualify for the AEO status a company must meet a number of criteria, which 
are described in the community customs code and the AEO guidelines [9].The general 
customs’ certification practice is that customs officials visit a company which applied 
for a license, to assess whether the company complies with the legislation and 
whether a license can be issued. In the AEO certification procedure however, a 
company must first perform a self-assessment of their compliance to the AEO 
legislation. The left swim lane in Figure 2 presents the steps that a company has to 
perform in the self-assessment and the right swim lane shows the activities of the 
customs in the AEO certification. The first step is that a company collects information 
relevant for the AEO status, such as business processes, safety procedures, licenses 
and certificates, IT systems, etc. The next steps are to identify the (potential) risks to 
which the business is exposed (using the AEO guidelines), to identify the measures 
that are implemented to mitigate these risks, and to further specify the generic AEO 
criteria and turn them  into internal norms which evaluate the risk mitigation in 
relation to the line of business. For example, computer components are valuable 
goods, which are subject to theft. Trading valuable goods requires more security 
measures, than, say, trading in a mass product like fertilizer. However, some 
ingredients of fertilizer may be used to assemble explosives, leading to a different set 
of risks.  By evaluating the risk mitigation strategies, a company must determine if the 
risks are mitigated sufficiently, or if additional measures are needed.Then a company 
must evaluate the effective implementation of the proposed measures, using the 
COSO internal control scoring definitions, which are part of the summary of the AEO 
self-assessment. The scores range from 0 “no control measures in place” until 5 
“internal control measures are integrated into the business processes and continuously 
evaluated”. After that the company either submits the AEO application or implements 
(additional) measures. 

Once the customs receive the AEO application, they assess whether it is a valid 
application according to entry conditions.  Next, they determine the type of visit, 
based on the AEO application and on historical data about customs and tax 
compliance. A visit is needed to check whether the self-assessment is performed 
correctly and whether the company identified all the risks and has taken all 
appropriate measures. 
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Fig. 2. Activity diagram for the AEO certification procedure. Activities in grey are 
supported by the AEO Digiscan.  
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Based on the visit, customs determine whether the AEO certificate is granted or not or 
that first additional measures need to be implemented. In that case, customs will visit 
the company a second time, to check if the additional measures are implemented. 

Ideally, a company would perform the self-assessment like customs would, when 
they are ‘auditing’ a company for AEO compliance. The customs authority could then 
rely on the findings of the company and minimize their own visit. However, from 
interviews with DTCA officials we learned that companies often find it difficult to 
perform an AEO self-assessment. Consultancy firms therefore offer services and tools 
to assist companies. One of these firms is Deloitte and their tool is called the AEO 
Digiscan. The steps in the process which are supported by the Digiscan are colored 
dark in Figure 2. The next section describes the Deloitte AEO Digiscan in more 
detail. 

3.2   AEO Digiscan 
To support companies in performing the AEO self-assessment Deloitte’s Tax Advise 
unit developed the AEO Digiscan. The AEO Digiscan is an online tool that works as a 
classic expert system. It contains rules, which represent the AEO guidelines and the 
sections in the questionnaire are organized accordingly. Various experts of Deloitte 
such as tax advisors, security specialists, IT specialists and auditors contributed to the 
development of the AEO Digiscan, by specifying the guidelines, and turning them 
into clear questions. The questions that a company has to answer depend on the 
company’s role in the supply chain and on answers to earlier questions. Scores are 
expressed on a 5 point scale ranging from red (1) till green (5). For example, red (1) 
means “Potential risk can be considered high”, orange (3) means “Potential risk could 
neither be considered low nor high” and green (5) means “Potential risk could be 
considered low and acceptable”. The score of each section is based on the lowest 
score in the section and cannot be altered after a section is completed. After 
answering the questions, experts of Deloitte check the AEO Digiscan results. They 
have the possibility to adjust the scoring if they think a company has overestimated or 
underestimated its record. After that the risk based score of the AEO Digiscan is 
automatically translated into the COSO based scoring used by DTCA, and the AEO 
summary is filled out. Deloitte sends the AEO Digiscan report and the AEO summary 
with feedback to the company. The company can then decide to send the AEO 
application to DTCA.  

The added value of the tool is that it provides a structured approach to AEO self-
assessment. It assists companies in interpreting and applying the AEO guidelines. 
Furthermore, it provides companies with an indication of their position with respect to 
achieving the AEO status, and points out their strengths and weaknesses.  

When a company uses the AEO Digiscan to perform a self-assessment, we can 
view this as another delegation of the self-assessment task, namely to Deloitte‘s AEO 
Digiscan. To assure that the self-assessment task is performed as intended by DTCA, 
it is therefore important to also assess the overlap between the mental models of 
Deloitte and DTCA, besides the regular mapping between company and DTCA.  In 
this paper we will focus on the mapping between Deloitte and DTCA. The next 
section describes our analysis of the AEO self-assessment task. 
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3.3   Case analysis 
This section presents our analysis of the differences and overlap that exist between the 
approaches of AEO self-assessment of DTCA and Deloitte. We perform our analysis 
according to the steps described in Section 2. For the data collection we used the 
following methods: document analysis and semi-structured interviews [24]. We 
studied internal and public documents from both DTCA and Deloitte that describe 
their vision and approach on AEO certification and self-assessment. To gain insight in 
the expert interpretation of the AEO self-assessment, we conducted 5 interviews with 
both DTCA and Deloitte, held one meeting were we invited both parties 
simultaneously, joined DTCA auditors on their first visit to a petrochemical company 
and held a first feedback session for both DTCA and Deloitte to present our initial 
research results. To elicit detailed expert knowledge, we showed the experts the AEO 
application of a petrochemical company “PCC”, which had used the Deloitte AEO 
Digiscan, and asked them how they would have assessed this company (if there would 
have been no AEO self-assessment) and if they could point out points of interest. We 
also asked them some questions about the AEO certification and self-assessment in 
general.   In total we have spoken with 10 persons from DTCA and 5 from Deloitte. 
The duration of the interviews varied from 2- 4 hours. Except for the visit, the 
meeting and a first interview with Deloitte, we tape-recorded all interviews with the 
participants’ prior agreement. Minutes were made of meetings.  

3.3.2   Domain, task and inference model 
To analyze the interview results, we use an adapted version of the knowledge model 
templates for the assessment task of the CommonKADS methodology [17].To save 
space; we do not show a task model in this paper. Figure 3 represents the domain 
schema for AEO certification. The purpose of this model is to specify key concepts 
and indicate how they are related. The implementation of these relationships is then 
further worked out in the inference structure, which we present in Figure 4.  

First we have to identify the domain. A company is eligible for an AEO certificate, 
when it conforms to four criteria: (1) an appropriate record of compliance with 
customs regulations, (2) sufficient internal control measures regarding trading and 
logistics, to allow for customs auditing, (3) conformance with certain solvability 
criteria, and (4) appropriate security measures to safeguard the supply chain.  In the 
interpretation of DTCA, the AEO self-assessment is essentially a statement in which 
the company declares to be `in control’ of its supply chain.  Under the current 
interpretation of DTCA, this means that the company must have performed a risk 
assessment to identify key risks regarding security in the supply chain, must have 
taken appropriate control measures to mitigate the risks, and must have evidence that 
these measures have been operationally effective. So a conceptual model of risk 
management seems a good starting point for domain analysis. Risk management is the 
activity – performed by management – of continuously assessing risks, defining and 
implementing control measures to mitigate risks and evaluating and improving the 
results. A well known best practice for IT risk management has been proposed by 
NIST. They define a risk as a function of the likelihood of a given threat-source 
exercising a particular potential vulnerability, and the resulting impact of that adverse 
event on the organization [19].  Similar definitions are found in other literature on risk 
management.  
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Fig. 3. Domain schema for AEO certification  
 
The left of Figure 3 shows general risk assessment concepts. A risk assessment 
identifies the threats facing a company given its line of business and its environment. 
The vulnerability of a company to threats depends on its current control measures. 
Control measures either reduce the likelihood, by dealing with vulnerabilities 
(preventative controls), or reduce the impact (detective and corrective controls).  
Consider for example the risk of smuggling: someone secretly places an additional 
item in a container. This vulnerability can be reduced by limiting physical access to 
all premises where containers are loaded and unloaded, to those employees who need 
to have access because of their job. In general, there are three kinds of control 
measures: technical controls (e.g. authentication by RFID badge), organizational 
controls (e.g. access control based on real needs) and operational controls (e.g. 
reconciliation of shipping order against inventory).  On the right we show the AEO 
criteria and the AEO guidelines. The guidelines do not act like norms, as one might 
expect. They are merely high-level attention points, which – given a business 
environment – indicate the main risks for the company. It is the responsibility of the 
company to set their own internal norms, depending on the actual risks encountered. 

Figure 4 depicts the inference structure for AEO self-assessment. It is the generic 
assessment model, taken from [17]. The input for the inference is the case, a 
description of the company that applies for AEO status. First, a company must 
abstract case data that corresponds with the data used in the norms.  For the AEO self-
assessment this means that a company has to identify all the potential risks, the 
measures that mitigate these risks, and the implementation of the measures, related to 
its business activities and role in the supply chain. A company must then specify 
which (sub) sections addressed in the AEO guidelines are applicable to the company’s 
specific situation and need to be evaluated and reported in the AEO summary. From 
this set of (sub) sections a company selects a single 

10



Fig. 4. Inference structure of the assessment task (Schreiber et al 2000) 
 

subsection for evaluation. For each subsection a company determines if the risk 
mitigation is sufficient and evaluates the implementation of the measures. The output 
value is an integer (0-5) indicating the implementation level of the measures, which a 
company reports in the AEO summary. The match function checks whether the scores 
on the self-assessment summary lead to a decision if a company is AEO compliant or 
not. The match function only stops prematurely in case of (clear) incompliance. A 
company is only AEO compliant when it scores well on all the (sub) sections that are 
applicable.  

3.3.3   Constructing and comparing mental models 
Now we present the interview findings, organized according to the inference model of 
the previous paragraph. 

Abstract: The ‘abstraction’ inference is a complex step. Essentially it is a form of 
classification, which abstracts over individual differences. According to DTCA, to 
properly evaluate the mitigation of risks, they have to be evaluated in context. This 
includes the business activities, company role in the supply chain, organizational 
structure, location, etc. Case data about all these aspects and their interaction, needs to 
be combined in an abstract classification. There is no structured approach available to 
classify the type of company; DTCA only advises the companies to use the AEO 
guidelines to identify risks. Classification in the AEO Digiscan is a lot simpler. It only 
looks at risks and measures related to the company’s role in the supply chain.  

Specify: The AEO guidelines contain a table that indicates which of the (sub) 
sections of the guidelines are applicable, based on the company’s role in the supply 
chain. A company can also decide to leave out or include certain subsections based on 
its specific business activities, e.g. when a company is both a manufacturer and an 
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exporter. The AEO Digiscan makes use of this table and automatically presents only 
the questions related to the company’s role in the supply chain. Experts of Deloitte 
made the AEO guidelines more specific, specifying questions that are easy to 
understand. Based on previous answers the tool selects the next question. However, 
DTCA officials believe that the AEO guidelines have been implemented too literally 
and that it does not take the business environment into account. For example, the 
AEO Digiscan contains very general questions about IT, such as: “Which operation 
system is used in your company?” to which PCC answered: “Windows”. However, no 
questions are asked about the IT systems used in the manufacturing process. PCC is 
partially a manufacturer, so a risk to its key business processes is a threat to a secure 
supply chain. DTCA officials also realize the limitations of a tool like this, and 
wonder how an electronic questionnaire can ever be complete, if it has to take all 
these specific characteristics into account. 

Select: The DTCA approach requires the manual selection of subsections of the 
guidelines. The AEO Digiscan automatically selects and presents a question, on the 
basis of answers to the previous questions.  

Evaluate: The evaluation step requires companies to first perform a risk 
assessment, in which the adequacy of the risk mitigation is assessed relative to the 
business context, and second to evaluate the implementation of these measures. 
DTCA does not provide a step by step approach to do the evaluation. A company 
must itself determine its COSO level on all applicable subsections in the AEO 
summary. The AEO Digiscan focuses on risk assessment and identifies potential risks 
and the measures that are in place. After a section is completed, the tool automatically 
calculates the potential risk level for the subsections and the whole section. According 
to a DTCA official: “A tool should not let people answer questions without knowing 
why they answer them. It should first give a good overview of the purpose of the 
specific questions”. If people do not understand the purpose of a question, they can 
misinterpret the question and give the wrong answer. Furthermore, hiding the 
‘abstraction’ inference from the user turns the self-assessment into a checklist that can 
be filled out without creating awareness on internal control or safety measures.  

Match: After the AEO Digiscan is completed, it provides for each subsection an 
indication of the company’s position with respect to achieving the AEO status. To 
prevent fraud, DTCA does not tell companies what a sufficient score is to achieve the 
AEO status. The companies receive the first feedback on their scores during the 
customs visit.  

In general we find that the approach offered by the AEO Digiscan is more 
structured and requires less expertise on AEO legislation, than the general approach 
that is proposed by DTCA. However, the scope of the AEO Digiscan is limited; it 
focuses on risk assessment (identifying risks and measures) while DTCA’s approach 
focuses on risk management, including implementation of measures. Although the 
tool is limited, it provides for a consistent assessment process. DTCA officials asked 
for insight in the scoring calculation mechanism of the AEO Digiscan. Deloitte would 
have liked more insight in DTCA’s requirements and into their evaluation approach.  
Furthermore we noticed that DTCA pays a lot of attention to the reliability of the self-
assessment and to the way it was performed, while Deloitte’s focus is more on 
specifying the AEO legislation and AEO guidelines.   
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3.3.4   A conceptual model of scoring 
We will further zoom in on the differences in the scoring model, which is an 
important issue according to both parties. The grey concepts in Figure 5 are only 
covered by the DTCA approach; the white concepts are part of both approaches. We 
observe that the AEO Digiscan covers only part of the DTCA approach. The AEO 
Digiscan focuses on risk assessment, whereas the self-assessment, as it is interpreted 
by customs, involves risk management, which also stresses the need for additional 
measures and evaluation. This is in line with the views that DTCA and Deloitte have 
on AEO certification. DTCA sees the AEO self-assessment as a means to judge the 
quality of companies’ internal control system, and to create awareness of potential 
risks. In contrast, Deloitte efficiently provides companies with an indication of their 
readiness to achieve AEO status. The Deloitte approach is therefore more aimed at 
compliance with AEO legislation, whereas the DTCA approach aims at companies 
being ‘in control’ of their internal procedures regarding safety and security. The AEO 
Digiscan tool supports the compliance assessment through a bottom up approach: 
answer specific questions to arrive at an overall score. DTCA’s approach works top 
down: to be in control, what measures does a company need to have implemented? 
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Fig. 5. Model of differences (dark) and overlap between DTCA and Deloitte 

 
The different scoring models are in line with these different views on self-assessment. 
DTCA uses the COSO scoring, which measures the implementation of control 
measures and Deloitte uses a risk-based scoring. By making the differences in the 
scoring models explicit we pointed out to DTCA and Deloitte that Deloitte’s risk-
based approach is a step within DTCA’s approach rather than a complete different 
approach. Aligning the approaches is therefore easier to achieve than it looked at face 
value. The interpretation of all these aspects needs to be addressed in the early 
requirements phase as they can lead to various system requirements. Should the AEO 
Digiscan support DTCA’s risk management approach or should Deloitte focus on risk 
assessment only, and embed its tool in DTCA’s approach? Should we use a risk based 
scoring method and do we need to include the implementation of the measures? This 
greatly influences the kind of tool that is developed and the role the tool will fulfill 
within the task of “self-assessment”.  
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4.   Discussion and conclusions 
4.1   Regarding the research method 
This paper reports on initial exploratory research. Interviewing proved to be a good 
research technique to gain insight into the AEO self-assessment approach of both 
Deloitte and DTCA, as our interviews uncovered some very interesting issues. 
However the number of interviews was limited, especially for Deloitte, where we 
only interviewed 5 people. Furthermore, our interviews were semi-structured and 
therefore not all topics were addressed consistently in all interviews.  We therefore 
want to validate these results with a second round of interviews, using a more 
controlled set up.  Another point is that we compared the expert knowledge embedded 
in a tool with real expert knowledge. The embedded knowledge was more explicit and 
therefore easier to compare, but it is already a selection of the expert knowledge of 
the Deloitte experts. On the other hand the AEO Digiscan gave us a good view on 
which part of the expert knowledge is easy to externalize and to imbed in a tool. 
Besides that we ourselves made the task and domain models based on the interview 
findings. It can therefore be argued that another interpretation was added to the 
mental models of the experts. In fact, we also compared original models used by the 
experts. However, since the Deloitte approach is based on the DTCA approach, 
comparing the models did not provide any results. The differences we encountered in 
the interviews were more concerned with the interpretation of the concepts by the 
experts. The expert interpretation of the domain (see Figure 3) was shared among the 
experts of both parties.     
 
4.2   Regarding the mapping of mental models 
Based on our interview findings we can conclude that by and large, the interpretations 
of the task and domain model for AEO self-assessment by experts from Deloitte and 
from DTCA overlap. Both make use of risk analysis methods and are based on the 
AEO guidelines, and therefore use similar attention points. However, important 
aspects of the self-assessment are interpreted differently. Regarding the task, there is 
disagreement about the scope of the self-assessment: does it only contain risk 
assessment (AEO Digiscan) or is it concerned with risk management, which also 
includes the implementation and constant evaluation of control measures (DTCA)? 
These task differences also show up in the domain analysis and the inference scheme. 
In particular, they lead to different scoring models: a risk-based model for AEO 
Digiscan, and COSO-based maturity levels for DTCA. There are also diverging ideas 
about the role of ‘understanding the business’ when assessing risks and controls.  
DTCA experts stress that control measures must be understood in context. For 
example, the strength of password protection must be interpreted relative to the 
business environment and IT infrastructure. Deloitte experts, on the other hand, have 
tried to further specify and instantiate the generic AEO guidelines into specific 
questions. Moreover, an initial classification of the company will automatically select 
only the relevant questions. But despite such customization, the tool does not allow 
for any company specific considerations. As a benefit, this generic nature of the AEO 
Digiscan improves the transparency and reliability of the assessment procedure. Our 
methodology does not require completely shared mental models. Differences of 
opinion or mental model are fine, as long as parties know the differences, and know 
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how to adjust their behavior accordingly (Figure 1). For requirements engineering, 
this means that mental models about other stakeholders have to be modeled explicitly 
as this helps them to realize what their respective positions are, and act accordingly. 
From the case study it even became clear that making differences explicit is often the 
first step towards solving the differences. Our analysis made the Deloitte experts 
aware what the differences between both approaches exactly are and that the 
difference concerned a scope problem rather than a complete mismatch. This insight 
has led to Deloitte taking action to adapt their tool and risk-based scoring model, to 
increase the overlap between their and DTCA’s approach. In contrast with some of 
the empirical literature on shared mental models [4][14]we have attempted to make 
mappings of the actual differences and overlaps. To this end, we have used template 
models from CommonKADS [17]. Regarding these templates we can conclude that 
they have been instrumental in bringing out and explaining some key differences. For 
example, the difference between a case description and an abstracted case (Figure 4) 
turns out to reflect the effects of the loss of information in the AEO summary. Also 
the activities of specifying and selecting norms (Figure 4) explain important 
differences of opinion.  

4.3   Regarding the AEO Digiscan decision support tool 

Charting the differences between mental models of stakeholders is an important 
element of developing a complex decision support system, because it helps to identify 
differences in expected functionality, and in the way the system is expected to be 
used. Differences in task and domain models will lead to different system 
requirements, consider for example the scoring models. Therefore such mental model 
mapping should be part of early requirements engineering [5][23]. Note that some 
expectations may be too complex.  It is easier to design and implement an expert 
system about compliance (rule-based), than about risk assessment in context 
(principle-based).  A less ambitious system, with a task that naturally aligns with one 
or more sub-tasks of the task model, may be easier to get accepted, than an overly 
ambitious system which will disappoint some stakeholders.  

Mapping overlaps and differences is especially important in a regulatory context. 
The regulator is leading. But also the regulator needs material on which to base its 
benchmarking. It cannot develop norms by itself, but has to use ‘best practices’ of 
companies. The experience of using a decision support tool has proved very useful in 
this respect, as the tool has forced experts to be specific about their intentions.   

For future research we would like to narrow the focus of the research and try to 
make a more elaborate analysis of the differences. We are currently arranging more 
interviews with IT auditors from both Deloitte and DTCA, to zoom in on the IT 
aspects of AEO certification.   
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E-mail: guido@di.unito.it; valerio.click@gmail.com

2 Dept. Computer Science, King’s College London - UK.
E-mail: dov.gabbay@kcl.ac.uk

3 Computer Science and Communications, University of Luxembourg, Luxembourg.
E-mail: leon.vandertorre@uni.lu

Abstract. We develop a fibred security language capable to express
statements of the form

{x}ϕ(x) says ψ

where {x}ϕ(x) is the set of all x that satisfy ϕ and ψ is any formula. ϕ
and ψ may share several free variables. For example, we can express the
following: ”A member m of the Program Committee can not accept a
paper P1 in which one of its authors says that he has published a paper
with him after 2007”

¬({m}[PC(m) ∧ {y}author of(y, P1) says ∃p(paper(p) ∧
author of(m, p) ∧ author of(y, p) ∧ year(p) ≥ 2007)] says accept(P1))

1 Introduction

Access control is a pervasive issue in security: it consists in determining whether
the principal (a machine, user, program) that issues a request to access a resource
should be trusted on its request, i.e., if it is authorized. Authorization can be
based in the simplest case on access control lists (ACL) associated with resources
or with capabilities held by principals, but it may be complicated by, for instance,
membership of groups, roles and delegation. Thus, logics for access control are
often used to express policies and to enable reasoning about principals and their
requests, and other general statements.

In many cases first-order/propositional logic suffices, but it does not in the
case of distributed policies and delegation, e.g., ”administrator says that Alice
can be trusted when she says to delete file1”: Alice speaks for the administrator
concerning the deletion of file1, thus she should be trusted as much as the
administrator.

In this paper we present a Fibred Security Language (FSL) for access control
in distributed systems. Fibring is a general methodology due to Gabbay [1] that
aims to combine logics.

Dagstuhl Seminar Proceedings 09121 
Normative Multi-Agent Systems 
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Suppose we have two different logics C and D with languages LC , LD and
semantics SC , SD respectively. Intuitively, the fibring process consists in defining
a combined language L ⊃ LC ∪LD together with a new semantics S in which we
can evaluate formulas of both C and D.

From a semantical point of view, logics for distributed access control rely on
one of the following approaches

– Operational Semantics [2].

– Declarative Semantics [3,4].

– Classical/Intuitionistic Modal logic [5,6,7,8].

Each view has positive and negative aspects.

Operational Semantics, if rules are wisely crafted, could be extremely clear
but very often tractability must be sacrificed for simplicity. SecPAL, for instance,
has an extremely clear semantics expressed with just three rules, but in practice
they are awkward to employ in evaluating formulas. To overcome this difficulty
queries in [2] are evaluated exploiting Datalog that has a stable model semantics
which is not clearly related with the rules of the operational semantics.

Logics that rely on declarative semantics have a clearly specified notion of
proof of compliance which is strictly based on the framework in which the rea-
soning is carried out. PROLOG and Datalog seems to be the most used solutions
to obtain answer sets from a database of distributed policies. The negative as-
pect is that using declarative approaches it could be extremely difficult to have
a formal ”meaning” for every set of policies and credentials, so that one can
compute this meaning and inspect whether it is the same as the policy author’s
intention.

Modal logic have been employed by Abadi [6] to model logics for access
control, in this view a logic can be studied through its axiomatization or on the
basis of its semantics analyzing how to link models with formulas. One major
advantage is that with a clear bound between syntax and semantics the proof of
compliance procedure is based on well-understood, formal foundation. A mayor
loss is that it could be extremely difficult to compose different logics within a
common framework if we do not rely on fibring.

Every approach has some positive aspects that should not be left out in
modelling a logic for distributed access control. With FSL we propose a general
language to compose (fibring) existing logics on the basis of their semantics,
in particular Section 4.2 is devoted to introduce an authorization logic called
predicate FSL in which we fibre intuitionistic logic with multimodal logic. Future
papers will be devoted to extend and compose existing access control logics (see
Section 6).

In predicate FSL we have formulas of the kind

{x}ϕ(x) says ψ (1)
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where {x}ϕ(x) represents the group composed by all the principals4 that
satisfy ϕ(x) and ψ is a general formula. We see the says as a modality to express
that a certain principal supports some statement (see Section 2).

In this view, Formula 1 becomes

2{x}ϕ(x)ψ (2)

In which ψ is the statement that the extension of ϕ(x) as a group of indi-
viduals supports; note also that the modality is indexed by principals. Up to
authors knowledge, existing approaches that employ the says operator do not
offer the possibility to have a first-order formula specifying the principals.

This view on access control logics offers a wide range of expressiveness in
defining policies and freedom in crafting logics. In fact we can let ϕ(x) and ψ
belong to two different languages Lp and Le as language of principals and security
expressions respectively which refers to two different systems (semantics).

For instance we can think of formulas in Lp be SQL queries and formulas in
Le be Delegation Logic [3] expressions.

The main problem is to formally specify how to evaluate expressions like 2
and this is the main role of the fibring methodology [1] which, depending on the
chosen languages (and systems), must be carefully defined in order to have a
combined logic which is coherent and does not collapse.

In this paper, in order to show the full expressiveness of our approach, we
decide to make Lp = Le = L, where L is a classical first order language, whereas
the relying system S is intuitionistic modal logic; this is predicate FSL. This
approach offers us to iterate the says modality and to have extremely complex
formulas in which free variables are shared between different levels of nesting of
the 2 (see Section 3.1 for examples).

Throughout the paper we will show how with predicate FSL is possible to
give answers to the following questions:

1. How to define a general semantic model in order to extend existing security
languages?

2. How to make a principal speak for another principal on all formulas without
resorting second order languages?

3. How to have groups of principals supporting a sentence expressed by a first-
order formula with free variables?

4. How to express chain of delegation by means of the says modality and how
to constrain delegation depth?

5. How to express separation of duties in a clear and compact way?
6. How to deal with roles in distributed access control?

The paper is structured as follows. First, in Section 2 we discuss which prop-
erties of the says operator are desirable in logic and which are not, highlighting
the dependencies among them in different logics. Second, in Section 3 we con-
sider how to extend the authorization logic on the side of the principals which

4 Example of principals are: Users, machines, channels, conjunction of principals,
groups . . . [6]
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can assert says statements. Then, we present the basic fibred security language
FSL in Section 4 and we extend it to predicate logic in Section 4.2. In Section
5 we give a simple example to show how to employ predicate FSL and Section
6 ends the paper.

2 Properties of access control logics

In this section we first summarize how the says operator is used in access con-
trol logics, and then we discuss which properties are desired for this operator
and which are not, showing the dependencies among the different properties in
existing logics.

2.1 Access control logics

The access control logic we propose aims at distributed scenarios. Thus, to ex-
press delegation among principals, it is centered, like the access control logic of
[5,3], on formulas such as “A says s” where A represents a principal, s represents
a statement (a request, a delegation of authority, or some other utterance), and
says is a modality. Note that it is possible to derive that A says s even when A
does not directly utter s. For example, when the principal A is a user and one of
its programs includes s in a message, then we may have A says s, if the program
has been delegated by A. In this case, A says s means that A has caused s to
be said, that s has been said on A’s behalf, or that A supports s.

We assume that such assertions are used by a reference monitor in charge
of making access control decisions for resources, like o. The reference monitor
may have the policy that a particular principal A is authorized to performDo(o).
This policy may be represented by the formula: (A says Do(o)) → Do(o), which
expresses that A controls Do(o). Similarly, a request for the operation on o from
a principal B may be represented by the formula: B says Do(o). The goal of the
reference monitor is to prove that these two formulas imply Do(o), and grant
access if it succeeds. While proving Do(o) the reference monitor does not need
that the principal B controls s. Rather it may exploit relations between A and
B and some other facts. For example, it may knows that B has been delegated
by A, and, thus, that B speaks for A as concerns Do(o), in formulas:

(B says Do(o)) → (A says Do(o))

This simple example does not show the subtleties arising from the formal-
ization of the says operator, since expressing simple properties like controlling
a resource or speaking for another principal may imply less desirable properties,
leading to security risks, or even to inconsistent or degenerate logic systems [9].

2.2 Modality axioms

The following are some axioms considered in the literature for the operator
says , in particular by [9]. We discuss whether they are desirable or not, and
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which are the relationships among them in different logics, in particular, classical
and intuitionistic logic. We write A says X as �AX. A might be an index U
and X ranges over formulas.

Definition 1 (Axiom list).

1. B speaks for A (notation B ⇒ A):

∀X[�BX → �AX].

Note that here we are quantifying over formulas but if we take it as an
axiom schema for the relation between A and B, this will automatically be
universally quantified.
This is the fundamental relation among principals in access control logics. If
B ⇒ A from the fact that principal B says something means the reference
monitor can believe that principal A says the same thing. This relation serves
to form chains of responsibility: a program may speak for a user, much like
a key may speak for its owner, much like a channel may speak for its remote
end-point. In some logics this relation is primitive. The reference monitor’s
participation is left implicit, as in the all the other axioms.

2. Restricted speaks for

α(X) ∧ �BX → �AX

where α(X) be any formula and X a new variable.
Restriction of “speaks for” is similar to the one [10] introduces. In particular,
if α(X) = ϕ→ X, then the above formula would refer to B speaks for A on
all consequences of ϕ [8].
Other kinds of restrictions can refer to variables occurring in X. We consider
such kind of constraints in Section 3.

3. A controls X

�AX → X

This axiom is used in other axioms below.
4. Hand-off axiom

�A∀X[�BX → �AX] → ∀X[�BX → �AX]

or more briefly:

�A(B ⇒ A) → (B ⇒ A)

Hand-off states that whenever A says that B speaks for A, then B does indeed
speak for A. This axiom allows every principal to decide which principals
speak on its behalf, since it controls the delegation to other principals.
Sometimes this axiom follows from logic rules as in [9], sometimes it is as-
sumed as an axiom. Note that the general axiom is too powerful, and thus
risky for security: for example when A represents a group: if A controls (B ⇒
A) then any member of A can add members to A. Thus, for instance, [6] does
not adopt this axiom.
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5. Generalised Hand-off
Since A controls X is defined as �AX → X.
Then

∀XY (A controls (X → �AY ))

or explicitly
�A(X → �AY ) → (X → �AY )

For X = �BY , we get hand-off:

�A(�BY → �AY ) → (�BY → �AY )

Generalised Hand-off is equivalent to Bind (see item 12 below). It follows
from logic rules in [9].

6. Dual of Hand-off
�A(A⇒ B) → (A⇒ B)

This is implied by Unit in CDD [9], where it is equivalent to Unit axiom if
there is a truth telling principal.

7. Least privilege
(X → Y ) → (�AX → �AY )

“Every program and every user of the system should operate using the least
set of privileges necessary to complete the job” [11].

8. Ordinary modal axioms
– Closure under consequence

�AX ∧ �A(X → Y ) → �AY

– Necessitation

⊢ X implies ⊢ �AX

9. Axiom C4
�A�AX → �AX

10. Escalation
�AX → X ∨ �A⊥

Escalation is not considered as a desirable property. Thus we must be care-
ful that it does not follow from other properties (like from Unit or Bind in
classical logics). It amounts to “if A says s then s orA says false”: from
A says s may follow a statement “much falser” than s. As an example of its
riskiness, consider that from (A controls s) ∧ (B controls s) it allows to
infer that if A says B says s then s follows. If the logic is not able to avoid
escalation, the only cumbersome solution is to make A avoid saying that B
says s unless he really wishes to say s.
Unit and Bind together do not imply Escalation in CDD [9], while Escalation
implies Bind. In classical logic, Unit implies Escalation while Escalation does
not imply Bind.
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11. Unit

X → �AX

Unit is stronger than the necessitation rule. In classical logic, adopting Unit
implies that each principal either always says the truth or it says false: (A→
B)∨(B → A). In the first case A speaks for any other principal, in the latter
any other speaks for A. The policies described by this kind of systems are too
manicheist.

12. Bind

(X → �AY ) ∧ �AX → �AY

Abadi [9] provides an example of discussion about the implications of the
different axioms of access control logics.

According to [9] in classical logic, Bind is equivalent to escalation and Unit
implies Escalation. Intermediate systems requiring C4 do not lead to escalation,
but they are not sufficient for modelling delegation.

To solve this problem Abadi in [9] introduces CDD, a second-order proposi-
tional intuitionistic logic; in Section 4.2 we present predicate FSL which extends
CDD expressiveness without using a second-order language.

3 Reasoning about principals

In the previous section we considered the properties of the says operator keeping
the principal indexing the modality as a propositional atom5. In this section we
make a further step towards predicate FSL taking into account how to express
the key properties of access control policies in the proposed language.

3.1 FSL: An extended logic of principals

The logic we propose uses a construct which allows to build principals using
general logic formulas: {x}ϕ(x) says ψ. In this section we will show how we
can exploit it. Note that ϕ(x) and ψ can share variables and ϕ may include
occurrences of the says operator. Notice that x can occur in φ but then this
occurrence is not related to the x in {x}ϕ(x). The formula {x}ϕ(x) is used to
select the set of principals making the assertion says.

To select a single principal whose name is A we do:

{x}(x = A) says s

We write A says s for {x}(x = A) says s, where A is an individual principal.

The following formula means that all users together ask to delete file1:

{x}user(x) says delete(file1)

5 Up to authors knowledge, like all existing formal access control logics do.
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Since ϕ(x) and ψ can share variables, we can put restrictions on the variables
occurring in ψ. E.g., the set of all users who all own file(s) y asks to delete the
file(s) y.

{x}(user(x) ∧ own(x, y)) says delete(y)

However, the formula above is satisfactory only in the particular situation
where we are talking about the set of all users who assert says at once as a
group (committee).

We can as well express that each member of a set identified by a formula can
assert says separately. E.g., each user deletes individually the files he owns:

∀x(user(x) ∧ own(x, y)) → {z}(z = x) says delete(y)

Note that the latter formula usually implies the former but not vice versa6.
The former formula,

{x}(user(x) ∧ own(x, y)) says delete(y)

expresses the fact that the group of users who own y, i.e. all the owners of y
decide (or say) as a group to delete y. So maybe they called a meeting, discussed
the matter and then had a secret vote. The majority voted to delete y but some
voted not to delete. The group outcome was to delete.

The second formula

∀x(user(x) ∧ own(x, y) → {z}(z = x) says delete(y))

expresses the fact that each user who owns y says to delete it. This usually
implies that the users as a group would say to delete y but not necessarily (see
footnote 3). Concerning the majority vote example, it may be the case that it is
impossible to convene enough users to have a vote and so the set of users never
manages to “ say ” as a group to delete y.

Operations on principals We can express the fact that two principals A and
B together says s :

{x}(x = A ∨ x = B) says s

which corresponds to
{A,B} says s

6 In fact, it could be sensible to have situations in which if all the members of a group
say something then the whole group says it but not vice versa.

∀t(ϕ(t) → t says ψ) → {x}ϕ(x) says ψ

For instance, a committee may approve a paper that not all of its members would
have accepted.
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If we want to express that the intersection of two different kind of principals
(T1,T2) says ψ:

∃x(T1(x) ∧ T2(x)) → {y}(y = x) says ψ7

with this approach we can also have negation in selecting principals:

{x}(x 6= A) says s

Variables over principals The possibility to express principals as variables
allows first of all attribute-based (as opposed to identity-based) authorization
as in [2]. Attribute-based authorization enables collaboration between parties
whose identities are initially unknown to each other. The authority to assert that
a subject holds an attribute (such as being a student) may then be delegated
to other parties, who in turn may be characterised by attributes rather than
identity. In the example below, a shop gives a discount to students. The authority
over the student attribute is delegated to holders of the university attribute, and
authority over the university attribute is delegated to known principal, the Board
of Education.

Shop says x is entitled to discount if x is a student.

Shop says (student(x) →
{y}(x = y) controls discount)

Shop says x can say z is a student if x is a university

Shop says (university(x) →
{y}(x = y) controls student(z))

Shop says BoardOfEducation can say x is a university

Shop says (BoardOfEducation controls university(x))

We may have more complicated policies involving more that two principals,
like in the following example [3].

{y}(y = A) says ((({y}(y = C) says fraudulent(x))∧
{y}(y = D) says expert(C)) → fraudulent(x))

Since ϕ in {x}ϕ(x) says ψ can be any formula, it can contain even occur-
rences of the says operator. This allows to refer to principals who made previous
assertions of the says operator. For example, we can express the following: the
members of the board who said to write a file they own, ask to delete it.

In symbols

{x}[{u}member-board(u) says ((member-board(x)∧
file-owner(y, x)) → write(y))]

says delete(y)

7 For instance, T1 could be club member and T2 adult.
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Like in [2] delegation can be restricted to principals respecting some require-
ments: Fileserver is a trusted principal who delegates file reading authorizations
only to the owners of files:

∀x own(x, y) → (Fileserver says ({z}(z = x)
says read(y) → Fileserver says read(y)))

Variables over principals allow width-bounded delegation. Suppose A wants
to delegate authority over is a friend fact to Bob. She does not care about the
length of the delegation chain, but she requires every delegator in the chain
to satisfy some property, e.g. to possess an email address. Principals with the
is a delegator attribute are authorized by A to assert is a friend facts, and
to transitively re-delegate this attribute, but only amongst principals with a
matching email address.

A says x can say y is a friend if x is a delegator

A says ((delegator(x) →
({y}(x = y) says friend(z))) → friend(z)

A says B is a delegator

A says delegator(B)

A says x can say y is a delegator if x is a delegator, y possesses email.

A says ((delegator(x) ∧ has-email(y)) →
({w}(w = x) controls delegator(y)))

As with depth-bounded delegation, this property cannot be enforced in SPKI/SDSI,
DL or XrML.

Restrictions on says Another issue concerns restrictions on speaks for on
some issues. Some authors restrict ⇒ to a set of propositions [15]

P ⇒T Q means that the proposition s in P says s → Q says s must belong
to T .

We can put some restrictions on the variables:

({x}(user(x) ∧ owns(x, y)) says delete(y)) →
({z}(super-user(z)) says delete(y)

Moreover we can use the following to restrict the scope of speaks for:

α(X) ∧ �BX → �AX

If α(X) = ϕ→ X then B speaks for A only on consequences of ϕ.
The restricted speaks for is strictly related with delegation, if for instance

B ⇒T A we say that B is delegated by A on T . If we want to limit the delegation
chain to one step such that we do not permit B to delegate another principal C
on T , we add the following constraint:

(C ⇒T B ⇒T A) → (C = B)
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Separation of duties One of the main concerns in security is the separation
of duties: for example the principal(s) signing an order cannot be the same
principals who approve it:

¬({x}({y}(x = y) says sign(project)) says
approving(project))

In this formula we exploit the full potentiality of FSL in that the principal
is defined in terms of the says operator.

As noticed in [2] separation of duties requires using negation.

Roles When roles are considered, it emerges the question whether we consider
roles types or instances. We distinguish here among roles instances which can
be principals by themselves or properties of other principals. So a sentence like
”A, who plays a role x of type R, says s” becomes:

∀x(x = A ∧ role-played-by(x, y) ∧R(y)) →
{z}(z = y) says s

As concerns hierarchies:

∀x super-user(x) → user(x)

then

∀x super-user(x) → ({z}(x = z) says s) →
(∀x user(x) → ({z}(x = z) says s)

Instead

({x}super-user(x) says s) → ({x}user(x) says s)

is less useful: if all super-users say s than all users say s.
In Abadi [6] if A says something in a role, then it is true that he is playing a

role. However, he admits that there should be some requirements to play a role.
For instance, we require that a super-user is a technician:

∀x super-user(x) → technician(x)

then we can say

∀x (x = A ∧ super-user(x)) → ({z}(x = z) says s)

but there can be no super-user x if A is not a technician.

Parameterized roles can add significant expressiveness to a role-based system
and reduce the number of roles [2,13,14]. If we model roles as instances they can
have attributes. For instance the example in [2] “NHS8 says x can access health
record of patient if x is a treating clinician of patient” can be modeled as:

8 National Health Service.
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(clinician-role(x) ∧ patient(p) ∧ record(r, p)∧
treats(x, p)) →

({w}(w = x) says access(r) → NHS says access(r)))

The operator used to represent a principal A in the role B (A | B) in [6] is
modeled in this way.

(A | B) says s ≡ A says (B says s)

In order to match the predicate role-played-by with the above definition we
can add the following (where x is a role):

∀x, y role-played-by(x, y) →
((x says s) →

y says ({z}(z = x) says s))

Discretionary access control Discretionary access control allows users to
pass on their access rights to other users at their own discretion. For instance
we can express: “FileServer says user can say x can access resource if user can
access resource”[2]

∀x user(x) ∧ user(z) → (Fileserver says
{w}({y}(w = y = x) controls access(u)) controls

{t}(t = z) controls access(u))

Groups In FSL you have to possibility to express how the set {x|ϕ(x) holds}
says what it says, e.g. If ϕ(x) = (x = A1) ∨ (x = A2) ∨ (x = A3) then if at least
one of {Ai} says ψ is enough for the group to say ψ we add:

{x}ϕ(x) says ψ ↔
∨

i

{x}(x = Ai) says ψ.

This represents the fact that each principal in the group can speak for the
whole group. We can as well express that every group has a spokesman (maybe
several ones dependent on issues), that one cannot be a spokesman for two
different groups and that a group controlling an issue cannot control issues in-
consistent with the definition of the group. We can define groups using what
they say as part of the definition, put restriction on what they further say or
control.

1. Every group has a spokesman.
This is an axiom schema in ϕ. Let spoke(ϕ, y) be

spoke(ϕ, y) = (∀X[{x}ϕ(x) says X ↔
{x}(x = y) says X])

We then take the axiom as ∃y spoke (ϕ, y).
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2. One cannot be a spokesman for two different groups.

∀y[ spoke (ϕ1, y) ∧ spoke (ϕ2, y) →
∀x[ϕ1(x) ↔ ϕ2(x)]]

3. A group cannot control issues inconsistent with the definition of the group

⊢ ϕ ∧ ψ → ⊥

⊢ [({x}ϕ(x) says ψ) → ψ] → ⊥

The following additional axiom expresses that the group identified by the
extension of {x}ϕ(x) says ψ if at least two members says ψ:

{x}(
∨

i x = Ai) says ψ iff∨
i6=j [{x}(x = Ai) says ψ ∧ {x}(x = Aj) says Aj ]

More generally, majority voting in {x}ϕ(x) says ψ, is just an axiom.

{x}ϕ(x) says ψ ↔
∨

i

{x}ϕi(x) says ψ

where ϕi(x) are all formulas (∀xϕi(x) → ϕ(x)) defining majorities in the set
{x}ϕ(x).

Majority vote is an example of threshold-constrained trust SPKI/SDSI [12].
The concept of k-of-n threshold subjects means that at least k out of n given
principals must sign a request and it is used to provide a fault tolerance mech-
anism. RTT has the language construct of “threshold structures” for similar
purposes [39]. As in SecPAL [2] there is no need for a dedicated threshold con-
struct, because threshold constraints can be expressed directly.

4 The basic system FSL

This section introduces our basic system FSL step by step from a semantics point
of view. First we introduce modalities indexed by propositional atoms, then we
take into account classical and intuitionistic models for the propositional setting
and finally we give semantics to predicate FSL that we extensively employed in
previous sections.

This system can be defined with any logic L as a Fibred Security System
based on L. We will motivate the language for the cases of L = classical logic
and L = intuitionistic logic.

Basically adding the says connective to a system is like adding many modali-
ties. So to explain and motivate FSL technically we need to begin with examining
options for adding modalities to L. Subsection 4.1 examines our options of how
to add modalities to classical and intuitionistic logics. The presentation and
discussion is geared towards subsection 4.2 which presents FSL.
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4.1 Adding modalities

We start by adding modalities to classical propositional logic. We are going to
do it in a special way. The reader is invited to closely watch us step-by-step,

Our approach is semantic.
Let S be a nonempty set of possible worlds. For every subset U ⊆ S consider

a binary relation RU ⊆ S × S.
This defines a multi-modal logic, containing K modalities �U , U ⊆ S. The

models are of the form (S,RU , t0, h), U ⊆ S. In this view, if U = {t|t � ϕU} for
some ϕU we get a modal logic with modalities indexed by formulas of itself. This
requires now a formal definition.

Definition 2 (Language). Consider (classical or intuitionistic) propositional
logic with the connectives ∧,∨,→,¬ and a binary connective �ϕψ, where ϕ and
ψ are formulas.9 The usual definition of wff is adopted.

Definition 3. We define classical Kripke models for this language.

1. A model has the form

m = (S,RU , t0, h), U ⊆ S

where for each U ⊆ S,RU is a binary relation on S. t0 ∈ S is the actual
world and h is an assignment, giving for each atomic q a subset h(q) ⊆ S.

2. We can extend h to all formulas by structural induction:

– h(q) is already defined, for q atomic
– h(A ∧B) = h(A) ∩ h(B)
– h(¬A) = S − h(A)
– h(A→ B) = (S − h(A)) ∪ h(B)
– h(A ∨B) = h(A) ∪ h(B)
– h(�ϕψ) = {t| for all s (tRh(ϕ)s→ s ∈ h(ψ))}

3. m � A iff t0 ∈ h(A).

There is nothing particularly new about this except possibly the way we are
looking at it.

Let us now do the same for intuitionistic logic. Here it becomes more inter-
esting. An intuitionistic Kripke model has the form

m = (S,≤, t0, h),

where (S,≤) is a partially ordered set, t0 ∈ S and h is an assignment to the
atoms such that h(q) ⊆ S. We require that h(q) is a closed set, namely

– x ∈ h(q) and x ≤ y imply y ∈ h(q).

9 There are many such connectives, e.g. ϕ says ψ,ϕ > ψ (conditional), ©(ϕ/ψ) rela-
tive obligation, etc. The semantics given to it will determine its nature.
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Let D be a set and we can add for each U ⊆ D a binary relation RU on S.
This semantically defines an intuitionistic modality, �U .

In intuitionistic models we require the following condition to hold for each
formula A, i.e. we want h(A) to be closed:

– x ∈ h(A) and x ≤ y ⇒ y ∈ h(A)

This condition holds for A atomic and propagates over the intuitionistic
connectives ∧,∨,→,¬,⊥. To ensure that it propagates over �U as well, we need
an additional condition on RU . To see what this condition is supposed to be,
assume t � �UA. This means that

∀y(tRUy ⇒ y � A).

Let t ≤ s. If s 6� �UA, then for some z such that sRUz we have z 6� A. This
situation will be impossible if we require

t ≤ s ∧ sRUz ⇒ tRUz. (∗)

Put differently, if we use the notation:

R′
U (x) = {y|xRUy}

then
x ≤ x′ ⇒ R′

U (x) ⊃ R′
U (x′). (∗)

So we now talk about modalities RU , for U ⊆ S. We ask what happens if U
is defined by a formula ϕU , i.e. U = h(ϕU ). This will work only if U is closed

– t ∈ U ∧ t ≤ s⇒ s ∈ U .

So from now on, we talk about modalities associated with closed subsets of S.
We can now define our language. This is the same as defined in Definition 2.

We now define the semantics.

Definition 4. A model has the form

m = (S,≤, RU , t0, h), U ⊆ S

where (S,≤) is a partial order, t0 ∈ S, and each U ⊆ S is a closed set and so is
h(q) for atomic q. RU satisfies condition (*) above. We define the notion t � A
for a wff by induction, and then define

h(A) = {t|t � A}.

So let’s define �:

– t � q iff t ∈ h(q)
– t � A ∧B iff t � A and t � B
– t � A ∨B iff t � A or t � B
– t � A→ B iff for all s, t ≤ s and s � A imply s � B
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– t � ¬A iff for all s, t ≤ s implies s 6� A
– t 6� ⊥
– t � �ϕψ iff for all s such that tRh(ϕ)s we have s � ψ. We assume by

induction that h(ϕ) is known.
– m � A iff t0 � A.

It is our intention to read �ϕψ as ϕ says ψ.

Example 1 (Two intuitionistic modalities). Let us examine the case of two in-
tuitionistic modalities in more detail Let us call them �A and �B and their
accessibility relations RA and RB. So our Kripke model has the form (S,≤
, RA, RB , t0, h). We know for µ = A or µ = B that we have in the model

t ≤ s ∧ sRµz → tRµz. (∗)

What other conditions can we impose on �µ?

1. The axiom X → �µX
This corresponds to the condition

xRµy → x ≤ y (∗1)

2. The axiom �BX → �AX
This corresponds to the condition

xRAy → xRBy (∗2)

3. Note that �BX → �AX is taken in (*2) as an axiom schema. If we want to
have t � ∀X(�BX → �AX) i.e. we want �Bϕ→ �Aϕ to hold at the point
t ∈ S for all wff ϕ, we need to require (*2) to hold above t, i.e.

∀x, y(t ≤ x ∧ xRAy → xRBy) (∗3)t

4. Consider now an axiom called hand-off A to B.

�A(∀X(�BX → �AX)) → ∀X(�BX → �AX)

This axiom has a second order propositional quantifier in it.
The antecedent of the axiom wants �A(∀X�BX → �AX)) to hold at t0.
This means in view of (3) above that (∗4a) needs to hold

∀t(t0RAt→ (∗3)t) (∗4a)

The axiom says that if the antecedent holds at t0 so does the consequent,
i.e.

t0 � ∀X(�BX → �AX).

We know the condition for that to hold is (∗3)t0 . Thus the condition for
Hand-off A to B is

∀t[t0RAt→ (∗3)t] → (∗3)t0 (∗4)
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The important point to note is that although the axiom is second order
(has ∀X in it both in the antecedent and consequence), the condition on the
model is first order10.

5. There is another modal axiom called escalation for A

�AX → X ∨ �A⊥

The condition for that is

∃y(xRAy) → xRAx (∗5)

To check whether we can have hand-off from A to B without escalation for
A, for some choice of RA and RB, we need to check whether we can have
(*4) without having (*5), for some wise choice of RA and RB .

6. Consider a Kripke model (S,≤, t0) which is nonending and dense, i.e.
– ∀x∃y(x � y)
– ∀xy(x � y → ∃z(x � z � y))

In this model let
xRAy be x � y
xRBy be x ≤ y.

We have here that (∗3)t holds for any t because it says

∀xy(t ≤ x ∧ x � y → x ≤ y)

Therefore (*4) also holds. This is hand-off from A to B.
However, escalation does not hold because

∃y(x � y) → x � x

is false.
7. α relative hand-off

Let α(x) be any formula and X a new variable. We can write a relative speak
axiom.

α(X) ∧ �BX → �AX (∗7)

In particular, if α(x) = ϕ → x, then (*7) would refer to B speaks for A on
all consequences of ϕ.

Definition 5. Let (S,≤, t0, h) be a Kripke model. By a modal function E we
mean a function giving to each point t ∈ S a set of points E(t) such that

1. t � s for all s ∈ E(t).
2. t1 ≤ t2 → E(t1) ≤ E(t2) where E(t1) ≤ E(t2) means ∀x ∈ E(t2)∃y ∈

E(t1)(y ≤ x).

Definition 6. (S,≤, t0,E) is E-dense iff the following holds:

10 Notice that we use first-order but we get a language more expressive than CDD[9]
which is second-order.
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– If x ∈ E(t), then for some y, y ∈ E(t) ∧ x ∈ E(y).

To show the existence of dense systems, we do the following construction:

1. Start with (S0,≤0,E0) where E0(x) is dense. For example, (S0,≤0) may be
linear and E0 is generated by a strictly increasing function f, i.e. E(x) =
{y|f(x) ≤ y}.

2. For every pair of points x �0 y, add the point (x, y).
Let x �0 (x, y) �0 y and let S1 = S0 ∪ {(x, y)|x �0 y}, let ≤1 be transitive
closure of ≤0 ∪{(x, (x, y)), ((x, y), y)}. Let E1 be defined from ≤1 as follows:
First let Ē denote the ≤1 closure of E.

x ∈ Ē iff ∃y ∈ E such that y ≤1 x.

Second, let for each x

P (x) = {(x, y)|x ≤0 y and x 6= y}

Then let
E1(x) = E0(x) ∪ P (x)
E1((x, y)) = {z|y ≤1 z}.

3. Let (Sn+1,≤n+1, t0,En+1) be obtained from Sn+1,≤n+1 in the same way as
in step 2.

4. Let (S∞,≤∞, t0,E∞) be the union.

S∞ =
⋃

n

Sn,≤∞=
⋃

n

≤n,E∞ =
⋃

n

En.

Then we have density.
If y ∈ E∞(x) then for some z

z ∈ E∞(x) ∧ y ∈ E∞(z)

Remark 1. In models of Definition 6 we have Unit and C4 hold but not neces-
sarily Escalation nor Generalised Hand-off.

4.2 Predicate FSL

Intuitively, a predicate FSL fibred model is represented by a set of models linked
togheter by means of a fibring function, every model has an associated domain
D of elements together with a set of formulas that are true in it. In the FSL
meta-model, the evaluation of the generic formula {x}ϕ(x) says is carried out
in two steps, first evaluating ϕ and then ψ in two different models. Suppose m1

is our (first order) starting model in which we identify U ⊆ D as the set of all
the elements that satisfy ϕ. Once we have U we can access one or more worlds
depending on the fibring function f : P(D) → P(M) which goes from sets of
elements in domain D to sets of models. A this point, for every model mi ∈ f(U)
we must check that ψ is true, if this is the case then α is true in the meta-model.
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The fact that in the same expression we evaluate different sub-formulas in
different models it is not completely counter intuitive, for instance, think about
a group of administrators that have to set up security policies for their company.
From a semantical point of view, if we want to check if ψ holds in the depicted
configuration by the administrators, we must

1. Identify all the admins (all the elements that satisfy admin(x)).
2. Access the model that all the admins as a group have depicted.
3. Check in that model if ψ is true or false

Let L denote classical or intuitionistic predicate logic.11 We assume the usual
notions of variables, predicates, connectives ∧,∨,→,¬, quantifiers ∀,∃ and the
notions of free and bound variables.

Let L+ be L together with two special symbols:

– A binary (modality), x says y
– A set-binding operator {x}ϕ(x) meaning the set of all x such that ϕ(x)

Note that semantically at the appropriate context {x}ϕ(x) can behave like
∀xϕ(x) and sometimes in other contexts, we will use it as a set.

Definition 7. The language FSL has the following expressions:

1. All formulas of L+ are level 0 formulas of FSL.
2. If ϕ(x) and ψ are formulas of L+ then α = {x}ϕ(x) says ψ are level 1

‘atomic’ formulas of FSL. If (x, x1, . . . , xn) are free in ϕ and y1, . . . , ym are
free in ψ then {x1, . . . , xn, y1, . . . , ym} are free in α. The variable x in ϕ
gets bound by {x}. The formula of level 1 are obtained by closure under the
connectives and quantifiers of L+.

3. Let ϕ(x) and ψ be formulas of FSL of levels r1 and r2 resp., then α =
{x}ϕ says ψ is an ‘atomic’ formula of FSL of level r = max(r1, r2) + 1.

4. Formulas of level n are closed under classical logic connectives and quanti-
fiers of all ‘atoms’ of level m ≤ n.

Definition 8 (FSL classical fibred model of level n).

1. Any classical model with domain D is an FSL model of level 0.
2. Let m be a classical model of level 0 with domain D and let for each subset

U ⊆ D, fn(U) be a family of models of level n (with domain D). Then (m, fn)
is a model of level n+ 1.

Definition 9 (Classical satisfaction for FSL). We define satisfaction of for-
mulas of level n in classical models of level n′ ≥ n as follows.

First observe that any formula of level n is built up from atomic predicates
of level 0 as well as ‘atomic’ formulas of the form α = {x}ϕ(x) says ψ, where
ϕ and ψ are of lower level.

11 Classical predicate logic and intuitionistic predicate logic have the same language.
The difference is in the proof theory and in the semantics.
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We therefore first have to say how we evaluate (m, fn) � α.
We assume by induction that we know how to check satisfaction in m of any

ϕ(x), which is of level ≤ n.
We can therefore identify the set U = {d ∈ D | m � ϕ(d)}.
Let m′ ∈ fn(U). We can now evaluate m′

� ψ, since ψ is of level ≤ n− 1.
So we say

(m, fn) � α iff for all m′ ∈ fn(U), we have m′
� ψ.

We need to add that if we encounter the need to evaluate m � {x}β(x), then
we regard {x}β(x) as ∀xβ(x).

Example 2. Figure 1 is a model for

α(y) = {x}[{u}B(u) says (B(x) → A(x, y))] says F (y)

In Figure 1, m1 is a single model in f1(UB) and m3 is a single model in f1(UE(y)),
as defined later.

f(UE(y))

f(UB)
m3:

m2:

D

m1: UB

UE(y)

D

Fig. 1.

The set UB is the extension of {x}B(x) in m1.
To calculate the set of pairs (x, y) such thatE(x, y) = {u}B(u) says (B(x) →

A(x, y)) holds in m1, we need to go to m2 in f(UB) and check whether B(x) →
A(x, y) holds in m2, x, y are free variables so we check the value under fixed
assignment.)

We now look at E(y) = {x}E(x, y) for y fixed, we collect all elements d in
D such that m2 � B(d) → A(d, y). Call this set UE(y).
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To check α(y) = {x}E(x, y) says F (y) in m1 we have to check whether F (y)
holds in m3.

We now define intuitionistic models for FSL. This will give semantics for the
intuitionistic language.

Definition 10. We start with intuitionistic Kripke models which we assume for
simplicity have a constant domain. The model m has the form (S,≤, t0, h,D)
where D is the domain and (S,≤, t0) is a partial order with first point t0 and h is
an assignment function giving for each t ∈ S and each m-place atomic predicate
P a subset h(t, P ) ⊆ Dm such that t1 ≤ t2 ⇒ h(t1, P ) ⊆ h(t2, P )

We let h(P ) denote the function λt h(t, P ). For t ∈ S let

St = {s | t ≤ s}
h(t, P ) = h(P ) ↾ St

≤t=≤↾ St

Let mt = (St,≤t, t, ht, D).

Note that a formula ϕ holds at m = (S,≤, t0, h,D) iff t0 � ϕ according to
the usual Kripke model definition of satisfaction.

1. A model of level 0 is any model m: m = (S,≤, t0, h,D).

2. Suppose we have defined the notion of models of level m ≤ n, (based on the
domain D).

We now define the notion of a model of level n+ 1

Let m be a model of level 0 with domain D. We need to consider not only m
but also all the models mt = (St,≤t, t, ht, D), for t ∈ S. The definitions will be
given simultaneously for all of them.

By an intuitionistic ‘subset’ of D in (S,≤, t0, h,D), we mean a function d
giving for each t ∈ S, a subset d(t) ⊆ D such that t1 ≤ t2 ⇒ d(t1) ⊆ d(t2).

Let fn
t be a function associating with each dt and t ∈ S a family fn

t (dt) of
level n models, such that t1 ≤ t2 ⇒ fn

t1
(dt1) ⊇ fn

t2
(dt2). Then (mt, ft) is a model

of level n+ 1 where dt = d ↾ St.

Definition 11 (Satisfaction in fibred intuitionistic models). We define
satisfaction of formulas of level n in models of level n′ ≥ n as follows.

Let (mt, f
n
t ) be a level n model. Let α = {x}ϕ(x) says ψ is of level n. We

assume we know how to check satisfaction of ϕ(x) in any of these models.

We can assume that

dt = {x ∈ D | t � ϕ(x) in (mt, f
n
t )}

is defined. Then t � α iff for all models m′
t in fn

t (dt) we have m′
t � ψ.
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5 An Example

In this section we want to give an informal example of policy written in FSL.
Suppose we have the following distributed policies and facts of a computer science
department:

– The department of Computer Science (CS Dep) delegates the University
to say who is regularly enrolled as a student

∀x(University says regularly enrolled(x) →

CS Dep says regularly enrolled(x))
12 (3)

– The delegation depth between University and CS Dep must be limited to
one, we have that for every principal P (P ∈ D):

P ⇒regularly enrolled(x) University →

P = University
(4)

– The CS Dep delegates the group of all the members of the ICT staff to
assign logins to students

∀y({x}ICT member(x) says has login(y) →

CS Dep says has login(y))
(5)

– The group of the ICT staff members says that z has a login if and only if
one single member of the group says it

{x}ICT member(x) says has login(z) ↔

∃y(ICT member(y) ∧ y says has login(z))
(6)

– If someone has a login and is regulary enrolled as student at the University
then he can have access to his mail:

(CS Dep says has login(x)∧

CS Dep says regulary enrolled(x)∧

x says can access mail(x)) →

can access mail(x)

(7)

– John and Adam are members of the ICT staff of che Computer Science
Departement:

ICT member(John) ∧ ICT member(Adam) (8)

– The University certifies that Tom is regulary enrolled:

University says regularly enrolled(Tom) (9)

12 CS Dep says ψ in formal FSL must be inteded as {x}(x = CS Dep) says ψ
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– Tom has a login which has been assigned by Adam

Adam says has login(Tom) (10)

Suppose now we want to check if Tom can access his mail, so that from

Tom says can access mail(Tom) (11)

we want, on the basis of the following knowledge base, to derive

can access mail(Tom) (12)

In fact we can make the following reasoning:

– From (1) and (6) we get

CS Dep says regularly enrolled(Tom) (13)

– From (7) and (3) we derive

{x}ICT member(x) says has login(Tom) (14)

– With (2) and (11) we obtain

CS Dep says has login(Tom) (15)

– Now with (12),(10),(8) and (4) we finally conclude

can access mail(Tom) (16)

6 Conclusion and Future Works

In this paper we presented FSL, a language for access control in distributed
systems. Our approach is based on fibring [1] which is a methodology to compose
logics and use them within a same language. In Section 4.2 we introduced a fibred
semantics to merge intuitionistic logic with modalities indexed by first-order
formulas creating predicate FSL. Predicate FSL is a language which satisfies the
requirements listed in Section 1, in future works we plan to first extend well
known existing logics like Delegation Logic [3], SecPAL [2] and DEBAC [4] with
the FSL methodology and then to translate them into predicate FSL modal
logic. We are also working on providing a calculus for predicate FSL, in order
to maintain the calculus tractable we plan to employ first-order modal theorem
provers without resorting to second order.
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A Appendix

A.1 Axiomatisation and completeness of FSL

We prove completeness for FSL with increasing domains and for FSL with con-
stant domains (FSL and FSLCD). Well-formed formulas (wffs) are defined re-
cursively as follows:

– Atoms of the form P (t1 . . . tn)13 are wffs.

13 where t1 . . . tn are classical first-order terms.
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– ⊥ is a wff.
– If α and β are wff, then so are (¬α), (α ∧ β), (α ∨ β), (α→ β), (∀xα), (∃xα).
– If ϕ(x) and ψ are wff, the so is {x}ϕ(x) saysψ.

Axiom system for predicate FSL

1. All axioms and rules for intuitionistic logic
2. Extensionality axiom:

∀x(ϕ1(x) ↔ ϕ2(x)) →
({x}ϕ1(x) says ψ ↔ {x}ϕ2(x) says ψ)

3. Modality axioms:

⊢
∧

i α→ β
⊢

∧
i{x}ϕ says αi → {x}ϕ says β

4. Constant domains axioms14:
(a) ∀y{x}ϕ says β(y) → {x}ϕ says ∀yβ(y)
(b) ∀y(ψ ∨ β(y)) → (ψ → ∀yβ(y))

5. Additional Axioms:
(a) A→ {x}ϕ saysA
(b) here we put all the axioms we need to craft our logic from Sections 2,3

like for instance:

∀t(ϕ(t) → t says ψ) → {x}ϕ(x) says ψ

Definitions and Lemmas

Definition 12 (Consistent and Complete Theory). Suppose we have a the-
ory (∆,Θ) of sentences15.

– (∆,Θ) is consistent, if we do not have for some αi ∈ ∆, βj ∈ Θ

⊢
∧

i

αi →
∨

j

βj

– (∆,Θ) is complete in the language with variables V iff for all ψ in the lan-
guage, we have

ψ ∈ ∆ or ψ ∈ Θ

Definition 13 (Saturated Theory). A theory (∆,Θ) is saturated in a lan-
guage with variables V iff the following holds:

1. (∆,Θ) is consistent

14 y not free in ψ or ϕ.
15 intuitively, ∆ is the set of formulas that are true in the model and Θ is the set of

formulas that are false in the model.
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2. ∃xA(x) ∈ ∆, then for some y ∈ V, A(y) ∈ ∆.

3. ∀xA(x) /∈ ∆, then for some y ∈ V, A(y) /∈ ∆

4. A ∨B ∈ ∆ iff A ∈ ∆ or B ∈ ∆.

5. If for some βj ∈ Θ

∆ ⊢ A ∨ βj ⇒ A ∈ ∆

with A in the language with variables V

Definition 14 (Constant Domain Theory). A theory (∆,Θ) is said to be
constant domain (CD) theory in language V iff for any ∀xA(x) and any βj ∈ Θ
such that

∆ 0 ∀xA(x) ∨
∨

j

βj

then for some y

∆ 0 A(y) ∨
∨

j

βj

Lemma 1. Assume the CD axiom ∀x(β∨A(x) → (β∨∀xA(x))), then if (∆,Θ)
is a consistent CD theory and ∆

′

= ∆ ∪ {α1, . . . , αn}, Θ
′

= Θ ∪ {γ1, . . . , γm}
and (∆

′

, Θ
′

) is consistent then (∆
′

, Θ
′

) is a CD theory

Proof. Assume

∆ ∪
∧

i

αi 0 (
∨

j

βj) ∨ (
∨

j

γj) ∨ ∀xA(x)

we can assume x not in βj,αj, γj hence

∆ 0
∧

i αi → ∀x(
∨

j βj) ∨ (
∨

j γj) ∨ ∀xA(x)

∆ 0 ∀x(
∧

i αi → (
∨

j βj) ∨ (
∨

j γj) ∨A(x))

hence for some y

∆ 0
∧

i

αi → β ∨A(y) ∨ γj

hence ∆
′

0 β ∨A(y) ∨ γj

Lemma 2. Let (∆,Θ) be a saturated theory. Let ∆
′

be

{ψ|({x}ϕ(x) says ψ) ∈ ∆}

Assume
({x}ϕ(x) says β) ∈ Θ

∆
′

0 β ∨ ∀xA(x)

then for some y

Θ 0 β ∨A(y)
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Proof. The proof is by contradiction, suppose it is not the case that

Θ 0 β ∨A(y)

then, for each y there exists a finite ∆
′

y ⊆ ∆
′

such that

0
∧
∆

′

y → β ∨A(y)

hence, with α ∈ ∆
′

y

0
∧

{x}ϕ(x) says α→ {x}ϕ says β ∨A(y)

hence, for all y
{x}ϕ says β ∨A(y) ∈ ∆

Since ∆ is saturated we get:

∀y{x}ϕ says (β ∨A(y)) ∈ ∆

hence
{x}ϕ says ∀y(β ∨A(y)) ∈ ∆

hence

∀y(β ∨A(y)) ∈ ∆
′

but then

β ∨ ∀yA(y) ∈ ∆
′

which is a contradiction.

Lemma 3. Let (∆,Θ) be a consistent CD theory, then (∆,Θ) can be extended
to a saturated theory (∆

′

, Θ
′

) in the same laguage with ∆ ⊆ ∆
′

and Θ ⊆ Θ
′

Proof. The proof is by induction on (∆n, Θn) the theory, let ∆o = ∆ and Θ0 =
Θ.

Assume (∆n, Θn) is defined, Θn −Θ is finite and (∆n, Θn) is CD. Let βn+1

be the (n + 1)th wff of the language. Then either (∆n, Θn ∪ βn+1) is consistent
or is not consistent, it it is consistent let

∆n+1 = ∆n

Θn + 1 = Θn ∪ {β}

If it is inconsistent then (∆n ∪ β,Θn) must be consistent so let

∆n+1 = ∆n ∪ {β}
Θn + 1 = Θn

In any case (∆n+1, Θn+1) is CD.
Now let (∆,Θ) =

⋃
n(∆n, Θn), this theory is the saturated theory.
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Definition 15. Let S be the set of all complete theories in the predicate language
FSL. If the logic is CD then all the theories are in the language with variables V,
if the logic is not CD, then assume that each theory leaves us an infinite number
of variables from V not in the theory. We can write (∆,Θ) as ∆ because for a
saturated theory (∆,Θ), we have Θ = {β|∆ 0 β}.

Define two relations on S

1. (set inclusion) ∆ ⊆ ∆
′

2. For every {x}ϕ(x) let ∆R{x}ϕ(x)∆
′

iff for all ψ such that {x}ϕ says ψ ∈ ∆

we have ψ ∈ ∆
′

.

Lemma 4. Suppose ∆ 0 α→ β, then for some ∆
′

⊇ ∆, ∆
′

⊢ α and ∆′ 0 β

Proof. From hypothesis we have

∆ ∪ {α} 0 β

and ∆ ∪ {α} can be completed to be a saturated theory ∆
′

such that

∆
′

0 β

In case of logic CD, this can be done in the same language with variables V. If
the logic is not CD, then since there is an infinite number of variables not in ∆,
∆

′

can use some of them, still leaving infinitely out of ∆

Lemma 5. Assume ∆ 0 ∀xϕ(x), if the logic is not CD, then for some u not in
the language od ∆, we have ∆ 0 ϕ(x). ∆ can be extended in a saturated ∆

′

by
adding the variable u and more variables such that ∆

′

0 ϕ(u), and still infinitely
numbers of variables are not in ∆

′

. If the logic is CD, such a u is in the logic
in ∆ and (∆, {ϕ(u)}) can be extended to a complete and saturated theory in the
same language.

Lemma 6. Let (∆,Θ) be complete and saturated. Assume {x}ϕ says ψ is not
in Θ. Then

∆0 = {α|{x}ϕ(x) says α ∈ ∆}

does not prove ψ, otherwise

⊢
∧
αj → ψ

hence
⊢

∧

j

{x}ϕ(x) says αi → {x}ϕ(x) says ψ

hence
{x}ϕ(x) says ∈ ∆

Since ∆0 does not prove ψ, and (∆0, {ψ}) is consistent, we can extend ∆0 to
a saturated theory (∆

′

, Θ
′

). In case the logic is CD, (∆
′

, Θ
′

) will be in the same
language. Otherwise we use more variables.
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Lemma 7. Properties of the model (S,⊆, R{x}ϕ):

1. ∆1 ⊆ ∆2 and ∆2R{x}ϕΘ then ∆1R{x}ϕΘ

Proof. ∆2R{x}ϕΘ means for every {x}ϕ says ψ ∈ ∆2 we have ψ ∈ Θ. Since
∆1 ⊆ ∆2 we have for every {x}ϕ says ψ ∈ ∆ we have ψ ∈ Θ.

2. If we add the axiom ∀x(ϕ(x) ↔ ϕ
′

(x)) → ({x}ϕ says ψ ↔ {x}ϕ
′

says ψ)
we get the condition

∆ ⊢ ∀x(ϕ(x) ↔ ϕ
′

(x))

implies for all Θ
∆R{x}ϕΘ ↔ ∆R{x}ϕ

′Θ

Definition 16 (Construction of the model). Take (S,⊆, R{x}ϕ(x)) as de-
fined above. For atomic P (x1, . . . , xn) and ∆ ∈ S, let

∆ |= P iff P ∈ ∆

The domain of ∆ is defined by the variables of ∆. If the logic is CD all ∆ will
have variables V as domain, otherwise we will have variable domains.

Lemma 8. For any ψ,∆
∆ |= ψ iff ψ ∈ ∆

Proof. Proof by taking in exam ”→” and ”says”.
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Abstract. The import of the notion of institution in the design of MASs requires
to develop formal and efficient methods for modeling the interaction between
agents’ behaviour and normative systems. This paper discusses how to check
whether agents’ behaviour is compliant with the rules regulating them. The key
point of our approach is that compliance is a relationship between two sets of
specifications: the specifications for executing a process and the specifications
regulating it. We propose a logic-based formalism for describing both the se-
mantics of normative specifications and the semantics of compliance checking
procedures.

1 Introduction

Recent developments in MAS have pointed out that normative concepts can play a
crucial role in modeling agents’ interaction [29]. In fact, while the main objective is to
design systems of autonomous agents, it is likewise important that agent systems may
exhibit global desirable properties. Like in human societies, such properties are ensured
if the interaction of artificial agents, too, adopts institutional and organizational models
whose goal is to regiment agents’ behaviour through normative systems in supporting
coordination, cooperation and decision-making. However, to keep agents autonomous
it is often suggested that norms should not simply work as hard constraints, but rather as
soft constraints [6]. In this sense, norms should not limit in advance agents’ behaviour,
but would instead provide standards which can be violated, even though any violations
should result in sanctions or other normative effects applying to non-compliant agents.

If normative systems for MAS are designed as mentioned above, it is of paramount
importance to develop mechanisms to characterizing and detecting agents’ norm com-
pliance. To our knowledge, no systematic investigation has been devoted so far to this
research issue in MAS theory, whereas its importance has increased over the last few
years in other related fields such as in business modeling. In this perspective, com-
pliance is essentially ensuring that business processes, operations and practise are in
accordance with a prescribed and/or agreed set of norms. Compliance is often used
to denote adherence of one set of rules (we refer to them as ‘source rules’ hereafter)
against other set of rules (we refer to them as ‘target rules’ hereafter).

In this paper we apply this interpretation of compliance to discuss adherence or
consistence of a set of rules specifying a process against a set of “normative” rules reg-
ulating it. Of course, agents’ compliance could be tested by directly focusing on plan
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design and execution. The choice of working on processes is motivated by two rea-
sons. First, modelling agents’ behaviour in terms of processes has been proven useful
in developing agent-oriented systems for business management (for a recent proposal
see, e.g., [5]). The correspondence of business processes and agent plans makes busi-
ness services flexible and adaptable. Second, while it is far from obvious that complex
plan’s actions can be always viewed as processes (for the pros and cons of this view, see
[9]), in institutional settings agents usually instantiate roles, which consist of a specifi-
cation of an agent’s internal and external behavior. In this sense, taking roles as specific
processes (or procedures) allows for obtaining a flexible team agent structure [28]. Un-
der this working hypothesis, the problem of norm compliance can be framed as the
relationship between the specifications for process execution and those regulating it.

Process specifications describe how a process is executed while norms state what
can be done and what cannot be done by a process. The problem is how to align the
language to specify the activities to be performed to complete a process and the con-
ditions set up by the norms relevant for the process. The solution of such a problem
is not trivial matter. The detection of violations and the design of agents’ compliance
amount to relatively affordable operations when we have to check whether processes
are compliant with respect to simple normative systems. But things are tremendously
harder when we deal with processes to be tested against realistic, large and articulated
systems of norms.

What do we mean by a “complex” normative system? Among other things, the com-
plexities of normative systems reside in the fact that they regulate agents’s behaviour by
usually specifying actions to be taken in case of breaches of some of the norms, actions
which can vary from (pecuniary) penalties to the termination of an interaction itself.
These constructions, i.e., obligations in force after some other obligations have been
violated, are known in the deontic literature as contrary-to-duty obligations (CTDs) or
reparational obligations (because they are meant to ‘repair’ or ‘compensate’ violations
of primary obligations [7]). Thus a CTD is a conditional obligation arising in response
to a violation, where a violation is signalled by an unfulfilled obligation. These con-
structions identify situations that are not ideal for the interaction but still acceptable.
The ability to deal with violations and the reparational obligations generated from them
is an essential requirement for agents where, due to the nature of the environment where
they are deployed, some failures can occur, but it does not necessarily mean that the
whole interaction has to fail. However, the main problem with these constructions is
that they can give rise to very complex rule dependencies, because we can have that the
violation of a single rule can activate other (reparational) rules, which in turn, in case
of their violation, refer to other rules, and so forth.

In this paper, we take inspiration from an approach originally designed for mod-
eling business process compliance3. This approach is based on (semantic) annotations,
where the annotations are written in the formal language chosen to represent the norma-
tive specifications. The idea is that processes are annotated and the annotations provide
the conditions a process has to comply with. Annotations can be at different levels; for
example we can annotate a full process or a single task in a process. In addition we
can have different types of annotation. Annotations can range from the full set of rules

3 For a comprehensive exposition of compliance for business process models, see [21, 27]

2



(norms) specific to a process or a single task to simple semantic annotation correspond-
ing to one effect of a particular task, e.g., after the successful execution of task A in a
process B the value of the environment variable C is D.

The layout of the paper is as follows. Section 2 provides a reasoning mechanism to
deal with reparational constructions and to reframe the normative system in such a way
as it is possible to detect agent compliance. Section 3 briefly outlines how to represent
processes and to annotate them. Section 4 provides a semantics of compliance checking
procedures on account of what proposed in the previous sections. A section on related
work ends the paper.

2 Normative Constraints for MAS

The expression of violation conditions and the reparation obligations is an important
requirement for formalising norms, design subsequent processes to minimise or deal
with such violations and also to determine the compliance of a process with the rele-
vant norms. The violation expression consists of the primary obligation, its violation
conditions, an obligation generated upon the violation condition occurs, and this can
recursively be iterated, until the final condition is reached. This final condition is one
which cannot be violated and this it is to be a permission. We introduce the non-boolean
connective ⊗, whose interpretation is such that OA⊗OB is read as “OB is the repara-
tion of the violation of OA”. In other words the interpretation of OA⊗OB, is that A is
obligatory, but if the obligation OA is not fulfilled (i.e., when ¬A is the case), then the
obligation OB is activated and becomes in force until it is satisfied or violated. In the
latter case a new obligation may be activated, followed by others in chain, as appropri-
ate.

2.1 Process Compliance Language (PCL)

We now provide a formal account of the idea presented above. Our formalism, called
Process Compliance Language (PCL), is a combination of an efficient non-monotonic
formalism (defeasible logic [3, 4]) and a deontic logic of violations [18]. This partic-
ular combination allows us to represent exceptions as well as the ability to capture
violations and the obligations resulting from the violations; in addition our framework
has good computational properties: the extension of a theory (i.e., the set of conclu-
sions/normative positions following from a set of facts) can be computed in time linear
to the size of the theory.

The ability to handle violation is very important for compliance of agents’ pro-
cesses. Often agents operate in dynamic and somehow unpredictable environments. As
a consequence in some cases, maybe due to external circumstances, it is not possible
to operate in the way specified by the norms, but the norms prescribe how to recover
from the resulting violations. In other cases, the prescribed behaviours are subject to
exceptions. Finally, in other cases, one might not have a complete description of the
environment. Accordingly the process has to operate based on the available input (this
is typically the case of the due diligence prescription), but if more information were
available, then the task to be performed could be a different one. A conceptually sound
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formalisation of norms (for assessing the compliance of a process) should take into ac-
count all the aspects mentioned above. PCL is sound in this respect given the combina-
tions of the deontic component (able to represent the fundamental normative positions
and chains of violations/reparations) and the defeasible component that takes care of
the issue about partial information and possibly conflicting prescriptions.

Our formal language consists of the following set of atomic symbols: a numerable
set of propositional letters p,q,r, . . . , intended to represent the state variables and the
tasks of a process. Formulas of the logic are constructed using the deontic operators
O (for obligation), P (for permission), negation ¬ and the non-boolean connective ⊗
(for the Contrary-To-Duty (CTD) operator). The formulas of PCL will be constructed
in two steps according to the following formation rules:

– every propositional letter is a literal;
– the negation of a literal is a literal;
– if X is a deontic operator and l is a literal then Xl and ¬Xl are deontic literals.

After we have defined the notions of literal and deontic literal we can use the following
set of formation rules to introduce ⊗-expressions, i.e., the formulas used to encode
chains of obligations and violations.

– every deontic literal is an ⊗-expression;
– if Ol1, . . . ,Oln are deontic literals and ln+1 is a literal, then Ol1 ⊗ . . .⊗Oln and

Ol1⊗ . . .⊗Oln⊗Pln+1 are ⊗-expressions.

The connective ⊗ permits combining primary and CTD obligations into unique regula-
tions. The meaning of an expression like OsA⊗OsB⊗OsC is that the primary obligation
for agent s is A, but if A is not done, then s has the obligation to do B. But if event B fails
to be realised, then s has the obligation to do C. Thus B is the reparation of the violation
of the obligation OsA (¬A holds). Similarly C is the reparation of the obligation OsB,
which is in force when the violation of A occurs.

The formation rules for ⊗-expressions allow a permission to occur only at the end
of such expressions. This is due to the fact that a permission can be used as a reparation
of a violation, but it is not possible to violate a permission, thus it makes no sense to
have reparations to permissions.

Each norm is represented by a rule in PCL, where a rule is an expression r :
A1, . . . ,An ⇒ C, where r is the name/id of the norm, A1, . . . ,An, the antecedent of the
rule, is the set of the premises of the rule (alternatively it can be understood as the con-
junction of all the literals in it) and C is the conclusion of the rule. Each Ai is either a
literal or a deontic literal and C is an ⊗-expression.

The meaning of a rule is that the normative position (obligation, permission, prohi-
bition) represented by the conclusion of the rule is in force when all the premises of the
rule hold.

PCL is equipped with a superiority relation (a binary relation) over the rule set.
The superiority relation (≺) determines the relative strength of two rules, and it is used
when rules have potentially conflicting conclusions. For example given the rules r1 :
A⇒ B⊗C and r2 : D⇒¬C. r1 ≺ r2 means that rule r1 prevails over rule r2 in situations
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where both fire and they are in conflict (i.e., rule r1 fires for the secondary obligation
C). For example let us consider the following two contract rules4:

r : PremiumCustomer⇒ OsDiscount
r′ : SpecialOrder⇒ Os¬Discount

saying that Premium Customers are entitled to a discount (r), but there is no discount
for goods bought with a special order (r′). Is a Premium customer entitled to a discount
when she places a special order? If we only have the two rules above there is no way
to solve the conflict just using the contract and there is the need of a domain expert to
advise the knowledge engineer about what to do in such case. The logic can only point
out that there is a conflict in the contract. On the other hand, if we have an additional
provision

r′′ : PremiumCustomer,¬Discount⇒ OsRebate

specifying that if for some reasons a premium customer did not receive a discount then
the customer is entitled to a rebate on the next order, then it is possible to solve the
conflict, because the contract allows a violation of rule r to be amended by r′′, using the
merging mechanism we analyse in Section 2.2.

2.2 Normal Forms

We introduce transformations of an PCL representation of a normative system to pro-
duce a normal form of the same (NPCL). A normal form is a representation of a nor-
mative system based on an PCL specification containing all conditions that can be gen-
erated/derived from the given PCL specification. The purpose of a normal form is to
“clean up” the PCL representation of a normative system, that is to identify formal
loopholes, deadlocks and inconsistencies in it, and to make hidden conditions explicit.

In the rest of this section we introduce the procedures to generate normal forms.
First (Section 2.2) we describe a mechanism to derive new conditions by merging to-
gether existing normative clauses. In particular we link an obligation and the obligations
triggered in response to violations of the obligation. Then, in Section 2.2, we examine
the problem of redundancies, and we give a condition to identify and remove redundan-
cies from the formal normative specification.

Merging Norms One of the features of the logic of violations is to take two rules, or
norms, and merge them into a new clause. In what follows we will first examine some
common patterns of this kind of construction and then we will show how to generalise
them.

Consider a norm like (Γ and ∆ are sets of premises)

Γ ⇒ OsA.

4 In what follows we will use OS and PS for the obligation and permission operators relative to
the Supplier, and OP and PP for the Purchaser. Os and Ps will be used for a generic subject.
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Given an obligation like this, if we have that the violation of OsA is part of the premises
of another norm, for example,

∆ ,¬A⇒ Os′C,

then the latter must be a good candidate as reparational obligation of the former. This
idea is formalised as follows:

Γ ⇒ OsA ∆ ,¬A⇒ Os′C
Γ ,∆ ⇒ OsA⊗Os′C

This reads as follows: given two policies such that one is a conditional obligation (Γ ⇒
OsA) and the antecedent of second contains the negation of the propositional content of
the consequent of the first (∆ ,¬A⇒ Os′C), then the latter is a reparational obligation
of the former. Their reciprocal interplay makes them two related norms so that they
cannot be viewed anymore as independent obligations. Therefore we can combine them
to obtain an expression (i.e., Γ ,∆ ⇒OsA⊗Os′C) that exhibits the explicit reparational
obligation of the second norm with respect to the first. Notice that the subject of the
primary obligation and the subject of its reparation can be different, even if very often
they are the same.

Suppose we have the following rules

r : Invoice⇒ OPPayWithin7Days
r′ : ¬PayWithin7Days⇒ OPPayWithInterest.

From these we obtain

r′′ : Invoice⇒ OPPayWithin7Days⊗OPPayWithInterest.

We can also generate chains of CTDs in order to deal iteratively with violations of
reparational obligations. The following case is just an example of this process.

Γ ⇒ OsA⊗OsB ¬A,¬B⇒ OsC
Γ ⇒ OsA⊗OsB⊗OsC

For example, from the rules

r : Invoice⇒ OSQualityOfService⊗OSReplace3days

r′ : ¬QualityOfService,¬Replace3days⇒ OSRefund&Penalty

we derive the new rule

r′′ :Invoice⇒ OSQualityOfService⊗
OSReplace3days⊗OSRefund&Penalty.

The above patterns are just special instances of the general mechanism described in
details in [18, 15].
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Removing Redundancies Given the structure of the inference mechanism it is possible
to combine rules in slightly different ways, and in some cases the meaning of the rules
resulting from such operations is already covered by other rules. In other cases the rules
resulting from the merging operation are generalisations of the rules used to produce
them, consequently, the original rules are no longer needed in the specifications. To
deal with this issue we introduce the notion of subsumption between rules. Intuitively
a rule subsumes a second rule when the behaviour of the second rule is implied by the
first rule.

We first introduce the idea with the help of some examples and then we show how
to give a formal definition of the notion of subsumption appropriate for PCL.

Let us consider the rules

r : Service⇒OSQualityOfService⊗OSReplace3days⊗OSRefund&Penalty,

r′ : Service⇒OSQualityOfService⊗OSReplace3days.

The first rule, r, subsumes the second r′. Both rules state that after the supplier has pro-
vided the service she has the obligation to provide the service according to the published
standards, if she violates such an obligation, then the violation of QualityOfService can
be repaired by replacing the faulty service within three days (OSReplace3days). In other
words OSReplace3days is a secondary obligation arising from the violation of the pri-
mary obligation OSQualityOfService. In addition r prescribes that the violation of the
secondary obligation OSReplace3days can be repaired by OSRefund&Penalty, i.e., the
seller has to refund the buyer and in addition she has to pay a penalty.

The conditions of a normative system cannot be taken in isolation insofar as they
exist in it. Consequently the whole normative system determines the meaning of each
single clause (norm). In agreement with this holistic view of norms we have that the
normative content of r′ is included in that of r. Accordingly r′ does not add any new
piece of information, it is redundant and can be dispensed from the explicit formulation
of the norms.

Another common case is exemplified by the rules:

r : Invoice⇒ OPPayWithin7Days⊗OPPayWithInterest
r′ : Invoice,¬PayWithin7Days⇒ OPPayWithInterest.

The first rule says that after the seller sends the invoice the buyer has one week to
pay, otherwise the buyer has to pay the principal plus the interest. Thus we have the
primary obligation OPPayWithin7Days, whose violation is repaired by the secondary
obligation OPPayWithInterest, while, according to the second rule, given the same
set of circumstances Invoice and ¬PayWithin7Days we have the primary obligation
OPPayWithInterest. However, the primary obligation of r′ obtains when we have a vio-
lation of the primary obligation of r. Thus the condition of applicability of the second
rule includes that of the first rule, which then is more general than the second and we
can discard r′ from the formal representation of the specifications.

The intuitions we have just exemplified is captured by the following definition.

Definition 1. Let r1 : Γ ⇒ A⊗B⊗C and r2 : ∆ ⇒D be two rules, where A =
⊗m

i=1 Ai,
B =

⊗n
i=1 Bi and C =

⊗p
i=1 Ci. Then r1 subsumes r2 iff (1) Γ = ∆ and D = A; or (2) Γ ∪

{¬A1, . . . ,¬Am}= ∆ and D = B; or (3) Γ ∪{¬B1, . . . ,¬Bn}= ∆ and D = A⊗
⊗k≤p

i=0 Ci.
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The intuitions is that the normative content of r2 is fully included in r1. Thus r2 does
not add anything new to the system and it can be safely discarded.

Conflicts often arise in normative systems. What we have to determine is whether
we have genuine conflicts, i.e., the norms are in some way flawed or whether we have
prima-facie conflicts. A prima-facie conflict is an apparent conflict that can be resolved
when we consider it in the context where it occurs and if we add more information the
conflict disappears.

The following rule is devised for making explicit conflicting norms (contradictory
norms) within the system:

Γ ⇒ A ∆ ⇒¬A
Γ ,∆ ⇒⊥

(1)

where

1. there is no rule Γ ′⇒ X such that either ¬A ∈ Γ ′ or X = A⊗B;
2. there is no conditional rules ∆ ′⇒ X such that either A ∈ ∆ ′ or X = ¬A⊗B;
3. for any formula B, {B,¬B} 6⊆ Γ ∪∆ .

The meaning of these three conditions is that given two rules, we have a conflict if the
normative content of the two rules is opposite, such that none of them can be repaired,
and the states of affairs/preconditions they require are consistent.

Once conflicts have been detected there are several ways to deal with them. The first
thing to do is to determine whether we have a prima-facie conflict or a genuine conflict.
As we have seen we have a conflict when we have two rules with opposite conclusions.
Thus a possible way to solve the conflict is to create a superiority relation over the rules
and to use it do “defeat” the weaker rule. In Section 2.3 we will examine how to reason
with norms, and we will see how to use the superiority relation to solve conflicts.

Normalisation Process We now describe how to use the machinery presented in Sec-
tion 2.2 and Section 2.2 to obtain PCL normal forms. The PCL normal form of a nor-
mative system provides a logical representation of normative specifications in a format
that can be used to check the compliance of a process. This consists of the following
steps:

1. Starting from a formal representation of the explicit clauses of a set of normative
specifications we generate all the implicit conditions that can be derived from the
normative system by applying the merging mechanism of PCL.

2. We can clean the resulting representation by throwing away all redundant rules
according to the notion of subsumption.

3. Finally we use the conflict identification rule to label and detect conflicts.

In general the process at step 2 must be done several times in the appropriate order as
described above. The normal form of a set of rules in PCL is the fixed-point of the above
constructions. A normative system contains only finitely many rules and each rule has
finitely many elements. In addition it is possible to show that the operation on which the
construction is defined is monotonic [18], thus according to standard set theory results
the fixed-point exists and it is unique. However, we have to be careful since merging
first and doing subsumption after produces different results from the opposite order (i.e.,
subsumption first and merging after), or by interleaving the two operations.
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2.3 Reasoning with Norms

In the previous section we have examined the mechanism to obtain a set of rules cover-
ing all possible (explicit) norms for obligations, permissions and prohibitions that can
arise from an initial set of norms. In this section we focus on the issue of how to deter-
mine what obligations are in force for a specific situation, thus taking the well known
distinction between schema and instance. The previous section defines the procedure
to obtain the full (normalised) schema corresponding to a normative system. Here we
study how to get the normative positions active for a specific instance of a process. The
reasoning mechanism of PCL is an extension of Defeasible Logic.

Defeasible logic [24] is a simple and efficient rule based non-monotonic formalism.
Over the year the logic has been developed and extended, and several variants have been
proposed to model different aspects of normative reasoning and encompassed other
formalisms to for normative reasoning.

The main intuition of the logic is to be able to derive “plausible” conclusions from
partial and sometimes conflicting information. Conclusions are tentative conclusions, in
the sense that a conclusion can be withdrawn when we have new pieces of information.

The knowledge in a Defeasible Theory is organised in facts and rules and superi-
ority relation. Facts are indisputable statements. Defeasible rules are rules that can be
defeated by contrary evidence. The superiority relation is a binary relation defined over
the set of rules. The superiority relation determines the relative strength of two (con-
flicting) rules. The meaning of a defeasible rule, like A1, . . . ,An ⇒C, is that normally
we are allowed to derive C given A1, . . . ,An, unless we have some reasons to support
the opposite conclusion (i.e., we have a rule like B1, . . . ,Bm⇒¬C).

Defeasible Logic is a “skeptical” non-monotonic logic, meaning that it does not
support contradictory conclusions. Instead Defeasible Logic seeks to resolve conflicts.
In cases where there is some support for concluding A but also support for concluding
¬A, Defeasible Logic does not conclude either of them (thus the name skeptical). If the
support for A has priority over the support for ¬A then A is concluded.

A defeasible conclusion is a tentative conclusion that might be withdrawn by new
pieces of information, or in other terms it is the ‘best’ conclusion we can reach with
the given information. In addition the logic is able to tell whether a conclusion is or is
not provable. Thus it is possible to have the following types of conclusions: (a) Positive
defeasible conclusions, meaning that the conclusions can be defeasible proved; (b) Neg-
ative defeasible conclusions, meaning that one can show that the conclusion is not even
defeasibly provable. A defeasible conclusion A can be derived if there is a rule whose
conclusion is A, whose prerequisites (antecedent) have either already been proved or
given in the case at hand (i.e., facts), and any stronger rule whose conclusion is ¬A (the
negation of A) has prerequisites that fail to be derived. In other words, a conclusion A is
(defeasibly) derivable when: (1) A is a fact; or (2) there is an applicable defeasible rule
for A, and either (2.1) all the rules for ¬A are discarded (i.e., not applicable) or (2.2)
every applicable rule for ¬A is weaker than an applicable strict or defeasible rule for
A. A rule is applicable if all elements in the body of the rule are derivable (i.e., all the
premises are positively provable), and a rule is discarded if at least one of the elements
of the body is not provable (or it is a negative defeasible conclusion).
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Defeasible Logic at Work We illustrate the inferential mechanism of Defeasible Logic
with the help of an example. Let us assume we have a theory containing the following
rules:

r1 : PremiumCustomer(X)⇒ Discount(X)
r2 : SpecialOrder(X)⇒¬Discount(X)

r3 : Promotion(X)⇒¬Discount(X)

where the superiority relation is thus defined: r1 ≺ r3 and r2 ≺ r1. The theory states that
services in promotion are not discounted, and so are special orders with the exception of
special orders placed by premium customers, who are normally entitled to a discount.

In a scenario where all we have is that we received a special order, then we can
conclude that the price has to be calculated without a discount since rule r1 is not ap-
plicable (we do not know whether the customer is a premium customer or not). In case
the special order is received from a special customer for a service not in promotion, we
can derive that the customer is entitled to a discount. Indeed rule r1 is now applicable
and it is stronger than rule r2, and r3, which is stronger than r1, is not applicable (i.e.,
the service is not in promotion).

Adding Reparation Chains PCL is an extension of defeasible logic with the repa-
ration operator (⊗). Accordingly the reasoning mechanism to derive conclusion is an
extension of that for defeasible logic. In defeasible logic the conclusions of a rule is
a single literal and not a reparation chain. Thus the condition that OA appears in the
conclusion of a rule means in defeasible logic that OA is the conclusions of the rule. For
PCL have to extend the notion to accommodate reparation chain. The required change
is that to prove OA, we have to consider all rules with a reparation chain for OA, where
for all elements before OA in the chain, the negation of the element is already provable.
Thus to prove OA given a rule P1, . . . ,Pn⇒ OC1⊗·· ·⊗OCm⊗OA⊗OD1⊗·· ·⊗ODk,
we have that P1, . . . ,Pn must be all provable, and so must be ¬C1, . . . ,¬Cm [15].

3 Process Modelling

A business process model (BPM) describes the tasks to be executed (and the order in
which they are executed) to fulfill some objectives of a business. BPMs aim to automate
and optimise business procedures and are typically given in graphical languages. A lan-
guage for BPM usually has two main elements: tasks and connectors. Tasks correspond
to activities to be performed by actors (either human or artificial) and connectors de-
scribe the relationships between tasks: a minimal set of connectors consists of sequence
(a task is performed after another task), parallel –and-split and and-join– (tasks are to
be executed in parallel), and choice –(x)or-split and (x)or-join– (at least (most) one task
in a set of task must be executed).

3.1 Execution Semantics

The basic execution semantics of the control flow aspect of a business process model
is defined using token-passing mechanisms, as in Petri Nets. The definitions used here
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Fig. 1. Example account opening process in private banking

extend the execution semantics for process models given by [30] with semantic annota-
tions in the form of effects and their meaning.

A process model is seen as a graph with nodes of various types –a single start
and end node, task nodes, XOR split/join nodes, and parallel split/join nodes– and di-
rected edges (expressing sequentiality in execution). The number of incoming (outgo-
ing) edges are restricted as follows: start node 0 (1), end node 1 (0), task node 1 (1),
split node 1 (>1), and join node >1 (1). The location of all tokens, referred to as a
marking, manifests the state of a process execution. An execution of the process starts
with a token on the outgoing edge of the start node and no other tokens in the process,
and ends with one token on the incoming edge of the end node and no tokens elsewhere.
Task nodes are executed when a token on the incoming link is consumed and a token on
the outgoing link is produced. The execution of a XOR (Parallel) split node consumes
the token on its incoming edge and produces a token on one (all) of its outgoing edges,
whereas a XOR (Parallel) join node consumes a token on one (all) of its incoming edges
and produces a token on its outgoing edge.

3.2 Annotation of Processes

A process model is then extended with a set of annotations, where the annotations de-
scribe (i) the artifacts or effects of executing and (ii) the rules describing the obligations
(and other normative positions) relevant for the process.

As for the semantic annotations, the vocabulary is presented as a set of predicates
P. There is a set of process variables (x and y in Table 1), over which logical statements
can be made, in the form of literals involving these variables. The task nodes can be
annotated using effects (also referred to as postconditions) which are conjunctions of
literals using the process variables. The meaning is that, if executed, a task changes the
state of the world according to its effect: every literal mentioned by the effect is true in
the resulting world; if a literal l was true before, and is not contradicted by the effect,
then it is still true (i.e., the world does not change of its own accord).

The obligations for this example are motivated by the following scenario: A new
legislative framework has recently been put in place in Australia for anti-money
laundering. The first phase of reforms for the Anti-Money Laundering and Counter-
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Terrorism Financing Act 2006 (AML/CTF), covers the financial sector including banks,
credit unions, building societies and trustees and extends to casinos, wagering service
providers and bullion dealers. The act namely AML/CTF imposes a number of obliga-
tions, which include: customer due diligence (identification, verification of identity and
ongoing monitoring of transactions); reporting (suspicious matters, threshold transac-
tions and international funds transfer instructions); and record keeping. Table 1 shows
the semantic effect annotations of the process activities.

Task Semantic Annotation Task Semantic Annotation
A newCustomer(x) B checkIdentity(x)
C checkIdentity(x),

recordIdentity(x)
D accountApproved(x)

E owner(x,y),
account(y)

F accountType(y, type)

G positiveBalance(y) H ¬positiveBalance(y)
I accountActive(y) J notify(x,y)

Table 1. Annotations for the process in Fig 1.

Here we give the norms governing this particular class of processes.

– All new customers must be scanned against provided databases for identity checks.

r1 : newCustomer(x)⇒ OcheckIdentity(x)

The meaning of the predicate newCustomer(x) is that the input data with Id = x is a
new customer, for which we have the obligation to check the provided data against
provided databases checkIdentity(x). The obligation resulting from this rule is a
non-persistent obligation, i.e. as soon as a check has been performed, the obligation
is no longer in force.

– Retain history of identity checks performed.

r2 : checkIdentity(x)⇒ OrecordIdentity(x)

This rule establishes that there is a permanent obligation to keep record of the iden-
tity corresponding to the (new) customer identified by x. In addition this obligation
is not fulfilled by the achievement of the activity (for example, by storing it in
a database). We have a violation of the condition, if for example, the record x is
deleted from the database.

– Accounts must maintain a positive balance, unless approved by a bank manager, or
for VIP customers.

r3 : account(y)⇒ OpositiveBalance(y)⊗OapproveManager(y)

The primary obligation is that each account has to maintain a positive balance
positiveBalance; if this condition is violated (for any reason the account is not
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positive), then we still are in an acceptable situation if a bank manager approve
the account not to be positive. In this case the obligation of approving persists until
a manager approves the situation; after the approval the obligation is no longer in
force.

r4 : account(x),owner(x,y),accountType(x,V IP) ⇒ P¬positiveBalance(x)

This rule creates an exception to rule r3. Accounts of type VIP are allowed to have
a non positive balance and no approval is required for this type of accounts (this is
achieved by imposing that rule r4 is stronger than rule r3, r4 ≺ r3).

4 Compliance Checking

Our aim in the compliance checking is to figure out (a) which obligations will definitely
appear when executing the process, and (b) which of those obligations may not be ful-
filled. In a way, PCL constraint expressions for a normative system define a behavioural
and state space which can be used to analyse how well different behaviour execution
paths of a process comply with the PCL constraints. Our aim is to use this analysis as
a basis for deciding whether execution paths of a process are compliant with the PCL
and thus with the normative system modelled by the PCL specifications. To this end we
use the following procedure:

1. We traverse the graph describing the process and we identify the sets of effects
(sets of literals) for all the tasks (nodes) in the process according to the execution
semantics outlined in Section 3.1.

2. For each task we use the set of effects for that particular task to determine the nor-
mative positions (obligations, permissions, prohibitions) triggered by the execution
of the task. This means that effects of a task are used as a set of facts, and we com-
pute the conclusions of the defeasible theory resulting from the effects and the PCL
rules annotating the process (see Sections 2 and 3.2). In the same way we accu-
mulate effects, we also accumulate (undischarged) obligations from one task in the
process to the task following it in the process.

3. For each task we compare the effects of the tasks and the obligations accumulated
up to the task. If an obligation is fulfilled by a task, we discharge the obligation,
if it is violated we signal this violation. Finally if an obligation is not fulfilled
nor violated, we keep the obligation in the stack of obligations and propagate the
obligation to the successive tasks.

Here, we assume that the obligations derived from a task should be fulfilled in the re-
maining of the process. Variations of this schema are possible: for example, one could
stipulate that the obligations derived from a task should be fulfilled by the tasks imme-
diately after the task. In another approach one could use a schema where for each task
one has both preconditions and effects. Then the obligations derived from the precon-
ditions must be fulfilled by the current task (i.e., the obligations must be fulfilled by
the effects of the task), and the obligations derived from the effects are as in our basic
schema.
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4.1 From Tasks to Obligations

The second step to check process compliance is to determine the obligations derived
by the effects of a task. Given a set of rules R and a set of literals S (plain literals and
deontic literals), we can use the inference mechanism of defeasible logic (Section 2) to
compute the set of conclusions (obligations) in force given the set of literals. These are
the obligations an agent has to obey to in the situation described by the set of literals.
However, the situation could already be sub-ideal, i.e., such that some of the obligations
prescribed by the rules are already violated. Thus, given a set of literals describing
a state-of-affairs one has to compute not only the current obligations, but also what
reparation chains are in force given the set.

Consider a scenario where we have the rules A⇒OB and ¬B⇒OC, and the effects
are A and ¬B. The normal form of the rules is A⇒ OB⊗OC and ¬B⇒ OC. The
only obligation in force for this scenario is OC. Since we have a violation of the first
rule (A⇒ OB and ¬B), then we know that it is not possible to have an ideal situation
here. Hence, computing only the current obligation does not tell us the state of the
corresponding process. What we have to do is to identify the chain for the ideal situation
for the task at hand. To deal with issue we have to identify the active reparation chains.

Some notational conventions. Given a rule r, A(r) denotes the set of premises of the
rules, and C(r) the conclusion. For any set of rules R, R[C] denotes the subset of R of
rules whose conclusion is C. If C = p1⊗·· ·⊗ pn⊗q is a reparation chain, we use πi(C)
to denote the i-th element of the chain.

Then, a reparation chain C is active given a set of literals S, if

1. ∃r ∈ R[C] : ∀ar ∈ A(r),ar ∈ S and
2. ∀s ∈ R[D] such that π1(C) ∈ D, either

1. ∃as ∈ A(s) :∼as /∈ S, or
2. ∃i πi(D) =∼π1(C) and ∃k, k < i, ∼πk(D) /∈ S, or
3. ∃t ∈ R[E]: π j(E) = π1(C), ∀at ∈ A(t),at ∈ S, ∀m, m < j,
∼πm(E) ∈ S and t ≺ s.

Let us examine the following example. Consider the rules

r1 : A1⇒ OB⊗OC, r2 : A2⇒ O¬B⊗OD, r3 : A3⇒ OE⊗O¬B.

The situation S is described by A1 and A3. In this scenario the active chains are OB⊗OC
and OE⊗O¬B. The chain OB⊗OC is active since A1 is in S and r2 cannot be used to
activate the chain O¬B⊗OD. For r3 and the resulting chain OE ⊗O¬B, we do not
have the violation of the primary obligation OE of the rule (i.e., ¬E is not in S), so the
obligation O¬B is not entailed by r3.

4.2 Checking Compliance

A reparation chain is in force if there are a rule of which the reparation chain is the con-
sequent and a set of facts (effects of a task in a process) including the rule antecedents.
In addition we assume that, once in force, a reparation chain remains as such unless we
can determine that it has been violated or the obligations corresponding to it have all
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been obeyed to (these are two cases when we can discharge an obligation or reparation
chain). This means that it is not possible to have two instances at the same time of the
same reparation chain. Accordingly, a reparation chain in force is uniquely determined
by the combination of the task T when the chain has been derived and the rule R from
which the chain has been obtained.

The procedure for compliance checking is based on two algorithms,
ComputeObligations and CheckCompliance. ComputeObligations is the proce-
dure given in the Section 4.1 to compute the set of active chains. Given a set of literals
S, corresponding to effects of a task T in a process model, we use the algorithm
ComputeObligations to determine the current set of active chains for the process
Current. The set of the current active chains includes the new chains triggered
by the task, as well as the chains carried out from previous tasks. The algorithm
CheckCompliance scans all elements of Current against the set of literals S, and deter-
mines the state of each reparation chain (C = A1⊗A2) in Current. CheckCompliance
operates as follows:

if A1 = OB, then
if B ∈ S, then

remove([T,R,A1⊗A2],Current)
remove([T,R,A1⊗A2],Unfulfilled)
if [T,R,B1⊗B2⊗A1⊗A2] ∈ Violated then

add([T,R,B1⊗B2⊗A1⊗A2],Compensated)
if ¬B ∈ S, then

add([T,R,A1⊗A2],Violated)
add([T,R,A2],Current)

else
add([T,R,A1⊗A2],Unfulfilled).

Let us examine the CheckCompliance algorithm. Remember the algorithm scans all
active reparation chains one by one, and then for each of them reports on the status of
it. For each chain in Current (the set of all active chains), it looks for the first element of
the chain and it determines the content of the obligation (so if the first element is OB, the
content of the obligation in B). Then it checks whether the obligation has been fulfilled
(B is in the set of effects), or violated (¬B is in the set of effects), or simply we cannot
say anything about it (none of B and ¬B is in the set of effects). In the first case we can
discharge the obligation and we remove the chain from the set of active chains (similarly
if the obligation was carried over from a previous task, i.e., it was in the set Unfulfilled).
In case of a violation, we add the information about it in the system. This is done by
inserting a tuple with the identifier of the chain and what violation we have in the set
Violated. In addition, we know that violations can be compensated, thus if the chain has
a second element we remove the violated element from the chain and put the rest of
the chain in the set of active chains. Here we take the stance that a violation does not
discharge an obligation, thus we do not remove the chain from the set of active chains5.
Finally in the last case, the set of effects does not tell us if the obligation has been

5 [16] propose a more fine grained classification of obligations, accordingly it is possible to have
obligations that are discharged when are violated, as well as obligations that persist in case of
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fulfilled or violated, so we propagate the obligation to the successive tasks by putting
the chain in the set Unfulfilled. The algorithm also checks whether a chain/obligation
was previously violated but it was then compensated.

The conditions below relate the state of a process based as reported by the
CheckCompliance algorithm and the semantics for PCL expressions. In particular, a
process is compliant if the situation at the end of the process is at least sub-ideal (it is
possible to have violations but these have been compensated for). Similarly a process is
fully compliant if it results in an ideal situation.

– A process is compliant iff for all [T,R,A] ∈ Current, A = OB⊗C, for every
[T,R,A,B] ∈ Violated, [T,R,A,B] ∈ Compensated and Unfulfilled = /0.

– A process is fully compliant iff for all [T,R,A]∈Current, A = OB⊗C, Violated = /0
and Unfulfilled = /0.

Accordingly, a process is not compliant if the set of unfulfilled obligations
(Unfulfilled) is not empty. Consider, for example the rule

r3 : account(y)⇒ OpositiveBalance(y)⊗OapproveManager(y)

relative to the process of Figure 1 with the annotation as in Table 1. After task E we
have, among others, the effect account(y). This means that after task E we have the
chain

[E,r4,OpositiveBalance(y)⊗OapproveManager(y)]

in Current for task F . After task F , the above entry for the chain obtained from rule
r4 is moved to the set Unfulfilled. Suppose now that tasks G and H do not have any
annotation attached to them. In this case at the end of the process we still have the
active chain, but the resulting situation is not ideal: the antecedent of the rule is a subset
of the set of effects, but we do not have the first element of the chain as one of the
effects. Thus, the process is not compliant.6

5 Related Work

This paper provides a means of investigate the impact of compliance controls on agents’
process and of assisting in compliance checking, analysis and feedback for subsequent

a violation. The above algorithm can be easily modified to deal with the different types of
obligations examined by [16].

6 What about a situation where, after task F , we have a task producing the annotation
approveManager(x) but no task with effect positiveBalance(x)? Is the resulting process com-
pliant? In this case we have the reparation of the violation, but not the violation. The issue here
is that we could have that a sanction is enforced before the occurrence of the violation which
the sanction was supposed to compensate. Thus we are in a situation similar to that described in
footnote 5 where the way to address the issue depends on the types of the obligations we have
to deal with. Anyway, (i) it is easy to modify algorithm CheckCompliance to account for this
type of cases, (ii) if one accepts preemptive reparations one can change the definition that clas-
sifies a process as compliant by replacing the condition that Unfulfilled = /0 with the condition:
let S be the set of effects for the end task of a process, ∀[T,R,OA1⊗·· ·⊗OAn] ∈ Unfulfilled,
∃Ai ∈ S.
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(re)design of the processes. The procedure is based on efficient algorithms and is able
to deal with reparation chains of deontic statements.

Research on compliance has carried out in the field of autonomous agents [2], but
the majority of works are found in related areas, in particular on control modelling. [14]
presents the logical language PENELOPE, that provides the ability to verify temporal
constraints arising from compliance requirements on effected business processes. [22]
develops a method to check compliance between object lifecycles that provide reference
models for data artifacts e.g. insurance claims and business process models. [13] pro-
vides temporal rule patterns for regulatory policies, although the objective of this work
is to facilitate event monitoring rather than the usage of the patterns for support of de-
sign time activities. Furthermore, [1] presented an architecture for supporting Sarbanes-
Oxley Internal Controls, which include functions such as workflow modelling, active
enforcement, workflow auditing, as well as anomaly detection.

Another line of investigation studies compliance based on the structure of business
processes. [12] consider an approach where the tasks of a business process model, writ-
ten in BPMN, are annotated with the effects of the tasks, and a technique to propagate
and cumulate the effects from a task to a successive contiguous one is proposed. The
technique is designed to take into account possible conflicts between the effects of tasks
and to determine the degree of compliance of a BPMN specification. [8], on the other
hand, investigate compliance in the context of agents and multi-agent systems based on
a classification of paths of tasks. [25] proposed Concurrent Transaction Logic to model
the states of a workflow and presented some algorithms to determine whether the work-
flow is compliant. [31] proposes a polynomial time algorithm to perform compliance
checking of business processes. The algorithm propagates the effects of tasks from one
task to the tasks following it. Norms are represented as logical clauses. The major lim-
itation of these approaches to compliance is that they ignore the normative aspects of
compliance.

There has been some complementary work in the field. analysis of formal mod-
els representing normative notions. [11] studies the performance of business contract
based on their formal representation in event calculus. [10] seeks to provide support
for assessing the correctness of business contracts represented formally through a set
of commitments. The reasoning is based on value of various states of commitment as
perceived by cooperative agents.

PCL has already been proposed to study compliance. [17] uses it to model busi-
ness contracts and their compliance with BPMN process models based on the ideal
semantics of [18]. In [19] we extend the work of [31] to check compliance against PCL
representation of the norms a process has to comply with. The focus is on the propaga-
tion of effects and normative positions across tasks. The propagation algorithm is based
on heuristic, and thus it gives an approximate compliance checking.

Also, there have been recently some efforts towards support for process modelling
against compliance requirements. [32] provides a method for integrating risks in busi-
ness processes. The proposed technique for “risk-aware” business process models is de-
veloped for EPCs (Event-Driven Process Chains) using an extended notation. [26] pro-
poses an approach based on control tags to visualize internal controls on process mod-
els. [23] takes a similar approach of annotating and checking process models against
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compliance rules, although the visual rule language (BPSL) does not directly address
the deontic notions providing compliance requirements.
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Abstract. The latest advancements in computer games offer a 
domain of human and artificial agent behaviour well suited for 
analysis and development based on normative multi agent systems 
research.  One of the most influential gaming trends today, 
Massively Multi Online Role Playing Games (MMORPG), poses 
new questions about the interaction between the players in the 
game. If we model the players and groups of players in these 
games as multiagent systems with the possibility to create norms 
and sanction norm violations we have to create a way to describe 
the different kind of norms that may appear in these situations.  
Certain situations in MMORPG are subject to discussions about 
how norms are created and propagated in a group, one such 
example involves the sleeper in the game Everquest, from Sony 
Online Entertainment (SOE). The Sleeper was at first designed to 
be unkillable, but after some events and some considerations from 
SOE the sleeper was finally killed. The most interesting aspect of 
the story about the sleeper is how we can interpret the norms being 
created in this example. We propose a framework to analyse the 
norms involved in the interaction between players and groups in 
MMORPG. We argue that our model adds complexity where we 
find earlier norm typologies lacking some descriptive power of this 
phenomenon, and we can even describe and understand the 
confusing event with the sleeper in Everquest.  

Introduction  

The games of today, both computer games and console games, are starting 
to focus on the opportunities that online co-operation can provide for the 
gaming experience. Games such as World of Warcraft (WoW) can have as 
many as thousands of active players in one of their gaming servers at the 
same time. Much of the “Massively multiple online role playing games” 
(MMORPG) genre seems to be all about co-operation and playing together 
and this in turn makes MMORPG:s an interesting phenomenon to 
investigate. In WoW there are many opportunities to engage in different 
social formations of different sizes, but one of the most common is to join 
a guild. A guild is a group of players that decide to play together for a 
period of time exceeding the length of one playing session. It is also 
possible to form smaller groups with short term goals. 

Dagstuhl Seminar Proceedings 09121 
Normative Multi-Agent Systems 
http://drops.dagstuhl.de/opus/volltexte/2009/1895



2      Magnus Johansson and Harko Verhagen 

 

                                                          

After exploring the game world of WoW it is obvious that these games 
have rules, codes of conduct, do:s and don’t:s that are either explicit or 
implicit. We may even want to call them norms, and these norms seem to 
be part of the very fabric of the interaction in this game genre. It is 
important to get an understanding for the differences between where a 
designer actually could influence the norms and where the norms are 
beyond the control of the designer and perhaps constantly evolving. If we 
take a close look at different aspects of most MMORPG:s it will be 
apparent that some parts of the game will live a life of its own, where local 
norms will appear through the interaction between players. 

In “Ten Challenges for Normative Multiagent Systems” (Boella et al, 
2008b), one of the examples comes from game playing, describing a team 
effort in Everquest to kill “The Sleeper”, which was initially designed to 
be unkillable. This example is also used as the running example in (Boella 
et al. 2008a). Being interested in the design of games and following 
discussions online, it seems as though the killer actually was vulnerable to 
the attacks of the group due to a miss when updating one of the zones in 
Everquest, therefore a series of events led the sleeper to be killed by the 
group after some consideration from Sony, since one group came really 
close when the sleeper suddenly disappeared (this is thought to be the 
result of a Sony employee, resetting the instance when the impossible was 
about to happen). All other scenarios than this would indicate that the 
game designer would have made a big mistake in the initial efforts of 
designing the Sleeper. For more details we include the email send by 
Sony1 and an explanation offered on Wikipedia2 both focussing on a 
software glitch as the cause for the first Sleeper killing. 

 
1  “The Sleeper (11-17-03) 
Over the weekend several guilds gathered on Rallos to fight with the Sleeper.  

Unfortunately, their encounter was cut short due to an apparent bug. I wanted to 
take a moment here and apologize to those that were there, and to those that 
have heard about the event through their friends.  The bug concerned an NPC in 
the zone that appeared to have been causing the Sleeper to not focus on the 
player characters.  The decision was made at the time to end the event.  Further 
investigation has only served to make it unclear if this was a real issue or not. 

I, on behalf of the company, apologize for any consternation this may have caused 
during your play time.  If anyone is going to defeat the Sleeper, it should be 
done without any question about the validity of the event.  We're very sorry that 
this first attempt was halted, but at the time it seemed like the best thing to do. 

We have resurrected and restored those that participated. We have corrected the 
potential problem, and have reset the encounter.  Other than that one potentially 
problematic NPC, nothing else about the encounter has been changed. 

We want to wish those on Rallos that are planning to tackle the Sleeper the best of 
luck. 

Send me some screenshots of all of you standing around the corpse, I'd love to post 
them on the site. 

Thank you and thanks for understanding, 
 
Alan” (EverQuest Chat) 
 
2 “Kerafyrm, "The Sleeper", is a dragon boss in the original "The Sleeper's 
Tomb" zone. 
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In this article we will introduce the view on norms as it has developed 
in the social sciences, mainly sociology. Then we will propose an 
extension to the normative framework developed by Gibbs (1965) and 
apply this framework to situations in WoW. Finally we will describe some 
related research before we finish with conclusions and proposals for future 
research. 

Normative multiagent systems and the definition of norms 
in the social sciences 

At the 2007 NorMAS Dagstuhl workshop the definition of a normative 
multiagent system was the concluding part of the whole week, together 
with a list of future research questions. In the introduction to the following 
JAAMAS special issue (Boella et al. 2008b) the definition  voted for by 
the majority of participants is presented as: 
“A normative multiagent system is a multiagent 
system organised by means of mechanisms to 
represent, communicate, distribute, detect, 
create, modify, and enforce norms, and 
mechanisms to deliberate about norms and detect 
norm violation and fulfilment.” 

Note that the definition does not define the nature of the agents (i.e., they 
can be artificial or human) nor about the boundaries of a normative system 
(even if it gives the impression of a well-defined system). 

Within the social sciences and more particularly in sociology and social 
philosophy norms are discussed and defined in different ways. We present 

 
While sleeping, Kerafyrm is guarded by four ancient dragons (warders) in 
"The Sleeper's Tomb". When all four dragons are defeated by players and 
are dead at the same time, The Sleeper awakes, triggering a rampage of 
death. Kerafyrm travels through and into multiple zones from The 
Sleeper's Tomb to Skyshrine, killing every player and NPC in his path. 
This event is unique in EverQuest, because it can only occur once on each 
game server. Once The Sleeper awakes, neither he nor the original 
guardians will ever appear again on that server, unless the event is reset by 
SOE. 
As of 12 July 2008, Kerafyrm remains asleep only on the Al'Kabor 
(Macintosh) server. 
Originally intended to be unkillable, SOE prevented a raid of several 
guilds on Rallos Zek server from potentially killing him because of a 
potential bug. SOE later apologized for interfering,[25] and allowed the 
players to retry the encounter. 
"Kerafyrm The Awakened" appears in the expansion Secrets of Faydwer as 
part of a raid event "Crystallos, Lair of the Awakened" in the instanced 
zone of "Crystallos." ” (Wikipedia) 
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some of the definitions common on the social sciences and conclude with 
the framework we will use. 

In Gibbs (1965) a typology of norms concerning the regulation of 
behaviour and acts is described encompassing conventions, morals, mores, 
rules and laws as depicted in table 1. These various social mechanisms are 
structured using the following dichotomies: 
• Probability that a sanction will be issued (yes – no) 
• Characteristics of the agent issuing a sanction (special status or no 

special status) 
• Evaluation of an act (collective or not) 
• Expectation concerning the act (collective or not) 



Massively multiple online role playing games as normative multiagent systems      5 

 

  High probability of a possible sanction when the act occurs 

  By anyone (i.e., without regard to status) Only by a person or persons in a particular status or 
statuses 

evaluation of 
the act 

expectation 
concerning 
the act 

Low probability of 
a possible sanction 
when the act 
occurs 

By means that exclude 
the use of force 

By means that may 
include the use of 
force 

By means that exclude 
the use of force 

By means that may 
include the use of force 

Collective 
expectation 

Type A: 
Collective 
conventions 

Type D: 
Collective morals 

Type H: 
Collective mores 

Type L: 
Collective rules 

Type P: 
Collective laws 

Collective 
evaluation  

No 
collective 
expectation  

Type B. 
Problematic 
conventions 

Type E: 
Problematic morals 

Type I: 
Problematic mores 

Type M: 
Problematic rules 

Type Q: 
Problematic laws 

Collective 
expectation  

Type C: 
Customs 

Type F: 
empty class 

Type J: 
empty class 

Type N: 
Exogenous rules 

Type R: 
Exogenous laws 

No collective 
evaluation  

No 
collective 
expectation  

Logical null class, 
i.e., non-normative

Type G: 
empty class 

Type K: 
empty class 

Type O: 
Coercive rules 

Type S: 
Coercive laws 

 
Table 1. Gibbs’  Norm typology (1965)
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Tuomela (1995) on his turn distinguished two kinds of social norms 
(meaning community norms), namely, rules (r-norms) and proper social 
norms (s-norms). Rules are norms created by an authority structure and 
always based on agreement making. Proper social norms are based on 
mutual belief. Rules can be formal, in which case they are connected to 
formal sanctions, or informal, where the sanctions are also informal. 

Proper social norms consist of conventions, which apply to a large 
group such as a whole society or socioeconomic class, and group-specific 
norms. The sanctions connected to both types of proper social norms are 
social sanctions and may include punishment by others and expelling from 
the group. Aside from these norms, Tuomela also described personal 
norms and potential social norms3 containing, among others, moral and 
prudential norms (m-norms and p-norms, respectively). The reasons for 
accepting norms differ as to the kind of norms: 
• Rules are obeyed because they are agreed upon. 
• Proper social norms are obeyed because others expect one to obey. 
• Moral norms are obeyed because of one’s conscience. 
• Prudential norms are obeyed because it is the rational thing to do. 
The motivational power of all types of norms depends on the norm being a 
subject’s reason for action. In other words, norms need to be internalized 
and accepted.  

Therborn (2002) distinguishes three kinds of norms. Constitutive norms 
define a system of action and an agent's membership in it; regulative 
norms describe the expected contributions to the social system, and 
distributive norms defining how rewards, costs, and risks are allocated 
within a social system. Furthermore, he distinguishes between non-
institutionalized normative order, made up by personal and moral norms in 
day-to-day social traffic, and institutions, an example of a social system 
defined as a closed system of norms. Institutional normative action is 
equalled with role plays, i.e., roles find their expressions in expectations, 
obligations, and rights vis-à-vis the role holder's behaviour. 

In Elster (2007) a whole range of social mechanisms are described. 
Among them is the concept of social norms. A social norm is defined as an 
injunction to act or abstain from acting. The working mechanism is the use 
of informal sanctions aimed at norm violators. Sanctions may affect the 
material situation of the violator via direct punishment or social ostracism. 
An open question is the costs of sanctioning. Apart from social norms 
Elster describes moral norms (that are unconditional) and quasi-moral 
norms (like social norms these are conditional but triggered by being able 
to observe what others are doing instead of by being observed by other 
people as is the case for social norms). Other connected concepts are legal 
norms (where special agents enforce the norms) and conventions that are 
independent of external agent action. In his text, Elster discusses in detail 
some examples of norms such as: norms about etiquette, norms as codes of 
honour, and norms about the use of money. 

 
3 Potential social norms are norms that are normally widely obeyed but not in their 

essence based on social responsiveness and that, in principle, could be personal 
only. 



Massively multiple online role playing games as normative multiagent 
systems      7 

 

Combining these frameworks results in the following: Therborns 
regulative norms encompass all of Gibbs categories whereas Therborns 
constitutive and distributive norms are outside of Gibbs’ scope. Tuomela’s 
r-norms encompass Gibbs type L, M, P and Q and his s-norms type D, E, 
H and I respectively. The moral norms Tuomela mentions are outside of 
Gibbs scope as these are norms where an agent is its own evaluator. 
Prudential norms are incommensurable with Gibbs typology or indeed any 
other typology. Elsters moral norms are equivalent to Tuomela’s moral 
norms whereas his quasi-moral norms seem to fit to Gibbs type O and S. 
Elster’s conventions map to Gibbs type A and the legal norms to type P or 
Q. This is presented in table 2 below. 
In the remainder of this paper we will use the following notion of norms: 
“Norms are statements about the appropriateness 
of an agent’s act which may result in a sanction 
being issued by another agent or an agent 
belonging to a specific class of agents.” 
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  High probability of a possible sanction when the act occurs 

  By anyone (i.e., without regard to status) Only by a person or persons in a particular status or 
statuses 

evaluation of 
the act 

expectation 
concerning 
the act 

Low probability of 
a possible sanction 
when the act 
occurs 

By means that exclude 
the use of force 

By means that may 
include the use of 
force 

By means that exclude 
the use of force 

By means that may 
include the use of force 

Collective 
expectation 

Elster  
conventions 

Tuomela  
s-norms 

Tuomela  
s-norms 

Tuomela 
r-norms 

Tuomela r-norms/ 
Elster legal norms 

Collective 
evaluation  

No 
collective 
expectation  

Type B. 
Problematic 
conventions 

Tuomela  
s-norms 

Tuomela  
s-norms 

Tuomela 
r-norms 

Tuomela r-norms/ 
Elster legal norms 

Collective 
expectation  

Type C: 
Customs 

Type F: 
empty class 

Type J: 
empty class 

Type N: 
Exogenous rules 

Type R: 
Exogenous laws 

No collective 
evaluation  

No 
collective 
expectation  

Logical null 
class, i.e., non-
normative 

Type G: 
empty class 

Type K: 
empty class 

Elster  
quasi-moral norms 

Elster  
quasi-moral norms 

Table 2. Adapted version of Gibbs’ norm typology (equivalent to Therborns regulative norms) encompassing Elsters and 
Tuomelas norm typologies.
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Norms in MMORPG 

We propose to use the revised framework presented above to understand 
the dynamics of the most common norms and norm violations in 
MMORPG:s. 

In MMORPG:s severe violations are usually punished by ostracisation 
of the norm violators or the loss of points in a value system where a player 
can earn points for assisting the guild in raids (measured in DKP, short for 
Dragon Killing Points). It may be difficult to differentiate between what 
social behaviour is acceptable and what is not.  

Some players exhibit behaviour that violates norms in ways that could 
be described as cheating or grief play. Some of these examples are so 
common that most guilds have structured their rules to cover these issues 
as well. Smith (2004) mentions three different categories of behaviours 
that might infringe on the gaming experience of others. The three 
categories are cheating, local norm violation and grief play.   

 Cheating 

“Cheating” is the use of any technique that runs against the spirit of the 
game without being technically unfair (in the sense that it is violating a 
norm). It is however difficult to prove whether or not someone is cheating. 
The risk of sanctions being made against a violator depends on the 
severity of the violation. If the violation is very severe there usually is a 
“High probability that an attempt will be made to apply a sanction when 
the act occurs” (from Gibbs typology (1965) corresponding to Tuomela s-
norms).  

Local norm violation 

 “Local norm violation” is any violation of a mutual understanding of how 
the game ought to be played. These actions have different level of 
implications for other players and the players are usually sanctioned if the 
violation appears repeatedly. These violations have a “High probability 
that an attempt will be made to apply a sanction when the act occurs” from 
Gibbs typology (1965) but we have to keep in mind that minor violations 
might be ignored. These actions could potentially be sanctioned by anyone 
in the group, but the most probable solution in the case of a raid group 
would be that the raid leader would solve the problem without the use of 
force. The severest forms of violations may be punished with ostracism.   
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 Grief play 

 “Grief play” is a broad category of behaviour which causes a severe and 
stressful disadvantage to the target. Examples of grief play are; 
unprovoked harassment through game chat channels, repeatedly killing a 
player as soon as the character comes back to life, and behaviour not 
related to the winning condition of the game. Grief play in its different 
forms is behaviour that infringes the higher level norms of the realm and 
can be difficult to sanction. The penalty for someone engaging in this kind 
of activity should perhaps be ostracisation, but since the players are from 
different factions, it is difficult to make any sanctions from the victim’s 
side. Grief play would therefore fit the description of “Low probability 
that an attempt will be made to apply a sanction when the act occurs” from 
Gibbs typology (1965). 

All examples above are examples of social norms, since norm 
violations are punished with sanctions and are thus in accordance with 
e.g., Elster and our definition of norms. In the case of the last example this 
can be hard to prove however. The typology taken from Gibbs gives a 
better understanding at least when it comes to the probability of a sanction 
to occur, but it is very difficult to judge from case to case, since all these 
violations have different severity and impact on other players. Thus it 
seems that Gibbs framework and consequently also our revised framework 
may need to be extended to produce a more fine grained categorisation. 

Norms regulating the use of money 

Not surprisingly, money and valuable equipment may lead to conflicts in 
MMORPG:s. There are multiple ways of breaching norms for how to 
distribute money and equipment between all members of a guild. Some of 
the most common examples where discussions about money occur are the 
following situations; begging, ninja looting, and twinking. 

Begging 

Begging is usually other gamers in game asking for money, and this can in 
fact be disturbing behaviour that many guilds have strict rules against. 
Most beggars are being ostracised or ignored, since it is hard to make 
other sanctions against them. Beggars will eventually earn a bad reputation 
since gamers will gossip about this unwanted behaviour. It may be argued 
that this is addressed by Thernborns distributive norms. 

Ninja looting 

Ninja looting is another form of misconduct that most guilds have rules 
against. When a gamer steals the loot from another gamer under certain 
conditions when playing as a group this is defined as ninja looting. 
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Both begging and ninja looting have a “High probability that an attempt 
will be made to apply a sanction when the act occurs”, ostracism is the 
most probable action taken, but other actions may occur. The probability 
of sanctions including force is not very probable. Ninja looting can also be 
seen as a breach against Therborns distributive norms thus placing it 
outside the set of regulative norms. 

Twinking 

Twinking is when a high level gamer decides to help a low level character 
with money to buy better equipment or helping the low level gamer killing 
creatures above his/her skill level.  

The last example is actually not a serious norm violation and most 
gamers do not care about it and thus it would fit in the first category of 
Gibbs’ typology (1965) where no sanction would appear. It would also fit 
in under Therborns distributive norms. 

Norms regulating the use of tools 

Most MMORPG:s today are highly complex and sometimes a player can 
find that it is hard to keep track of the situation in game. Most games with 
a certain degree of complexity will eventually be subject to “add-ons”, 
where someone develops tools to highlight information in the game or 
perhaps give certain advantages for a player with the add-on installed.  

Add-ons range from small “cheating” applications in games such as 
“Counter strike” where “auto aiming” and the possibility to see through 
walls were used by some players. In WoW the most common add-ons are 
used for co-ordinating raid groups and displaying statistics for all 
characters in an instance (both players and Mob). This gives all players in 
the group an advantage that is not considered unfair, since most players 
use this kind of tools. But what is interesting is where to draw the line of 
what is considered enhancing the game and what is considered cheating. 
Norms are usually subject to constant change and there are interesting 
stories where new forms of norms are being created.  

T L Taylor (2006) describes the use of a tool called CTRaidAssist 
during a raid. This tool monitors many statistics of the characters of a raid 
group and in this example someone in the group came a bit to close to a 
mob (a non-player character or NPC) and therefore the entire group was 
being attacked by the mob and nearly killed. The raid leader (using 
CTRaidAssist) could see that the amount of aggression (a measurement of 
how close or threatening a character is to a mob) had increased, which had 
triggered the attack. The interesting part about this story is that the raid 
leader told everyone in the raid group that if someone would do the same 
thing again, this would result in penalties. This shows that tools can be 
used to monitor the players’ behaviour and thus enable the possibility of 
sanction behaviour that previously could not be sanctioned. This involves 
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a move from one category in Gibbs framework to another. Without the 
tool there is no or a very low probability of a sanction since the action 
cannot be detected. The tool enables a special person (in this case the raid 
leader) to issue a sanction. The message send by the leader leads to a 
collective expectation that players will refrain from this action and it is 
only the leader that can evaluate so there is no collective evaluation. So, 
introducing the tool moves the raid group from the logical null-class (non-
normative situation) in Gibbs’ typology to the situation labelled as 
“exogenous rules” (type N) even if the rules and sanctioning agent are 
mutually agreed upon in and part of the group. 

Different levels of organisation where norms appear in 
MMORPG:S 

WoW can be described at different organisational levels and as different 
types of norm systems, ranging from a high level perspective (the different 
types of servers, usually called realms in the game) down to the lowest 
level focusing on players and small groups. What seem to be characteristic 
about the higher levels such as the different gaming realms and factions is 
that the norms are of a wider scope, and communicate the spirit of the 
game without much attention to detail.  On the middle level (Guilds) there 
seems to be a stricter way of communicating, creating, and changing 
norms. It is apparent that a large group needs some form of organisation to 
work properly. On the lowest level (groups) there seems to be a mutual 
respect for the group and the norms are close to what could be considered 
common sense. The difference between the highest level and all levels 
below is that sanctions are more easily distributed on the lower levels, 
perhaps because they are agreed upon within a group with a finite number 
of players in a way similar to the proper social norms discussed by 
Tuomela (1995). 

Game servers 

The different types of game servers give rise to different sets of norms for 
the type of interaction that takes place on the server. Three different kinds 
of servers will be mentioned here, since they are the most common:  
1. Normal servers (No special rules applied),  
2. PvP servers (Player versus Player), and  
3. RP servers (Role Playing Servers).  
There are combinations of these types of servers, but they will not be 
discussed here since these combinations do not interfere with our analysis 
of the basic types. 

For our purpose the most interesting types of servers are the fairly 
restricted RP servers where all players are to stay in character when 
playing. This means that the player has to play along and make decisions 
according to what would be most likely for the character in the game. For 
instance, discussing game functionality or other meta-gaming issues is not 
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allowed on these servers, since it would interfere with the overall gaming 
experience. 

Normal servers are servers where no explicit rules are applied. This 
gives players a freedom from the strict rules of the RP servers which could 
possibly lead to a different kind of interaction. The special rules on the 
level of game servers are an example of the constitutive norms as 
described by Therborn. 

Factions 

All MMORPG:s have some kind of history and a world with resources 
that are being shared between its inhabitants in one way or the other.     
For the sake of making this history interesting a player belong to a faction. 
In WoW one is associated with either the Horde faction or the Alliance 
faction depending upon the race choosen during the character creation 
process. On all types of servers it would be fair to kill a character from the 
opposing faction. But there are specific norms on what is acceptable and 
what is not. For instance, a high level player who kills someone from the 
opposing faction who does not stand a chance of defending him/herself 
would be regarded as playing unfair, or even as a performing grief play, 
and may, if repeated, lead to a stressful disadvantage for the target. 

Groups (Guilds and small groups) 

Groups in WoW may lead to observable behaviour and sometimes 
conflicts. Guilds usually have a forum page where all issues concerning in 
game tactics are being discussed. Rules are usually available in the forum 
pages of guilds, to inform all players of the norms that all players should 
stick to.  

Large groups/Guilds 

Guilds are large group of players that play together often aiming at co-
operating in so called raid groups. A raid group consists of as many as 25 
players co-operating to overcome Non player characters (NPC) in special 
instances of the game. 

Small groups 

Small groups can consist of 2 or more players co-operating on small 
missions in game, called quests. In WoW, it’s sometimes apparent that the 
quests are too hard for a single player and that joining a group is the only 
solution to solve the quest.  
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  High probability of a possible sanction when the act occurs 

  By anyone (i.e., without regard to status) Only by a person or persons in a particular status or 
statuses 

evaluation of 
the act 

expectation 
concerning 
the act 

Low probability of 
a possible sanction 
when the act 
occurs 

By means that exclude 
the use of force 

By means that may 
include the use of 
force 

By means that exclude 
the use of force 

By means that may 
include the use of force 

Collective 
expectation 

Elster  
conventions 

Tuomela  
s-norms 
interaction in small 
groups and in guilds, 
cheating, and 
local norm violation 

Tuomela  
s-norms 
interaction in small 
groups and in 
guilds, cheating, and
local norm violation

Tuomela 
r-norms 

Tuomela r-norms/ 
Elster legal norms 

Collective 
evaluation  

No 
collective 
expectation  

Type B. 
Problematic 
conventions 
Grief play 

Tuomela  
s-norms 
cheating, and 
local norm violation 

Tuomela  
s-norms 
cheating, and 
local norm violation

Tuomela 
r-norms 

Tuomela r-norms/ 
Elster legal norms 

Collective 
expectation  

Type C: 
Customs 

Type F: 
empty class 

Type J: 
empty class 

Type N: 
Exogenous rules 
Guildleader using 
CTRaid Assist 

Type R: 
Exogenous laws 

No collective
evaluation  

No 
collective 
expectation  

Logical null 
class, i.e., non-
normative 

Type G: 
empty class 

Type K: 
empty class 

Elster  Elster  
quasi-moral norms quasi-moral norms 
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Table 3. Categorization of the examples gien our adapted version of Gibbs’ norm typology.
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Related research 

In Boella et al. (2008a) the EverQuest example described above is used as a running 
example in an analysis of norm negotiation in online multi-player games. The authors 
describe a two step negotiation process where the first step consists of negotiating a 
social goal and the second step is negotiating the norms and sanctions. Thus the 
setting is an argumentative one. However the norms are statements over goals rather 
than acts. Since this gives the agent freedom on how to obtain a goal there is no 
expectation concerning acts, only with regard to obtaining a goal. The authors also 
accept norms not connected to sanctions. If we put this research into Gibbs typology 
of norms then it would fit into the category “Logical null: i.e., non-normative.” Since 
we base our research on Gibbs and other social science theories on norms, the 
definition of norms (Boella et al. 2008a) use is not compliant with our definition 
because we include only norms connected to possible sanctions and as evaluations of 
acts rather than goals. A problem with goals is of course that one never knows if a 
goal will be obtained thus without the concept of time sanctioning is impossible. If 
norms instead are seen as addressing acts as they occur the evaluation is independent 
of any projections into the future. The tools proposed in (Boella et al. 2008a) address 
the issue of communication between agents at the level of goals. 

 

Conclusions and discussion 

We have introduced the reader to an extended version of the norm categorisation 
scheme developed by Gibbs (1965). In our examples we have shown that this 
framework enhances our understanding of human MMORPG gamer behaviour and 
that we can include the norms of agents external to the normative multiagent systems 
in the framework. Whatever the true explanation for the Sleeper example may be, be 
it an extreme form of collaboration or a consequence of a software glitch, it illustrates 
the point of the importance of the norms imposed from outside the agent system, 
namely the norms of the designers. If the software glitch explanation is true we may 
see this as move from the situation in L/P in Gibbs typology (i.e., only persons with a 
particular status may sanction the outcome of an action given the collective evaluation 
of the act and the collective expectation towards the act, also presuming Sony and the 
players to form one shared system) to either situations O/S (i.e., only persons with a 
particular status may sanction the outcome of an action given there is no collective 
evaluation of the act and no collective expectation towards the act, thus presuming 
Sony and the players do not form one shared system) or even to the logical null class 
(same as previous categorisation only with a low probability there will be a sanction). 

The framework itself suggests that tools for normative multiagent systems should 
include possibilities to monitor behaviour, moving the whole system to another part of 
the categorisation matrix by enabling sanctioning. We propose that the extended 
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framework needs to be developed further to a finer grained categorisation to deal with 
the (close to) real world phenomena encountered in MMORPG. 
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Abstract. Norms describe the permissions, prohibitions and obligations of 

agents in multi-agent systems in order to regulate their behavior. In this paper 

we propose a normative modeling language that makes possible the modeling 

of norms motivating the modeling of such norms together with the non-

normative part of the system. In addition, we also propose a mechanism to 

validate the norms at design time, i.e., to check if the norms respect the 

constraints defined by the language and also their possible conflicts.  

Keywords: norm, modeling, validation, conflict, metamodel. 

1 Introduction 

Norms are used to regulate the behavior of the agents in open multi-agent systems 

(MAS) by describing their permissions, prohibitions and obligations. The definition 

of norms is an important part of the specification of a system and should be treated as 

an important task of MAS design. Methodologies such as Gaia [29][29], MaSE [5], 

SODA [20] and PASSI [3] [10] propose the specification of organization rules (or 

norms) during the analysis phase and recognize the need to associate these rules with 

design elements. However, there are still few modeling languages that support the 

modeling of norms together with the modeling of the entities that compose a MAS.  

It is important to consider norms while designing a MAS since:  

(i) Norms refer to actions, agents and roles that compose a system. They specify 

the actions that agents playing roles in the system are obliged, permitted or prohibited 

to execute. Therefore, redesigning the system, for instance, by excluding a role, may 

affect the norms. On the other hand, the definition of a new norm will only be 

possible if the actions, agents and roles being mentioned in the norm are being 

considered in the system design. 

(ii) Norms’ conflicts can cause the redesign of a system. Two norms are in conflict, 

for instance, if one gives a permission and another a prohibition to an agent to execute 

the same action in the same time frame. When it occurs, it is necessary to rewrite one 

of the norms in order to eliminate the conflict. While rewriting the norm, it may be 

desired, or even necessary, to redesign the system. 

                                                           
* The present work has been partially funded by the Spanish project “Agreement Technologies” 

(CONSOLIDER CSD2007-0022) and by the Brazilian research council CNPq under project 

no 550865/2007-1. 
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The two main goals of this paper are: (i) to support norm modeling during the 

design phase of a MAS and (ii) to define a technique to check possible conflicts 

between two defined norms at design time. We propose a normative modeling 

language, called NormML, that can be used during the design phase of a MAS to 

model the corresponding norms and an invariant-based technique to check for well-

formedness of the norms and conflicts between two norms. Such invariants are 

defined over the metamodel of NormML.  

The novelty of our approach is twofold: first, the modeling language itself, to 

model norms and second a validation technique that, when supported by a tool 

(Section 3.3), can automatically check conflicts between norms at design-time. None 

of the proposed methodologies or modeling languages for MAS is able to represent 

the three norm kinds (permission, obligation and prohibition) and to check their 

conflicts.  

This paper is organized as follows. Section 2 provides some background material 

and Section 3 introduces our normative modeling language and tool used to 

automatically check for conflicts and query the norms model. In Section 4 we present 

related work. Section 5 concludes the paper with final remarks and discusses future 

work. 

2 Background 

NormML is a modeling language to specify norms that constraint the behavior of 

agents in MAS. Our modeling language was designed with the perception that norm 

specification in MAS design and security policy specification in role-based access 

control (RBAC) [10] design are closely coupled issues. RBAC security policies 

specify the permissions that a user has under a given role, while trying to access 

system resources. In MAS we specify the norms that regulate the behavior (or 

actions) of an agent playing a given role.  

In this section we briefly provide background material for the rest of this paper. In 

Section 2.1 we introduce the necessary norm-related terminology that will be used 

throughout the paper. Section 2.2 introduces basic notions of models and metamodels, 

necessary to understand the design of NormML. In Section 2.3 we introduce Secure 

UML [1], a UML-based [18] modeling language for RBAC, which we extend with 

normative-related concepts. Such an extension gives rise to NormML. 

2.1 Norms 

A norm can be used to regulate the interaction between two agents—those norms are 

called dialogical norms [10]—and to regulate the access to resources, the entering and 

leaving of agents in organizations and environments, and the permissions to play 

roles. 

A norm describes an action that is being permitted, obligated or prohibited, the 

entity whose behavior is being regulated (an agent, a role or an agent playing a given 

role) and a set of conditions to activate and deactivate the norm. 
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2.2 Models and metamodels 

A modeling language provides a vocabulary (concepts and relations) for creating 

models. Such vocabulary is described by the metamodel of the modeling language 

which elements formalize the language concepts and their relationships. A metamodel 

may include invariants that specify additional properties that the models must fulfill 

as instances of the metamodel. Such invariants may specify the well-formedness 

conditions of a model with respect to its metamodel and the consistency conditions 

between metamodel concepts.   

When UML is chosen as metalanguage, a metamodel is represented by a class 

diagram and its invariants are written in OCL (Object Constraint Language) [17]. This 

is the choice followed in this paper. 

2.3 Secure UML 

Secure UML provides a language for modelling Roles, Permissions, Actions, 

Resources, and Authorization Constraints, along with the relationships between 

permissions and roles, actions and permissions, resources and actions, and constraints 

and permissions. The actions described in the language can be either Atomic or 

Composite. The atomic actions are intended to map directly onto actual operations of 

the modeled system (delete, update, read, create and execute). The composite actions 

are used to hierarchically group atomic ones.  

SecureUML leaves open what the protected resources are and which actions they 

offer to clients. ComponentUML [1] is a simple language for modeling component-

based systems that provides provides a subset of UML class models: entities can be 

related by associations and may have attributes and methods. Therefore, Entity, 

Attribute, Method, Association and AssociationEnd are the possible protected 

resources. Figure 1 illustrates the metamodel of SecureUML+ComponentUML†. By 

using such SecureUML+ComponentUML‡ it is possible, for instance, to specify the 

permissions a user playing a given role must have to execute a method (or to update 

an attribute) of a resource. In order to do so, it is necessary to instantiate the 

metaclasses User, Role, Permission, ActionExecute, Method (or ActionUpdate) and 

Attribute.  

3 NormML: A Normative Modeling Language 

NormML is a UML-based modeling language for the specification of norms in MAS. 

The choice for UML as metalanguage allows for an easy integration of NormML with 

UML-based MAS modeling languages such as AUML[19], AML[4] and MAS-

                                                           
† The metamodel of SecureUML+ComponentUML (from now referred as SecureUML 

metamodel) is available at http://www.ic.uff.br/~viviane.silva/normML/secureUML.pdf 
‡ The metamodel of SecureUML+ComponentUML (from now referred as SecureUML 

metamodel) is available at http://www.ic.uff.br/~viviane.silva/normML/secureUML.pdf 
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ML[25]. Moreover, metamodel-based validation techniques may be applied to norms 

specified in NormML.  

 

Figure 1. SecureUML+ComponenteUML metamodel 
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As mentioned in Section 2, NormML extends SecureUML modeling language. The 

NormML metamodel extends the SecureUML metamodel with the following basic 

elements: Norm, Agent and AgentAction. The NormML metamodel also includes a set 

of invariants that guarantees the well-formedness of a norm and several operations 

that are used to identify conflicts between two given norms. 

3.1 The NormML Metamodel 

The NormML metamodel extends the Secure UML metamodel in order to view norms 

as security policies, as mentioned in Section 2. While in Secure UML it is possible to 

define permissions a user has, i.e., the constraints that a user, in a given role, must 

fulfill to perform actions over the system resources, in NormML is possible to define 

the norms (obligations, permissions or prohibitions) an entity must obey, i.e., it is 

possible to describe the set of actions an agent, a role or an agent playing a role is 

obliged, permitted or prohibited to execute, conditioned by the execution of other 

actions. Figure 2 presents the NormML metamodel. (Some of SecureUML metaclasses 

are not presented for readability purposes.) A norm corresponds to an instance of the 

NormML metamodel, i.e., it is defined by instantiating several metaclasses and their 

relationships from the NormML metamodel. A norm may be either a permission (by 

instantiating the metaclass NormPermission), a prohibition (by instantiating the 

metaclass NormProhibition) or an obligation (by instantiating the metaclass 

NormObligation).  

A norm may constraint the behavior of Agents by restricting the behavior of any 

given agent playing a given Role, or by restricting the behavior of a specific agent 

while playing a role. This is captured by the Agent<->Role relationship.  

NormML inherits four resource kinds from SecureUML: Attribute, Method, Entity 

and AssociationEnd. It extends the set of resources with agent’s actions and roles’ 

actions represented by the metaclass AgentAction. Thus, it is possible to describe 

norms to control the access to attributes, methods, objects and association ends, and 

also to control the execution of the actions of agents and roles. 

Each resource kind has a set of actions that can be used to control access to a 

resource. For instance, attributes are associated with the actions read, update and full 

access (read+update). In the case of actions of agents and roles (AgentAction 

metaclass), the behavior that applies to it is the execution of the action. 

Furthermore, NormML allows for the specification of the time period that a norm is 

active, which is represented by the metaclass NormConstraint. If a norm is 

conditioned by a Before clause, it means that the norm is active before the execution 

of the action(s) described in the Before clause. If a norm is conditioned by an After 

clause, it means that the norm is active only after the execution of the action(s) 

described in the After clause. In the case of a Between clause, the norm is only active 

during the period delimited by two groups of actions. 

In order to illustrate the use of NormML to model the norms of a MAS, consider 

norms N1, N2 and N3 in Table 1. Figure 3, Figure 4 and Figure 5 illustrates the norm 

diagrams of N1, N2 and N3, respectively. 

 

N1: Seller is obliged to give the good to the buyer after the given buyer paid for it. 
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N2: Seller is permitted to update the price of a good before a buyer pays for it. 

N3: Buyer is prohibited to return a good he/she has bought. 

Table 1 - Norm example 

 

Figure 2. NormML metamodel 
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Figure 3. Norm N1 described by using NormML 

 

Figure 4. Norm N2 described by using NormML 
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Figure 5. Norm N3 described by using NormML 

3.2 Validating the Norms 

The process of validating a norm encompasses two steps. First, the norm, as an 

instance of the NormML metamodel, is checked according to the invariants of the 

metamodel. The invariants check if the norm is well-formed according to the 

metamodel specification. The second step checks if any given two norms are in 

conflict. 

Well-formed norms 

Not all the norms that can be instantiated from the metamodel are well-formed. 

Examples of well-formed rules of the NormML metamodel are§:  

WFR1: The resource AgentAction can only be linked with the atomic action called 

AtomicExecute. Any other atomic action does not apply to AgentAction. 
context AgentAction 

inv: AgentAction.allInstances-> forAll(aa|aa.action-> 

    select(a|not(a.oclIsTypeOf(AtomicExecution)))->isEmpty()) 

WFR2: The resource AgentAction cannot be constrained by Permission. Although 

the metaclass Permission is defined in the Secure UML metamodel to define the 

permissions a user has over resources, the resource AgentAction can only be used by 

Norms to restrict the actions of an agent. 
context Permission 

inv: Permission.allInstances->forAll(p|p.accesses-> 

   select(a|a.resource.oclIsTypeOf(AgentAction))–>isEmpty()) 

WFR3: A norm that regulates the execution of a given action cannot be 

conditioned by the execution of the same action by the same agent. An agent cannot 

be obliged, permitted or prohibited to execute an action conditioned to the execution 

of such action. This rule uses four operations in order to guarantee that the action 

being regulated by the norm is not in the set of actions of the Before, After or Between 

constraints. 

 

 

 

                                                           
§ Some of the well-formed rules of the NormML metamodel are available in 

http://www.ic.uff.br/~viviane.silva/normML/normML.pdf. We are using OCL [17] to 

describe the well-formed rules and also the operations to check conflicts. 
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context Norm 

inv: self.GetAgentExecutedActionInBeforeConstraint-> 
            union(self.GetAgentExecutedActionInAfterConstraint)->  

            union(self.GetAgentExecutedActionInBetweenConstraint)-> 
            excludes(self.GetAgentExecutedActionRestrictedByNorm) 

Checking for Conflicts 

After verifying the well-formedness of the norms, it is important to check if there are 

conflicts between the norms. Two norms are in conflict, or are incompatible, if: 

1. One states a permission and another one a prohibition to execute the same action 

and such norms are active during the same period of time or during periods of time 

that intersects. The conflict occurs because the agent is permitted and prohibited to 

execute an action at the same time. Example: 

N3a: Buyer is prohibited to return a good it has bought. 

N3b: Buyer is permitted to return a good it has bought before using it. 

The activation time of N3a and N3b intersects since N3a states an unlimited 

prohibition. Thus, these norms are in conflict. 

2. One norm states an obligation and another one a prohibition over the same 

action and such norms are active during the same period of time or during periods of 

time that intersect. The conflict occurs because the agent is obliged and prohibited to 

execute an action at the same time. Example: 

N1a: Seller is obliged to give the good to buyer after the given buyer paid for it. 

N1b: Seller is prohibited to give the good to buyer before the latter pays for it. 

The activation time of N1a and N1b do not intersect. These norms are not in 

conflict since the seller is not being obliged and prohibited to execute the same 

action during the same period of time.  

3. One norm states a permission and another one an obligation over the same 

action and such norms are not active during the same period of time. A conflict may 

occur if an agent is obliged to execute an action that it is not permitted to. Example: 

N2a: Seller is permitted to update the price of a good before a buyer pays for it. 

N2b: Seller is obliged to update the price of a good after a buyer pays for it. 

The activation time of N2a and N2b do not intersect, thus these norms are in 

conflict. 

In addition, we also consider that a conflict can be caused due to the relationship 

between an agent and the roles it is playing.  

o A norm applied to a role and another one applied to an agent may be in 

conflict: A norm applied to a role restricts the behavior of all agents playing such 

role. Therefore, when searching for conflicts, it is important to check the 

incompatible norms that are applied to roles and also the ones applied to agents that 

are able to play such roles. Note that agents can play several roles. 

o A norm applied to a role and another one applied to an agent playing the role 

may be in conflict: Since the norm applied to a role regulates the behavior of all 

agents applying such role, when searching for conflicts, it is important to check the 

incompatible norms that are applied to roles and to agents playing roles. 

o A norm applied to an agent and another one applied to the agent playing a 

role may be in conflict: Since both norms will regulate the behavior of the same 
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agent, when searching for conflicts it is important to check the incompatible norms 

that are applied to agents and to agents playing roles. 

Note that two norms applied to different roles are never in conflict even though the 

same agent can play both roles. Although an agent can play more than one role at the 

same time, an action is always executed in the context of one role. We understand that 

an agent must be able to obey each norm separately while playing the roles.  

The operation CheckConflict illustrated below should be used to check conflicts 

between two norms. First, it checks if the norms are the same and, it they are not, if 

they apply to the same or related entities (as described above). Then, three important 

auxiliary operations** are used to check conflicts between an obligation and a 

prohibition, between an obligation and a permission and between a permission and an 

obligation. 
context :: CheckConflict(norm1,norm2) : String 

body if ( (norm1<>norm2) 

then(  

 if (CheckSameOrRelatedEntities(norm1,norm2) 

 then( 

  if (CheckConflictObligationProhibition(norm1, norm2) =“conflict” OR                         

      CheckConflictObligationPermission (norm1, norm2) =“conflict” OR 

      CheckConflictPermissionObligation (norm1, norm2) =  “conflict”) 

  then (“conflict”) 

  else( 

   if (CheckConflictObligationProhibition(norm1,norm2) = “conflictFree” AND 

       CheckConflictObligationPermission(norm1,norm2) = “conflictFree” AND 

      CheckConflictPermissionObligation (norm1, norm2) = “conflictFree”) 

    then( “conflictFree”) 

    else (“cannotBeVerified”) 

  )) 

 else (“conflictFree”)) 

else (“sameNorm”) 

In order to exemplify one of the three auxiliary operations, let’s focus on the 

CheckConflictObligationPermission operation, since it is frequently forgotten by 

other authors. First, this operation checks if it is dealing with a permission and an 

obligation and if both norms regulate the same actions (case 0 in operation 

CheckConflictObligationPermission). Second, it checks if the permission is not 

conditioned to any situation (case 1). In such case, there is not a conflict because the 

entity is always permitted to execute the action it is being obliged. 

Then, it checks if the norms are constrained to the same set of constraints, i.e., if 

the actions that activate and deactivate the norms are the same (case 2). If it is the 

case that both norms are constrained by a Before clause, then there is not a conflict 

since the entity is being obligated to execute an action while it is permitted to. Cases 

2.2, 2.3 and 2.4 in operation CheckConflictObligationPermission are similar. 

However, if the obligation is conditioned by a Between clause and the permission to a 

Before or an After (cases 2.5 and 2.6) it is not possible to conclude during design time 

if these norms are in conflict. It will depend on the sequence of the executions of the 

actions that will activate the norms. On the other hand, if the permission is being 

constrained to a Between condition and the obligation by a Before or an After (cases 

                                                           
** The implementation of such operations can be found in 

http://maude.sip.ucm.es/~viviane/normML.txt 
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2.7 and 2.8), both norms are in conflicts since the entity is being obliged to execute an 

action without permission. 

If the norms are not conditioned by the same set of conditions, then it is only 

possible to affirm that they are in conflict (i) in the case one of the norms is 

conditioned to an After†† and the other to a Before‡‡ (cases 3.1 and 3.2) and (ii) in the 

case the permission is conditioned to a Between and the obligation to a Before (case 

3,3). In both cases the agent is being obliged to execute a norm that it is not permitted 

to. 
context :: CheckConflictObligationPermission(norm1,norm2) : String 

body  

if ((norm1.oclIsTypeOf(NormObligation) and norm2.oclIsTypeOf(NormPermission))   

    or (norm1.oclIsTypeOf(NormPermission) and norm2.oclIsTypeOf(NormObligation))) 

then ( **case 0,check if norms applies to same action** 

 if (norm1.accesses=norm2.accesses 

 then (  **case 1** 

   if ((norm1.oclIsTypeOf(NormPermission) and   

        norm1.ActionsInConstraintOfNorm()->isEmpty()() ) or          

       (norm2.oclIsTypeOf(NormPermission) and   

        norm2.ActionsInConstraintOfNorm()->isEmpty()())) 

   then ( “conflictFree” )  

   else ( **case 2** 

     if (CheckSameSetOfConstraint(norm1,norm2) 

     then ( **case 2.1** 

       if (CheckBeforeBeforeNorms(norm1,norm2)) 

       then ( “conflicFree”) 

       else ( **case 2.2** 

         if (CheckAfterAftertNorms(norm1,norm2)) 

         then ( “conflictFree” )  

         else ( **case 2.3** 

           if (CheckBetweenBetweentNorms(norm1,norm2)) 

           then ( “conflictFree” )  

           else ( **case 2.4** 

             if (CheckAfterBeforeAfterBeforeNorms(norm1,norm2)) 

             then ( “conflictFree” )  

             else ( **case 2.5** 
               if(CheckBetweenObligationBeforePermissionNorms(norm1,norm2)) 

               then ( “cannotBeVerified” )  

               else ( **case 2.6** 

                 if (CheckBetweenObligationAfterPermissionNorms(norm1,norm2)) 

                 then ( “cannotBeVerified” )  

                 else ( **case 2.7** 

                   if (CheckBetweenPermissionBeforeObligation(norm1,norm2)) 

                   then ( “conflict” )  

                   else ( **case 2.8** 

                     if (CheckBetweenPermissionAfterObligationNorms 
                                                                   (norm1,norm2)) 

                     then ( “conflict” )  

                     else ( “cannoBeVerified” ) 

       ))))))) ) 

     else ( **case 3** 

       **case 3.1** 

       if (CheckBeforePermissionAfterObligationNorms(norm1,norm2)) 

       then ( “conflict” ) 

                                                           
†† Note that we are considering that the After condition specifies that the norm is only valid 

when all the actions identified in the condition are executed. 
‡‡ Note that we are considering that the Before condition specifies that the norm is only valid 

while none of the actions described in such condition is executed. 
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       else  ( **case 3.2** 

         if (CheckAfterPermissionBeforeObligationNorms(norm1,norm2)) 

         then ( “conflict” ) 

         else  ( **case 3.3** 

           if (CheckBetweenPermissionBeforeObligationNorms(norm1,norm2)) 

           then ( “conflict” ) 

           else  ( “cannotBeVerified” ) 

   )))) ) 

 else ( “conflictFree”  )) 

else ( “conflictFree” ) 

3.3 The Use of MOVA to Model, Validate and Query the Norms 

MOVA (Modeling and Validation group) tool [6] was used as a modeling tool (i) to 

describe the NormML metamodel, (ii) to create the normative models, (iii) to check the 

well-formedness of the norms and their conflicts, and also (iv) to inspect the 

normative models. MOVA allows for the creation of class diagrams, the definition of 

a set of invariants and operations over such diagrams and checking if object diagrams 

respect the invariants defined in class diagrams. We used MOVA to define the 

NormML metamodel as a class diagram and to describe the well-formed rules of the 

metamodel as invariants of the class diagram. The normative models were then 

described as object diagrams and checked if they comply with these invariants. 

By using MOVA it is also possible to query the object diagram (i.e., to define 

queries over such models) that can use operations defined in the class diagram. Such 

mechanism was used not only to check the conflicts between the modeled norms by 

using the operations that investigate the possible conflicts but also to explore the 

normative models themselves. Such investigation is fundamental when dealing with 

large-scale MAS that typically define a large number of norms. After describing 

hundreds norms it is almost impossible to find out, without the helping of a tool, all 

the norms applied to a role, for instance.  

4 RELATED WORK 

In this section we briefly describe how some methodologies and modeling languages 

deal with the modeling of the system norms. In addition we also present and compare 

works that have also proposed approaches to deal with norm conflicts. 

4.1 Methodologies 

Methodologies such as MESSAGE [3], Tropos [2] and Prometheus [22] do not 

address the problem of identifying and explicitly modeling norms or organizational 

rules. However, others such as Gaia, SODA, MaSE and PASSI state the importance 

of modeling organization rules during the analysis and design phases.  

Gaia affirms that the explicit identification of such rules in the analysis phase is 

very important for the correct understanding of the characteristics that the 

organization-to-be must express and for the subsequent definition of the system 
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structure by the designer. Although they have proposed a formal language to model 

the norms, they have not described any mechanism to validate the norms in order to 

find out conflicts and to verify if the elements being referred to by the norms are 

elements being modeled.  

In [7] the authors propose the integration of organizational rules into the MaSE 

methodology by extending its analysis and design phases. The rules are modeled in 

the analysis phase, while in the design phase, the organization tasks related to the 

implementation and enforcement of those rules are described. Like Gaia, MaSE 

defines a formal language for describing norms but have not proposed how to find out 

norms’ conflicts or how to check consistency between the elements described in the 

norms and the elements being modeled. 

SODA states the need for modeling social rules as agents’ interactions in the 

analysis phase and defines social models expressive enough to model the society 

interaction rules in the design phase. However, as opposed to Gaia and MaSE, this 

methodology neither presents a guideline to define such rules nor describes in details 

the characteristics of the proposed social models. 

In the role description phase of the PASSI methodology, it is possible to introduce 

social rules (or organization rules) in the UML class diagrams used to model the 

agents, their roles and actions. The rules may be expressed in OCL or other formal, or 

semi-formal manner depending on one’s needs. The two main drawbacks of this 

approach to model norms are: (i) there is not a method to verify if the elements being 

described in the norms are modeled in the system diagrams; and (ii) they do not 

propose any mechanism to check if the norms have conflicts. 

4.2 Modeling Languages 

Both AUML and AML recognize the need for modeling norms but have not defined 

any modeling technique to describe them. AML states that roles are used to define a 

normative behavioral repertoire of entities but has not proposed the modeling of 

norms. Thus, it is not possible to point out the permissions, obligations and 

prohibitions of an agent playing a role. 

In AOR [28] the use of deontic logic to describe norms is still under investigation. 

Although it is possible to describe rights (or permissions) and prohibitions, it is still 

not possible to describe obligation. In addition, there is not any mechanism to detect 

norms conflicts, even though it is possible to describe them. 

MAS-ML originally proposed the modeling of duties (or obligations) and rights as 

actions associated with roles. However, it is not possible to model more complex 

norms such as the ones conditioned to an event or to check their conflicts. 

4.3 Other Approaches that deal with Norm Conflicts 

There are several works that introduce approaches to check conflicts between norms 

and to solve such conflicts [9][13][21][23][26]. Since we have not presented any 

suggestion to the resolution of conflicts, we compare our approach with the ones that 

can find out the conflicts.  
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In [23] the authors identify three forms of conflict/inconsistency called total-total, 

total-partial and intersection. The approach we propose to validate the set of norms 

and detect conflicts can capture these three forms of conflict/inconsistency. In [9] 

several aspects of some types of conflicts and the problems they arise are discussed. 

In particular, the authors discuss the difference between deontic inconsistencies, 

which occur when actions are simultaneously prohibited and permitted, and deontic 

conflicts, which occur when actions are simultaneously prohibited and obliged. In our 

approach we present solutions to deal with these two types of conflicts. 

The model presented in [14], called NoA, is able to detect conflicts between norms 

at runtime and propose resolutions to those conflicts. They state that by allowing 

conflicts it has partial benefits in the engineering of multi-agent systems. Thus, the 

main difference between their approach and ours is that our mechanism must be used 

to check norms at design time. In our point of view, at least the norms defined by the 

design must be conflict-free before the execution of the system.  

Differently from us, in [12] the authors present an approach to detect conflict based 

on the time a norm is activated. In our approach we have not associated a norm with 

an activation time but with the execution of a set of actions that activates the norm. In 

[26] the authors present an approach to detect conflicts between related norms, i.e., 

norms applied to the same agent/role, restricting the same actions and whose 

activation periods overlap. The mechanism used to detect conflicts proposed in our 

paper is based on the approach presented in [26]. We extend such approach to 

consider conflicts between norms that state permissions and obligations—the authors 

in [26] only consider permissions and prohibitions or obligations and prohibitions—

and to deal with activation time that is related to the execution of actions—the 

activation time proposed in [26] is related to values associated with attributes. 

5 CONCLUSIONS AND FUTURE WORK 

We have presented NormML, a normative modeling language that builds on role-based 

access control concepts. By using NormML it is possible to identify roles, agents and 

actions of a system while modeling its norms. Since NormML is based on UML, the 

integration of such language with any multi-agent system modeling language also 

based in UML, such as AUML, AML and MAS-ML, is facilitated. The roles, agents 

and actions identified while modeling the norms must be modeled in the agent-

oriented models provided by such modeling languages. 

We have defined a set of invariants and operations that makes possible the 

validation of the norms by verifying their well-formedness and by checking the 

possible conflicts between norms. We have defined three main operations to detect 

conflicts between an obligation and a permission, an obligation and a prohibition, and 

a permission and a prohibition. 

We are in the process of extending the language to describe temporal restrictions 

and also sanctions. In order to be able to define the NormML metamodel, we have 

based such definition in the normative grammar proposed in  [24]. This grammar 

extends the normative language proposed by Garcia-Camino et al. [10] with the 

notion of non-dialogical actions proposed by Vazquez-Salceda et al. [27] and with the 
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definition of sanctions and relationships between norms stated by Lopez y Lopez et 

al. in [11][16]. However, the current version of NormML does not contemplate the 

definition of sanctions or temporal conditions.  

It is also our intension to define a sequence diagram for NormML to describe the 

sequence of the executed actions. By using such diagram it will be possible to check 

conflicts that depend on the sequence of the executed actions (as mentioned in Section 

3.2) and it will also be possible to identify the norms that are active and the ones that 

were violated. 
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Abstract. Online virtual worlds such as Second Life provide a rich medium for
unstructured human interaction in a shared simulated 3D environment. However,
many human interactions take place in a structured social context where partic-
ipants play particular roles and are subject to expectations governing their be-
haviour, and current virtual worlds do not provide any support for this type of
interaction. There is therefore an opportunity to adapt the tools developed in the
MAS community for structured social interactions between software agents (in-
spired by human society) and adapt these for use with the computer-mediated
human communication provided by virtual worlds.
This paper describes the application of one such tool for use with Second Life.
A model checker for online monitoring of social expectations defined in tem-
poral logic has been integrated with Second Life, allowing users to be notified
when their expectations of others have been fulfilled or violated. Avatar actions
in the virtual world are detected by a script, encoded as propositions and sent to
the model checker, along with the social expectation rules to be monitored. No-
tifications of expectation fulfilment and violation are returned to the script to be
displayed to the user. This utility of this tool is reliant on the ability of the Lin-
den scripting language (LSL) to detect events of significance in the application
domain, and a discussion is presented on how a range of monitored structured
social scenarios could be realised despite the limitations of LSL.

1 Introduction

Much of the research in multi-agent systems addresses techniques for modelling, con-
structing and controlling open systems of autonomous agents. These agents are taken
to be self-interested or representing self-interested people or organisations, and thus
no assumptions can be made about their conformance to the design goals, social con-
ventions or regulations governing the societies in which they participate. Inspired by
human society, MAS researchers have adopted, formalised and created computational
infrastructure allowing concepts from human society such as trust, reputation, expecta-
tion, commitment and narrative to be explicitly modelled and manipulated in order to
increase agents’ awareness of the social context of their interactions. This awareness
helps agents to carry out their interactions efficiently and helps preserve order in the
society, e.g. the existence of reputation, recommendation and/or sanction mechanisms
discourages anti-social behaviour.

Dagstuhl Seminar Proceedings 09121 
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As the new ‘Web 2.0’ style Web sites and applications proliferate, people’s use of
the Web is moving from passive information consumption to active information sharing
and interaction within virtual communities; in other words, for millions of users, the
Web is now a place for social interaction. However, while Web 2.0 applications pro-
vide the middleware to enable interaction, they generally provide no support for users
to maintain an awareness of the social context of their interactions (other than basic
presence information indicating which users in a ‘buddy list’ online). There is therefore
an opportunity for the software techniques developed in MAS research for maintaining
social awareness to be applied in the context of electronically mediated human interac-
tion, as well as in their original context of software agent interaction.

This paper reports on an investigation into the use of one such social awareness tool
in conjunction with the Second Life online virtual world. Second Life is a ‘Web 3D’ ap-
plication providing a simulated three dimensional environment in which users can move
around and interact with other users and simulated objects [1]. Users are represented in
the virtual world by animated avatars that they control via the Second Life Viewer client
software. Human interaction in virtual worlds is essentially unconstrained—the users
can do whatever they like, subject to the artificial physics of the simulated world and
a few constraints that the worlds support, such as the ability of land owners to control
who can access their land. However, many human interactions take place in a structured
social context where participants play particular roles and there are constraints imposed
by the social or organisational context, e.g. participants in a meeting should not leave
without formally excusing themselves, and students in an in-world lecture should re-
main quiet until the end of the lecture. Researchers in the field of multi-agent systems
have proposed (based on human society) that the violation of social norms such as these
can be discouraged by publishing explicit formal definitions of the norms, building tools
that track (relevant) events and detect any violations, and punishing offenders by lower-
ing their reputations or sanctioning them in some other way [2]. Integrating this type of
tool with virtual worlds could enhance the support provided by those worlds for social
activities that are subject to norms.

In this research we have investigated the use of a tool for online monitoring of
‘social expectations’ [3] in conjunction with Second Life. The mechanism involves a
script running in Second Life that is configured to detect and record particular events
of interest for a given scenario, and to model these as a sequence of state descriptions
that are sent to an external monitor along with a property to be monitored. The monitor
sends notifications back to the script when the property is satisfied so that the user can
be informed.

The rest of this paper is structured as follows. Section 2 describes how we have used
the Linden Scripting Language to detect avatars in Second Life and create a sequence of
propositional state models to send to the monitor. The architecture for communication
between this script and the monitor is presented in Section 3. Section 4 discusses the
concept of conditional social expectations used in this work, and the model checking
tool that is used as the expectation monitor. Section 5 presents some simple scenarios
of activities in Second Life being monitored, and Section 6 discusses some issues aris-
ing from limitations of the Linden Scripting Language and the temporal logic used to
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Fig. 1. The Second Life Viewer

express rules. Some related work is described in Section 7, and Section 8 concludes the
paper.

2 Detecting events in Second Life

As shown in Figure 1, the Second Life Viewer provides, by default, a graphical view
of the user’s avatar and other objects and avatars within the view. The user can control
the ‘camera’ to obtain other views. Avatars can be controlled to perform a range of
basic animations such as standing, walking and flying, or predefined “gestures” that are
combinations of animation, text chat and sounds. Communication with other avatars
(and hence their users) is via text chat, private instant messages, or audio streaming.
The user experience is therefore a rich multimedia one in which human perception and
intelligence is needed to interpret the full stream of incoming data. However, the Linden
Scripting Language (LSL [4]) can be used to attach scripts to objects (e.g. to animate
doors), and there are a number of sensor functions available to detect objects and events
in the environment. These scripts are run within the Second Life servers, but have some
limited ability to communicate with the outside world.

LSL is based on a state-event model, and a script consists of defined states and
handlers for events that it is programmed to handle. Certain events in the environment
automatically trigger events on a script attached to an object. These include collisions
with other objects and with the ‘land’, ‘touches’ (when a user clicks on the object), and
money (in Linden dollars) being given to the object. Some other types of event must be
explicitly subscribed to by calling functions such as llSensor and llSensorRe-
peat for scanning for avatars and objects within a given arc and range, llListen
for detecting chat messages from objects or avatars within hearing range, and llSet-
TimerEvent for setting a timer. These functions take parameters that provide some
selectivity over what is sensed, e.g. a particular avatar name or object type can be spec-

3



ified in llListen, and llListen can be set to listen on a particular channel, for a
message from a particular avatar, and even for a particular message.

In this paper we focus on the detection of other avatars via the function llSen-
sorRepeat, which repeatedly polls for nearby avatars (we choose not to scan for
objects also) at an interval specified in a parameter. A series of sensor events are then
generated, which indicate the number of avatars detected in each sensing operation.
A loop is used to get the unique key that identifies each of these avatars (via function
llDetectedKey) and the avatar’s name (via llDetectedName). The key can then
be used to obtain each avatar’s current basic animation (via llGetAnimation). The
script can be configured with a filter list specifying which avatar/animation observations
should be either recorded or ignored, where the specified avatar and animation can re-
fer to a particular value, or “any”. Detected avatar animations are filtered through this
list sequentially, resulting in a set of (avatar name, animation) pairs that comprise a
model of the current state of the avatars within sensor range. Another configuration list
specifies the optional assignment of avatars to named groups or roles such as “Friend” or
“ClubOfficial”. There is currently no connection with the official Second Life concept
of a user group (although official group membership can be detected). Group names
can also be included in the filter list, with an intended existential meaning, i.e. a pair
(group name, animation) represents an observation that some member of the group
is performing the specified animation. The configuration lists provide scenario-specific
relevance criteria on the observed events, and are read from a ‘notecard’ (a type of avatar
inventory item that is commonly used to store textual configuration data for scripts),
along with the property to be monitored.

When the script starts up, it sends the property to be monitored to the monitor. It
then sends a series of state descriptions to the monitor as sensor events occur. However,
we choose not to send a state description if there is no change since the previous state,
so states represent periods of unchanging behaviour rather than regularly spaced points
in time. State descriptions are sets of proposition symbols of the form avatar animation
or group animation.

This process can easily be extended to handle other types of Second Life events that
have an obvious translation to propositional (rather than predicate) logic, such as de-
tecting that an avatar has sent a chat message (if it is not required to model the contents
of the message). Section 6 discusses this further.

3 Communication between Second Life and the monitor

Second Life provides three mechanisms for communication with entities outside their
own server or the Second Life Viewer: scripts can send email messages, initiate HTTP
requests, or listen for incoming XML-RPC connections (which must include a parame-
ter giving the key for a channel previously created by the script). To push property and
state information to the monitor we use HTTP. However, instead of directly embedding
the monitor in an HTTP server, to avoid local firewall restrictions we have chosen to
use Twitter [5] as a message channel. An XML-RPC channel key, the property to be
monitored and a series of state descriptions are sent to a predefined Twitter account as
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direct messages using the HTTP API1. The Twitter API requires authentication, which
can be achieved from LSL only by including the username and password in the URL in
the form http://username:password@. . . ..

The monitor is wrapped by a Java client that polls Twitter (using the Twitter4J
library [7]) to retrieve direct messages for the predetermined account. These are ignored
until a pair of messages containing an XML-RPC channel key and a property to be
monitored (prefixed with “C:” and “P:” respectively) are received, which indicates that
a new monitoring session has begun. The monitoring session then consists of a series of
messages beginning with “S:”, each containing a list of propositions describing a new
state. The monitor does not currently work in an incremental ‘online’ mode—it must
be given a complete history of states and restarted each time a new state is received 2;
therefore, the Java wrapper must record the history of states. It also generates a unique
name for each state (which the monitor requires).

Each time a state is received, the monitor (which is implemented in C) is invoked
using the Java Native Interface (JNI). The rule and state history are written to files and
the names passed as command-line arguments. An additional argument indicates the
desired name of the output file. The output is parsed and, if the property is determined
to be true in any state, that information is sent directly back to the Second Life script
via XML-RPC.

Figure 2 gives an overview of the communication architecture.

Fig. 2. The communications architecture

1 Twitter messages are restricted to 140 characters and calls to the Twitter API are subject to a
limit of 70 requests per hour, which is sufficient for testing our mechanism. For production use
an alternative HTTP-accessible messaging service could be used, such as the Amazon Simple
Queue Service [6].

2 Work is in progress to add an online mode to the monitor.

5



4 Monitoring social expectations

4.1 Modelling social expectations

MAS researchers working on normative systems and electronic institutions [2] have
proposed various languages for modelling the rules governing agent interaction in open
societies, including abductive logic programming rules [8], enhanced finite state ma-
chine style models, [9], deontic logic [10], and institutional action description languages
based using formalisms such as the event calculus [11].

The monitor used in this work is designed to track rules of social expectation. These
are temporal logic rules that are triggered by conditions on the past and present, result-
ing in expectations on present and future events. The language does not include deontic
concepts such as obligation and permission, but it allows the expression of social rules
that impose complex temporal constraints on future behaviour, in contrast to the sim-
ple deadlines supported by most normative languages. It can also be used to express
rules of social interaction that are less authoritative than centrally established norms,
e.g. conditional rules of expectation that an agent has established as its personal norms,
or rules expressing learned regularities in the patterns of other agents’ behaviour. The
key distinction between these cases is the process that creates the rules, and how agents
react to detected fulfilments and violations.

Expectations become active when their condition evaluates to true in the current
state. These expectations are then considered to be fulfilled or violated if they evalu-
ate to true in a state without considering any future states that might be available in
the model3. If an active expectation is not fulfilled or violated in a given state, then it
remains active in the following state, but in a “progressed” form. Formula progression
involves partially evaluating the formula in terms of the current state and re-expressing
it from the viewpoint of the next state [12]. A detailed explanation is beyond the scope
of this paper, but a simple example is that an expectationφ (meaning that φ must be
true in the state that follows) progresses to the expectation φ in the next state.

4.2 The social expectation monitor

The monitoring tool we have used is an extension [3] of a model checker for hybrid tem-
poral logics [13]. Model checking is the computational process of evaluating whether a
formal model of a process, usually modelled as a Kripke structure (a form of nondeter-
ministic finite state machine), satisfies a given property, usually expressed in temporal
logic. For monitoring social expectations in an open system, we cannot assume that we
can obtain the specifications or code of all participating agents to form our model. In-
stead our model is the sequence of system states recorded by a particular observer, in
other words, we are addressing the problem of model checking a path [14]. The task of
the model checker is therefore not to check that the overall system necessarily satisfies

3 This restriction is necessary, for example, when examing an audit trail to find violations of
triggered rules in any state. The standard temporal logic semantics would conclude that an
expectation “eventually p” is fulfilled in a state s even if p doesn’t become true until some
later state s′.
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a given property, but just that the observed behaviour of the system has, to date, satis-
fied it. The properties we use are assertions that a social expectation exists or has been
fulfilled or violated, based on a conditional rule of expectation, expressed in temporal
logic.

The basic logic used includes these types of expression, in addition to the standard
Boolean constants and connectives (true, false, ∧, ∨ and ¬):

– Proposition symbols. In our application these represent observations made in Sec-
ond Life, e.g. avatar name sitting.

– φ: formula φ is true when evaluated in the next state
– φ: φ is true in the current or some future state
– φ: φ is true in all states from now onwards
– φUψ: ψ is true at the current or some future state, and φ is true for all states from

now until just before that state

 and  can be expressed in terms of U and are abbreviations of longer expres-
sions.

The logic also has some features of Hybrid Logic [15], but these are not used in this
work except for the use of a nominal (a proposition that is true in a unique state) in the
output from the model checker to ‘name’ the state in which a fulfilled or violated rule
of expectation became active.

Finally, the logic includes the following operators related to conditional rules of
expectation, and these are the types of expression sent from the Second Life script to
the model checker:

– ExistsExp(Condition,Expectation)
– ExistsFulf(Condition,Expectation)
– ExistsViol(Condition,Expectation)

whereCondition andExpectation can be any formula that does not include ExistsExp,
ExistsFulf and ExistsViol.

The first of these operators evaluates to true if there is an expectation existing in the
current state that results from the rule specified in the arguments being triggered in the
present or past. The other two operators evaluate to true if there is currently a fulfilled
or violated expectation (respectively) resulting from the rule.

Formal semantics for this logic can be found elsewhere [3].
The input syntax to the model checker is slightly more verbose than that shown

above. In particular, temporal operators must indicate the name of the ”next state modal-
ity” as it appears in the input Kripke structure. In the examples in this paper, this will
always be written as “<next>”. Writing “<next>” on its own refers to the operator
.

5 Two Simple scenarios

A simple rule of expectation that might apply in a Second Life scenario is that no one
should ever fly. This might apply in a region used by members of a group that enacts
historical behaviour. To monitor this expectation we can use the following property:
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ExistsViol<next>(true, !any flying)

This is an unconditional rule (it is triggered in every state) stating the expectation that
there will not be any member of the group “Any” (comprising all avatars) flying.

If this is the only animation state to be tracked, the script’s filter list will state that the
animation “Flying” for group “Any” should be recorded, but otherwise all animations
for all avatars and other groups should be discarded. On startup, the script sends the
property to be monitored to the monitor, via Twitter, and then as avatars move around
in Second Life and their animations are detected, it sends state messages that will either
contain no propositions (if no one is flying) or will state that someone is flying:

S: any flying

These states are accumulated, and each time a new state is received, the monitor is
called and provided with the property to be monitored and the model (state history), e.g.
s1 : {}, s2 : {}, s3 : {any flying} (the model is actually represented in XML—an
example appears below).

For this model, the monitor detects that the property is satisfied (i.e. the rule is
violated) in state s3 and a notification is sent back to the script. How this is handled
is up to the script designer, but one option is for the script to be running in a “head-
up-display” object, allowing the user to be informed in a way that other avatars cannot
observe.

We now consider a slightly more complex example where there are two groups (or
roles) specified in the script’s group configuration list: leader (a singleton group)
and follower. We want to monitor for violations of the rule that once the leader is
standing, then from the next state a follower must not be sitting until the leader is sitting
again. This is expressed using the following property:

ExistsViol<next>(
leader_standing,
<next>(U<next>(!follower_sitting,

leader_sitting))
)

The filter list can be configured so that only the propositions occurring in this rule
are regarded as relevant for describing the state.

Suppose the scenario begins with the leader sitting and then standing, followed by
the follower sitting, and finally the leader sitting again. This causes the following four
states to be generated:

� � � �

leader sitting leader standing follower sitting leader sitting

s1 s2 s3 s4

This is represented in the following XML format to be input to the model checker:
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<hl-kripke-struct name="M">
<world label="s1"/>
<world label="s2"/>
<world label="s3"/>
<world label="s4"/>
<modality label="next">

<acc-pair to-world-label="s2"
from-world-label="s1"/>

<acc-pair to-world-label="s3"
from-world-label="s2"/>

<acc-pair to-world-label="s4"
from-world-label="s3"/>

</modality>
<prop-sym label="leader_standing"

truth-assignments="s2"/>
<prop-sym label="leader_sitting"

truth-assignments="s1 s4"/>
<prop-sym label="follower_sitting"

truth-assignments="s3"/>
<nominal label="s1" truth-assignment="s1"/>
<nominal label="s2" truth-assignment="s2"/>
<nominal label="s3" truth-assignment="s3"/>
<nominal label="s4" truth-assignment="s4"/>

</hl-kripke-struct>

The output of the model checker is:

s3: (s2, U<next>(!(follower_sitting),
leader_sitting))

This means that a violation occurred in state s3 from the rule being triggered in state
s2. The violated expectation (after progression to state s3) is:

U<next>(!(follower_sitting), leader_sitting)

This information is sent to the script.

6 Discussion

As mentioned in Section 2, our detection script currently only detects the animations
of avatars within sensor range. This limits the scenarios that can be modelled to those
based on (simulated) physical action. However, it is straightforward to add the ability
to detect other LSL events, provided that they can be translated to a propositional rep-
resentation. Thus we could detect that an avatar has sent a chat message, but we can’t
provide a propositional encoding that can express all possible chat message contents.
However, the addition of new types of configuration list would allow additional flexi-
bility. For example, regular expressions or other types of pattern could be defined along
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with a string that can be appended to an avatar or group name to generate a proposition
meaning that that avatar (or a member of that group) sent a chat message matching the
pattern.

A significant limitation of the Linden Scripting Language is that the events that
a script can detect are focused on the scripted object’s own interactions with the
environment—there is no facility for observing interactions between other agents, ex-
cept for what can be deduced from their animations and chat. For many scenarios, it
would be desirable to detect these interactions, for example, passing a certain object or
sending money from one avatar to another might be a significant event in a society. One
way around this problem would be to add additional scripted objects to the environment
and set up the social conventions that these objects must be used for certain purposes.
For example, an object in the middle of a conference table might need to be touched
in order to request the right to speak next. These objects would generate appropriate
propositions and send them to the main script via a private link.

The logic used currently is based on a discrete model of time, which can cause
problems in some scenarios. For example, in the leader/follower scenario, it would be
reasonable to allow the follower some (short) amount of time to stand after the leader
stands. However, the moment that if a follower stands and another does not stand within
the granularity of the same sensor event, then that second follower will be deemed in
violation. It would be useful to be able to model some aspects of real time. This could
be done by moving to a real-time temporal logic (which would involve some theoretical
work on extending the model checker), or by some pragmatic means such as allowing
the configuration parameters to define a frequency for regular “tick” timer events.

7 Related work

There seems to be little prior work that has explored the use of social awareness tech-
nology from multi-agent systems or other fields to support human interaction on the
Internet in general, and in virtual worlds in particular.

A few avatar rating and reputation systems have been developed [16] to replace Sec-
ond Life’s own ratings system, which was disestablished in 2007. These provide various
mechanisms to allow users to share their personal opinions of avatars with others.

Closer to our own work, Bogdanovych et al. [17, 18] have linked the AMELI elec-
tronic institution middleware [19] with Second Life. However, their aim is not to pro-
vide support for human interactions within Second Life, but rather to provide a rich
interface for users to participate in an e-institution mediated by AMELI (in which the
other participants may be software agents). This is done by generating a 3D environ-
ment from the institution’s specification, e.g. scenes in the e-institution become rooms
and transitions between scenes become doors. As a user controls their avatar to per-
form actions in Second Life, this causes an associated agent linked to AMELI to send
messages to other agents, as defined by an action/message mapping table. Moving the
avatar between rooms causes the agent to make a transition between scenes, but doors
in Second Life will only open when the agent is allowed to make the corresponding
scene transition according the rules of the institution.
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This approach could be used to design and instrument environments that support
structured human-to-human interaction in Second Life, but the e-institution model of
communication is highly stylised and likely to seem unnatural for human users. In our
work we are aiming to provide generic social awareness tools for virtual world users
while placing as few restrictions as possible on the forms of interaction that are com-
patible with those tools. However, as discussed in Section 6, the limitation of the sens-
ing functions provided by virtual world scripting languages may mean that some types
of scenario cannot be implemented without providing specific scripted coordination
objects that users are required to use, or the use of chat messages containing precise
specified phrases.

8 Conclusion

This paper has reported on a prototype application of a model checking tool for social
expectation monitoring applied to monitoring social interactions in Second Life. The
techniques used for monitoring events in Second Life and allowing communication
between a Second Life script and the monitor have been described, and these have been
successfully tested on some simple scenarios. A discussion was presented on some of
the limitation imposed by the LSL language and the logic used in the model checker,
along with some suggestions for resolving these issues.
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11. Farrell, A.D.H., Sergot, M.J., Sallé, M., Bartolini, C.: Using the event calculus for tracking
the normative state of contracts. International Journal of Cooperative Information Systems
14(2 & 3) (2005) 99–129

12. Bacchus, F., Kabanza, F.: Using temporal logics to express search control knowledge for
planning. Artificial Intelligence 116(1-2) (2000) 123–191

13. Dragone, L.: Hybrid logics model checker. http://luigidragone.com/hlmc/ (2005)
14. Markey, N., Schnoebelen, P.: Model checking a path. In: CONCUR 2003 – Concurrency

Theory. Volume 2761 of Lecture Notes in Computer Science. Springer (2003) 251–265
15. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press (2001)
16. Second Life: Removal of ratings in beta. http://blog.secondlife.com/2007/

04/12/removal-of-ratings-in-beta/ (2007)
17. Bogdanovych, A., Berger, H., Sierra, C., Simoff, S.J.: Humans and agents in 3D electronic in-

stitutions. In: Proceedings of the 4rd International Joint Conference on Autonomous Agents
and Multiagent Systems, ACM (2005) 1093–1094

18. Bogdanovych, A., Esteva, M., Simoff, S.J., Sierra, C., Berger, H.: A methodology for 3d elec-
tronic institutions. In: Proceedings of the 6th International Joint Conference on Autonomous
Agents and Multiagent Systems, IFAAMAS (2007) 358–360

19. Esteva, M., Rosell, B., Rodrguez-Aguilar, J.A., Arcos, J.L.: AMELI: An agent-based mid-
dleware for electronic institutions. In: Proceedings of the 3rd International Joint Conference
on Autonomous Agents and Multiagent Systems. Volume 1., IEEE Computer Society (2004)
236–243

12



Normal = Normative?

The Role of Intelligent Agents in Norm Innovation
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Abstract. In this paper the results of several agent-based simulations,
aiming to test the role of normative beliefs in the emergence and inno-
vation of social norms, are presented and discussed. Rather than mere
behavioral regularities, norms are here seen as behaviors spreading to
the extent that and because the corresponding commands and beliefs
do spread as well. On the grounds of such a view, the present work
will endeavour to show that a sudden external constraint (e.g. a barrier
preventing agents from moving among social settings) facilitates norm
innovation: under such a condition, agents provided with a module for
telling what a norm is can generate new (social) norms by forming new
normative beliefs, irrespective of the most frequent actions.

1 Introduction

Traditionally, the scientific domain of normative agent systems presents two main
directions of research. The first is focused on intelligent agent architectures, and
in particular on normative agents and their capacity to decide on the grounds of
norms and the associated incentive or sanction. The second is focused on much
simpler agents and the emergence of regularities from agent societies.

Very often, social scientific study of norms goes back to the philosophical
tradition that defines norms as regularities emerging from reciprocal expecta-
tions [22, 5, 15]. Indeed, interesting sociological works [23] point to norms as
public goods, the provision of which is promoted by 2nd-order cooperation [18,
19]. This view has inspired the more recent work of evolutionary game-theorists
[17], who explored the effect of punishers or strong reciprocators on the group’s
fitness, but did not account for the individual decision to follow a norm.

No apparent contamination and integration between these different direc-
tions of investigation has been achieved so far. In particular, it is unclear how
something more than regularities can emerge in a population of intelligent au-
tonomous agents and whether agents’ mental capacities play any relevant role
in the emergence or innovation of norms.

In this paper, we will concentrate on one of these capacities, norm recogni-
tion. We will simulate agents endowed with the capacity to tell what a norm is,
while observing their social environment.

Dagstuhl Seminar Proceedings 09121 
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One might question why start with norm recognition. After all, isn’t it more
important to understand why agents observe norms? Probably, it is. However,
whereas this question has benn answered to some extent [10, 9] the question how
agents tell norms has received poor attention so far. Furthermore, the account
for the reason why agents observe the norms sheds poor light on our problem:
norms need to have emerged, before they are complied with for any reason.

In this paper, we will address the antecedent phenomenon, norm innovation,
postponing the consequent, norm compliance, to future studies. In particular,
we will endeavour to show the impact of norm recognition on norm innovation.
More precisely, we will observe agents endowed with the capacity to recognize a
norm (or a behavior based on a norm); generate by herself new normative beliefs
and transmit them to other agents by communicative acts or direct behaviors.

We intend to show whether a society of such normative agents allows norms
to emerge or innovate. (By norm innovation, we mean the process by means of
which the (set of) norm(s) shared within a (sub-)population changes in all or in
part at any given time). Hence, we intend to investigate not only how norms come
into existence, but also how they are maintained or replaced by other norms. The
notion of norms that we refer to [11] is rather general. Unlike a moral notion,
which is based based on the sense of right or wrong, norms are here meant in the
broadest sense, as behaviors spreading to the extent that and because (a) they
are prescribed by one agent to another, (b) and the corresponding normative
beliefs spread among these agents.

Again, one might ask why not to address our moral sense, our sense of the
right or wrong. The reason is at least twofold. First, our norms are more general,
including moral and social norms. Secondly, and moreover, agents can deal with
norms even when they have no moral sense: they can even obede norms they
believe to be injust. But in any case, they must know what a norm is.

2 Existent Approaches

Usually, in the formal social scientific field, that is in utility and (evolutionary)
game theory [5, 15, 25, 26, 28], the spread of new norms and other cooperative
behaviors is not explained in terms of internal representations. The object of in-
quiry is usually the conditions for agents to converge on given behaviors, which
proved efficient in solving problems of coordination [22] or cooperation [4], inde-
pendent of the agents normative beliefs and goals [6]. In this field, no theory of
norms based on mental representations (of norms) has yet been provided.

Game theorists essentially aimed to investigate the dynamics involved in the
problem of norm convergence. They consider norms as conditioned preferences,
i.e. options for action preferred as long as they are believed to be preferred by
others as well [5]. Here, the main role is played by sanctions: what distinguishes a
norm from other cultural products like values or habits is the fact that adherence
to a social norm is enforced by sanctions [16, 3] and the utility function, which
an agent seeks to maximize, usually includes the cost of sanction as a crucial
component.
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In the field of multi-agent systems [14, 21, 27], instead, norms are explicitly
represented. However, they are implemented as built-in mental objects. This
alternative approach has been focused on the question as to how autonomous
intelligent agents decide on the grounds of their explicitly represented norms.
Even when norm emergence is addressed [24], the starting point is some preex-
isting norms, and emergence lies in integrating them. When agents (with different
norms) coming from different societies interact with each other, their individual
societal norms might change, merging in a way that might prove beneficial to
the societies involved (and the norm convergence results in the improvement of
the average performance of the societies under study). Lately, decision making
in normative systems and the relation between desires and obligations has been
studied within the BDI framework, developing an interesting variant of it, i.e.
the so-called Belief-Obligations-Intentions-Desires or BOID architecture [7].

In none of these approaches, including the last one, it is possible for an
agent to tell that a given input is a (new) norm. On the contrary, obligations
are hardwired into the agents’ minds when the system is off-line. Unlike the
game-theoretic model, multi-agent systems certainly exhibit all of the advantages
deriving from an explicit representation of norms. Nevertheless, they overshadow
one of the advantages of autonomous agents, i.e. their capacity to filter external
requests. Such a filtering capacity affects not only normative decisions, but also
the acquisition of new norms. Indeed, agents take decisions even when they
decide to form normative beliefs, and then new (normative) goals, and not only
when they decide whether to execute the norm or not [12].

Despite the undeniable significance of the results achieved, these studies leave
some fundamental questions still unanswered, such as how and where norms
originate, how agents acquire norms, and more specifically, how agents tell that
something is a norm. Our feeling is that the question how norms are created
and innovated has not received so far the answer it deserves the role of norm-
recognition has been insufficiently perceived.

3 Objectives

Some preliminary simulations, discussed in [1], compared the behavior of a pop-
ulation of normative agents provided with a norm recognition module and a
population of social conformers whose behavior is determined only by a rule of
imitation. The results of these simulations show that under specific conditions,
i.e. moving from one social setting to another, imitators are not able to converge
on one behavior, even if this is common to different settings, whereas normative
agents are.

In this paper we want to find out the sufficient (even if not necessary) con-
ditions for existing norms to change. In particular, we want to show if a simple
cultural or material constraint can facilitate norm innovation. To see this, we
imagined a simple case in which subpopulations are isolated in different contexts
for a fixed period of time. The methaphor here is any physical catastrophe or
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political upheaval that divides one population into two separate communities.
The recent European history has shown several examples of this phenomenon.

4 Norm Innovation

Norms are highly adaptable artifacts, emerging, evolving, and decaying. If it is
relatively clear how legal norms are put into existence, it is much less obvious
how the same process applies to social norms. How do new social norms and
conventions come into existence? Some simulation studies about the selection of
conventions have been carried out, for example Epstein and colleagues’ study
of the emergence of social norms [15], and Sen and Airiau’s study of the emer-
gence of a precedence rule in the traffic [25]. However, such studies investigate
which one is chosen out of a set of alternative equilibriums. A rather different
sort of question concerns the innovation of social norms when no alternative
equilibriums are available for selection.

We propose that a possible answer might be discovered while examining
the interplay of communicated and observed behaviors, and the way they are
represented into the minds of the observers. If any new behavior α is interpreted
as obeying a norm, a new normative belief will be generated and a process of
normative influence will be activated [13]. Such a behavior will be more likely
to be replicated than would be the case if no normative belief were formed [2].
As shown elsewhere [9, 2], when a normative believer replicates α, she will be
likely to influence others to do the same not only by ostensibly exhibiting the
behavior in question, but also by explicitly conveying a norm. People impose new
norms on one another by means of deontics and explicit normative valuations and
propose new norms (implicitly) by means of (normative) behaviors. Of course,
having formed a normative belief is necessary but not sufficient for normative
influence: we will not answer the question why agents do so (a problem that we
solve for the moment in prbabilistic terms), but we address the question how
they can influence others to obey norms. They can do so if they have formed the
corresponding normative belief, if they know how one ought to behave.

5 Normative Architecture

We consider a norm as a social behavior that spreads trough a population thanks
to the diffusion of a particular belief, i.e. the normative belief. A normative
belief, in turn, is a belief that a given behavior, in a given context, for a given
set of agents, is either forbidden, obligatory, permitted, etc. Thus, for a norm-
based behavior to take place, a normative belief has to be generated into the
minds of the norm addressees and the corresponding normative goal has to be
formed and pursued. Our claim is that a norm emerges as a norm only when
it is incorporated into the minds of the agents involved [10, 11]; in other words,
when agents recognize it as such. In this sense, norm emergence and stabilization
implies its immergence [8] into the agents’ minds.
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5.1 Norm Recognizer

Our normative architecture (EMIL-A) (see [2] for a detailed description) consists
of mechanisms and mental representations allowing norms to affect the behaviors
of autonomous intelligent agents. EMIL-A is meant to show that norms not only
regulate the behavior but also act on different aspects of the mind: recognition,
adoption, planning, and decision-making. Unlike BOID in which obligations are
already implemented into the agents’ minds, EMIL-A is provided with a compo-
nent by means of which agents infer that a certain norm is in force even when it
is not already stored in their normative memory. In this situation the norm has
not already been incorporated into schemata, scripts, or other pragmatic struc-
tures [5]; hence, agents are not facilitated by any of these. Actually, the norm
needs to be found out, and only thereafter, stored. To implement such a capacity
is conditioned to modeling agents’ ability to recognize an observed or commu-
nicated social input as normative, and consequently to form a new normative
belief. In this paper, we will only describe the first component of EMIL-A, i.e.
the norm recognition module. This is most frequently involved in answering the
open question we have raised, i.e. how a new norm is found out and we claim that
to answer this question is particularly crucial in norm emergence, innovation and
stabilization.

Our Norm Recognizer (see Fig. 1) consists of three layers and a link to the
normative board, which is part of the agents long term memory. The normative
board contains normative beliefs and normative goals, ordered by salience. With
salience we refer to the degree of activation of a norm: in any particular situation,
one norm may be more frequent than others, its salience being higher. The
difference in salience between normative beliefs and normative goals has the
effect that some of these normative mental objects will be more active than
others and they will interfere more frequently and with more strength with the
general cognitive processes of the agent.

In the higher layer, actions (α) presented as deontics (D) or normative val-
uations (V) are stored; in the lower layer, instead, actions are stored only if
they have already been stored at the higher level, i.e., if they have been re-
ceived by the agent as deontics or normative valuations. We identify six possible
modals: assertions (A), i.e. generic sentences pointing to or describing states of
the world; behaviors (B), i.e. actions or reactions of an agent, with regard to
another agent or to the environment; requests (R), i.e. requests of action made
by another agent; deontics (D), partitioning situations between good/acceptable
and bad/unacceptable (we further distinguish deontics into three types: obliga-
tions, forbearances, permissions); normative valuations (V), i.e. assertions about
what it is right or wrong, correct or incorrect, appropriate or inappropriate (i.e.
it is correct to respect the queue).

Aiming to decide which action to produce, the agent will search through
the normative board: if more than one is found out, the most salient norm will
be chosen. Once received the input, the agent will compute the information in
order to generate/update her normative beliefs. Every time a message containing
a deontic (D) or a normative valuation (V) is received, the relative action will be
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stored as a (possible) norm. This will sharpen agents’ attention: further messages
with the same content, especially when observed as open behaviors, will be
processed and stored at the same level. Beyond a certain normative threshold
(which represents the frequency of corresponding normative behaviors observed,
e.g. n% of the population), they will generate a new normative belief.

it exists in the 

(D) or NORMATIVE VALUATION (V) 

No

Fig. 1. The norm recognition module (in action): on the right side of the figure, from
the bottom the Input and the two layers of the module (layer 0 and layer 1) plus
the normative belief (generated or recognized); on the left side, the normative board.
Vertical arrows in the block on the right side indicate the process regulating the gener-
ation of a new normative belief. The input action (α) can match with a norm present
in the normative board (see the arrows path on the left side of the figure); or a new
normative belief can be formed if the agent receives an input action (α) (at least one
time as deontic or normative valuation) for a given number of times (as fixed by the
normative threshold; see the arrows path on the right side of the figure). If the agent
receives no other occurence of the same input action (α), after a fixed time t action α
exits from the higher level and the process is finalized (see Exit).

6 The Model

In our simulation model, the environment consists of four scenarios, in which the
agents can produce three different kinds of actions. We define two context-specific
actions for every scenario, and one action common to all scenarios. Therefore,
we have nine actions. Suppose that the first context is a postal office, the second
an information desk, the third our private apartment, and so on. In the first
context the action stand in the queue is a context-specific action, whereas in
the second a specific action could be occupy a correct place in front of the desk.
A common action for all of the contexts could be, answer when asked. Each of
our agents is provided with a personal agenda (i.e. a sequence of contexts), an
individual and constant time of permanence in each scenario (when the time of
permanence is expired, the agent moves to the next context) and a window of
observation (i.e. a capacity for observing and interacting with a fixed number
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of agents) of the actions produced by other agents. Norm Recognizers are also
provided with the three-layer architecture described above, necessary to analyze
the received information, and a normative board in which the normative beliefs,
once arisen, are stored. The agents can move across scenarios: once expired
the time of permanence in one scenario, each agent moves to the subsequent
scenario following her agenda. Such irregular flow (each agent has a different
time of permanence and a different agenda) generates a complex behavior of the
system, tick-after-tick producing a fuzzy definition of the scenarios, and tick-for-
tick a fuzzy behavioral dynamics.

We have modeled two different kinds of environmental conditions. In the first
set of simulations, agents can move through contexts (following their personal
agenda and in accordance with the personal time of permanence). In the second
set of simulations, from a fixed time t, agents are obliged to remain in the
context they have reached, till the end of the simulation: in this case agents
can explore the contexts exchanging messages with one another and observing
others’ behaviors. When they reach the last context at time t, they can interact
with same-context agents till the end of the simulation.

At each tick, the Norm Recognizers (NRs), paired randomly, interact ex-
changing messages. These inputs are represented on an ordered vector, consist-
ing of four elements: the source (x); the modal through which the message is
presented (M); the addressee (y); the action transmitted (a).

Codifying the input in such a way allows us to (a) access the information
even later, if necessary; (b) recognize the source, a piece of information that
might be useful to store inputs from recognized authorities; (c) account for a
variety of information, thanks to the modals’ syntax; (d) compute the received
information in order to generate a new normative belief. NRs produce different
behaviors: if the normative board of an agent is empty (i.e. it contains no norms),
the agent produces an action randomly chosen from the set of possible actions
(for the context in question); in this case, also the modal by means of which
the action is presented is chosen randomly. Vice versa, if the normative board
contains some norms, the agent chooses the action corresponding to the most
salient among these norms. In this case the action produced is presented with
one of these modals: deontic (D), normative valuation (Vn) or behavior (B).
This corresponds to the intuition that if an agent has a normative belief, there is
a high propensity (in this paper, this has been fixed to 90% ) for her to transmit
it to other agents under strong modals (D or Vn) or open behavior (B). We run
several simulations for different values of the threshold, testing the behaviors of
the agents in the two different experimental conditions.

7 Results and Discussion

We briefly summarize the simulation scheme. The process begins by producing
actions (and modals) at random. The process is synchronic. The process is more
and more complex runtime: agent i provides inputs to the agent who precedes
her (k=1 ), issuing one action and one modal. Action choice is conditioned by
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the state of her normative board. When all of the agents have executed one
simulation update, the whole process restarts at the next step.

7.1 Simulations’ Results

Figure 2(a) and Figure 2(b) show the trend of simulation in terms of number of
agents in each context runtime in both cases (the first with the external barrier,
the second without it).

(a) with barrier (b) without barrier

Fig. 2. Number of agents in each context runtime - with (left) and without (right)
external barrier

First of all we present the results obtained when imposing the external bar-
rier. Then, we present the results obtained when no barrier was imposed; finally
we compare the former with the latter results.

Figure 3(a) shows the overall number of different new normative beliefs gen-
erated at the end of the simulation: as we can see, in the barrier condition, agents
form more than one normative belief, whereas in the no barrier condition they
form one normative belief only.

Figure 4 shows the trend of new normative beliefs generation runtime for a
certain value of the norm threshold, which is a good implementation of our the-
ory: each line represents the generation of new normative beliefs corresponding
to an action (i.e. each line corresponds to the sum of different normative beliefs
present in all of the agents). To be noted, a normative belief is not necessarily
universally shared in the population. However, norms are behaviors that spread
thanks to the spreading of the corresponding normative belief. Therefore, they
imply shared normative beliefs.

Figures 7(a) and 7(b) are very similar (even if in the no-barrier variant, we
find some noise in the chromatic definition of different contexts). In these figures,
we cannot appreciate significant chromatic differences pointing to the normative
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(b) without barrier

Fig. 3. Overall number of new normative beliefs generated for each type of possible
action - with (left) and without (right) external barrier

Fig. 4. New normative beliefs generated runtime - with external constraint
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Fig. 5. Chromatic representation of the actions generated by the NRs. A different
action corresponds to each color: the dark blue color represents the action common
to the 4 scenarios; on axis X we find the number of agents (100) and on axis Y the
number of simulation ticks (200) - with (left) and without (right) external barrier

beliefs acting on the effective behaviors: we cannot distinguish the chromatic
effect corresponding to the agents’ convergence on a specific norm. This is due
to the length of these simulations, which is not sufficient to include the latency
time of norms. In the previous study, indeed, we showed that for a normative
belief to affect behavior, a certain number of ticks has to elapse, which we might
call norm latency. Indeed, if we run longer simulations, we can appreciate the
consequences of the results of our investigation: in Figures 5(a) and 5(b) we
can observe two chromatic effect: (a) more or less at the same time both in
the barrier (left) and no barrier (right) condition, a convergence on the common
action (dark blue) is forming, much more homogeneous in (5.b) than in (5.a); (b)
however, in the barrier condition, other areas of convergence are also emerging
(e.g. a light blue in the last column).

This corresponds to what is shown in Figure 4 and Figure 6 on one hand,
and Figure 3(a) and Figure 3(b) on the other: with external barrier, we can see
that the higher overall number of new normative beliefs generated does not cor-
respond to the common action (action 1) and the trend of new normative beliefs
generated runtime shows the same results. With no external barrier, instead,
only normative beliefs concerning action 1 are generated.

8 Concluding Remarks

We show that the model allows new norm, to emerge, despite another norm had
previously emerged. More interestingly, the new norms do not correspond to
the common action. Some rival norms now compete in the same social settings.
Obviously, they will continue to compete, unless some further external event or
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Fig. 6. New normative beliefs generated runtime - without external barrier
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Fig. 7. Chromatic representation of the actions generated by the NRs. A different
action corresponds to each color: the dark blue color represents the action common
to the 4 scenarios; on axis X we find the number of agents (100) and on axis Y the
number of simulation ticks (100) - with (left) and without (right) external barrier
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change in the population (e.g. the barrier removal) will cause agents to start
migrating again. It would be interesting to observe how long the rival norms will
survive after barrier removal, whether and when one will out-compete the others,
and if so, which one. It should be observed that, as we observe a latency time
for a normative belief to give rise to a new normative behavior, we also expect
some time to elapse before a given behavior disappears while and because the
corresponding belief, decreasingly fed by observation and communication, starts
to extinguish as well. We might call such a temporal discrepancy inertia of
the norm. Both latency and inertia are determined by the twofold nature of the
norm, mental and behavioral, which reinforce each other, thus preserving agents’
autonomy: external barriers do modify agents’ behaviors, but only through their
minds.

More than emergence, our simulation shows a norm innovation process; in
fact, Figure 4 shows that, starting around tick=60, two normative beliefs appear
in the normative boards and the overall number of these two new normative
beliefs generated is three times higher than the overall number of normative
beliefs concerning the common action 1 (Figure 3(a)). Analogously, in Figure
5(a) some areas of homogeneity start to appear beyond the dark blue one.

We might say that, if stuck to their current location by external barriers,
norm recognizers resist the effect of majority and do not converge on one equi-
librium only. Rather, they will form as many normative beliefs as there were
competing beliefs on the verge of overcoming the normative threshold before
the agents had been stuck to their locations. No such effect is expected among
agents whose behavior depends only from the observation of others.

In sum, is statistical frequency sufficient for a norm to emerge? Beside action
1, common to the four contexts, other norms seem to emerge in our simulation.

Hume seemed to doubt it [20].
Normative agents can recognize a norm; infer the existence of a norm by its

occurrences in open behavior under certain conditions (see the critical role of
previous deontics); and finally spread a normative belief to other agents.

Future studies are meant to investigate on the effect of barrier removal and
the inertia of normative beliefs.
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NorMAS-RE: a Normative Multiagent Approach to
Requirements Engineering

Serena Villata

Department of Computer Science, University of Turin, Italy

Abstract. In this paper we present a new model, called NorMAS-RE, for the re-
quirements analysis of a system. NorMAS-RE is a new model based on the mul-
tiagent systems paradigm with the aim to support the requirements analysis phase
of systems design. This model offers a structured approach to requirements anal-
ysis, based on conceptual models defined following a visual modeling language,
called dependence networks. The main elements of this visual language are the
agents with their goals, capabilities and facts, similarly to the TROPOS method-
ology [10]. The normative component is present both in the ontology and in the
conceptual metamodel, associating agents to roles they play inside the systems
and a set of goals, capabilities and facts proper of these roles. This improvement
allows to define different types of dependence networks, called dynamic depen-
dence networks and conditional dependence networks, representing the different
phases of the requirements analysis of the system. This paper presents a require-
ments analysis model based on normative concepts such as obligation and insti-
tution. The NorMAS-RE model is a model of semiformal specification featured
by an ontology, a meta-model, a graphical notation and a set of constraints. Our
model, moreover, allows the definition of the notion of coalition for the different
kinds of network. We present our model using the scenario of virtual organiza-
tions based on a Grid network.

1 Introduction

The diffusion of software applications in the fields of e-Science and e-Research un-
derlines the necessity to develop open architectures, able to evolve and include new
software components. In the late years, the process of design of these software systems
became more complex. The definition of appropriate mechanisms of communication
and coordination between software components and human users motivates the devel-
opment of methods with the aim to support the designer for the whole development
process of the software, from the requirements analysis to the implementation.

The answer to this problem comes from software engineering that provided nu-
merous methods and methodologies allowing to treat more complex software systems.
One of these methodologies is the TROPOS methodology [10], developed for agent-
oriented design of software systems. The intuition of the TROPOS methodology [10] is
to couple, together with the instruments offered by software engineering, the multiagent
paradigm. In this paradigm, the entities composing the system are agent, autonomous by
definition, characterized by their own sets of goals, capabilities and beliefs. The multia-
gent paradigm allows the cooperation among the agents with the aim to obtain common
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and personal goals. In this way, multiagent systems offer a solution foropen, distributed
and complex systems and the approach combining software engineering and multiagent
systems is defined Agent-Oriented Software Engineering (AOSE). TROPOS [10] cov-
ers five phases of the software development process: the early requirements allowing to
analyze and model the requirements of the context in which the software system will be
inserted, late requirements describing the requirements of the software system, archi-
tectural design and detailed design aiming to design the architecture of the system and,
finally, the code implementation.

The TROPOS methodology [10] is based on the multiagent paradigm consisting in
a set of agents and their features but it does not consider the addition of a normative
perspective to this paradigm. Since twenty years, the design of artificial social systems
is using mechanisms like social laws and norms to control the behavior of multiagent
systems [5]. These social concepts are used in the conceptual modeling of multiagent
systems, for example in requirement analysis, as well as in formal analysis and agent
based social simulation. For example, in the game theoretic approach of Shoham and
Tennenholtz [28], social laws are constraints on sets of strategies. Together with the
rationality assumptions of classical game theory, this leads to the analysis of, for ex-
ample, stable or minimal social laws, which can be used to choose the best alternative
among a set of available social laws. More recently, institutions have emerged as a new
mechanism in the design of artificial social systems, which are used in conceptual mod-
eling of multiagent organizations in agent oriented software engineering [37]. Roughly
speaking, institutions are structures and mechanisms of social order and cooperation
governing the behavior of a set of individuals. They are needed to enforce the global
behaviour of the society and to assure that the global goals of the society are met. How-
ever, the formal analysis of the institutions is challenging due to the complexity of its
dynamics. For example, the agents may change the roles they are playing, or the in-
stitution itself may change over time due to the behavior of the agents. Requirements
analysis represents the initial phase in many software engineering methodologies. As
with the other approaches, the ultimate objective of requirements analysis is to provide
a set of functional and non-functional requirements for the system to be. In this paper,
we propose to add institutions and norms, presented thanks to the normative multia-
gent paradigm, to the requirements analysis phase. This paper addresses the following
research question:

– How to develop a new model for requirements analysis based on the normative
multiagent paradigm?

Our approach is based, following the approach of TROPOS [10], on a semiformal
language of visual modeling and it is composed by the following components. First, we
present an ontology that defines the set of concepts used in the modeling. The elements
composing the ontology are agents, goals, facts, skills, dependencies, coalitions with the
addition of the normative notions of roles, institutional goals, institutional facts, institu-
tional skills, dynamic dependencies, obligations, sanctions, secondary obligations and
conditional dependencies. Second, our meta-model is specified by a number of UML
diagrams. These diagrams and the graphical notation establish how to graphically de-
pict the elements composing models. A NorMAS-RE model is a directed labeled graph
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whose nodes are instances of the metaclasses of the metamodel, e.g.,agents, goals,
facts, and whose arcs are instances of the metaclasses representing relationships be-
tween them such as dependency, dynamic dependency, conditional dependency. Finally,
we have a set of rules and constraints to guide the building of a conceptual metamodel.
In TROPOS [10], the requirements analysis is split in two main phases, the early re-
quirements and the late requirements. In our model, these two phases share the same
conceptual and methodological approach, thus we call both of them only requirements
analysis.

We provide the abstract notion of institution and a definition of a new modeling,
called dynamic dependency modeling, based on the structure of dynamic dependence
networks. These networks, as classical dependence networks, depict the dependencies
among the agents. The dependencies reflect the relation between the goals of agents and
agents who have the power to achieve them. In the institutional perspective, institutional
powers cannot be captured by the existing dependence networks formalism, since they
introduce a dynamic component. Institutional powers can change the norms and per-
missions of agents playing roles, and, thus, by exercising a power an agent transforms
a dependence structure into a new one by adding or removing dependencies thanks to
the concepts present into the institutional level of the ontology. Thus, power is seen as
the base of the change that is applied to the network describing the system, differently
from what expresses by Jones and Sergot [20] and Grossi [19]. By exercising an insti-
tutional power, an agent transforms a dependence structure into a new one by adding or
removing dependencies associated to the institutional concepts. Moreover, we introduce
the normative issue of obligations, representing them directly in dependence networks.
This introduction allows the definition of a third kind of modeling called conditional
dependency modeling based on the structure of conditional dependence networks. Con-
ditional dependence networks represent obligations as particular kind of dependencies
and these obligations are related to notions as sanctions, if the obligation is not fulfilled,
and as contrary to duty when the primary obligation, not fulfilled, actives a secondary
obligation.

A coalition is an alliance among agents, during which they cooperate in joint ac-
tion, each one following his own self-interest. We define the notion of coalition in de-
pendence networks, based on the idea that to be part of a coalition, every agent has to
contribute something, and has to get something out of it. Since the processes involv-
ing coalitions dynamics are complex and costly social behaviors, the idea is that agents
have to maintain the stability of their own coalition, paying attention to the possible
actions that can be performed by the other agents to strategically increase their profit,
mining the coalition or, even worse, destroying the coalition itself. To maintain sta-
bility, coalitions have to change dynamically. The possibility to represent coalitions is
relevant for systems design and, in particular, for the requirements analysis where the
different components of the system can have the necessity to cooperate in a preferen-
tial way with a specific subset of other components. The aim of requirements analysis
in this context consists in the definition of models able to represent these groups and
to provide methods to maintain the stability and the cohesion of these groups. The in-
troduction of methods of social order such as obligations and sanctions represents an
efficient way to achieve this purpose.
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Our model is not intended to support all analysis and design activitiesin software
development process, from application domain analysis down to the system implemen-
tation as in the TROPOS methodology [10]. Moreover, we do not perform any kind of
simulation as in the recent developments of social network analysis called dynamic net-
works analysis as in Carley [12]. Finally, the treatment of a topic like contrary to duty
does not concern any connection with deontic logic approaches to solve and analyze
this structure such as in Prakken and Sergot [23].

This paper is organized as follows. Section 2 describes a Grid computing scenario as
case study for the design of virtual organizations for e-Science and e-Research. In Sec-
tion 3, we present the core concepts of the ontology and their inter-relations. In Section
4, we define the structure of dynamic dependence networks and we introduce the notion
of coalition in this kind of network. Section 5 presents a new kind of dependence net-
work, called conditional dependence network, introducing some constraints that have
to be set for representing coalitions in the conditional dependency modeling. A notion
of coalitions’ stability is defined and a discussion on the this issue is presented. Related
work and conclusions end the paper.

2 The Grid Scenario

Grids and the Grid Computing paradigm provide the technological infrastructure to
facilitate e-Science and e-Research. Grid technologies can support a wide range of re-
search including amongst others: seamless access to a range of computational resources,
linkage of a wide range of data resources, exploitation of shared instruments such as
astronomical telescopes or specialized resources such as visualization servers. Histori-
cally, much of the focus and effort of Grid computing was based upon addressing access
to and usage of large scale high performance computing (HPC) resources such as cluster
computers. These access models are typified by their predominantly authentication-only
based approaches which support secure access to an account on a cluster. It is often the
case that research domains and resource providers require more information than sim-
ply the identity of the individual in order to grant access to use their resources. The
same individual can be in multiple collaborative projects each of which is based upon a
common shared infrastructure. Knowing in what context a user is requesting access to
a particular resource is essential information for a resource provider to decide whether
the access request should be granted or not. This information is typically established
through the concept of a virtual organization (VO) [32]. A virtual organization allows
the users, their roles and the resources they can access in a collaborative project to be
defined.

In the context of virtual organizations, there are numerous technologies and stan-
dards that have been put forward for defining and enforcing authorization policies
for access to and usage of virtual organizations resources. Role based access control
(RBAC) is one of the more well established models for describing such policies. In the
RBAC model, virtual organization specific roles are assigned to individuals as part of
their membership of a particular virtual organization. Possession of a particular role,
combined with other context information, such as time of day and amount of resource
being requested, can then be used by a resource gatekeeper to decide whether an ac-
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Fig. 1.A Grid composed by six nodes and the interconnections among them.

cess requestis allowed or not. One of the key advantages is that whilst individuals in
a virtual organization may come and go, the role itself is unlikely to change as much.
Consequently RBAC based approaches are considered more scalable and manageable.
The key advantage of RBAC-based security models compared to other approaches is
that privileges and access is determined by roles and memberships a user holds and
not merely on identity. Indeed the common philosophy underlying the Grid is that all
resource providers are expected to be autonomous, i.e. they may allow/deny access re-
quests at their own discretion. Nevertheless, a crucial consideration in establishing a
virtual organization is whether a common understanding of the various roles and their
associated privileges needs to be established throughout the entire virtual organization
or not.

There are two primary models for defining roles specific to a virtual organization:
the centralized and decentralized models [32]. In the centralized model, all sites agree
in advance on the definition and names of the roles that are applicable to their particular
virtual organization, and the privileges that will be assigned to them. A single virtual
organization administrator is then appointed who will typically assign these roles to
individuals on a case by case basis when users ask to be granted particular roles or per-
missions in the virtual organization. The decentralized virtual organization role model
is more aligned with the original dynamic collaborative nature of the Grid. In this model
there is no central virtual organization administrator. Instead, each resource site has its
own local administrator who is completely responsible for determining which virtual
organization members can access the local virtual organization resources. Each site ad-
ministrator determines the roles and the associated privileges that are required to access
and use the local resources. Consequently, they can decide which other administrators
(at this and other virtual organization sites) are trusted to assign which roles to which
virtual organization users. In this way they may each delegate to each other the re-
sponsibility of user-role assignments throughout the virtual organization. This model
allows for more dynamic collaborations to occur. Thus rather than all sites having to
agree on virtual organization-wide roles and develop associated policies, the decentral-
ized model allows a resource administrator to directly provide end users and trusted end
user administrators with the privileges they need to enable access to his resource.

Role based access control systems make access control decisions based on the roles
that users hold. Traditional output of the access control decisions areGrantedandDe-
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nied, which dictate whether the requests are authorized or not. As presented by Zhao et
al. [38],obligations are requirements and tasks to be fulfilled, which can be augmented
into conventional systems to allow extras information to be specified when responding
to authorization requests. For example in [38], administrators can associate obligations
with permissions, and require the fulfillment of the obligations when the permissions
are exercised. The base model associated users with roles, and roles with permissions.
Users, being members of roles, acquired all permissions associated with the roles. The
hierarchical model enhanced the base model by allowing senior roles to acquire per-
missions of their junior roles. The general idea of the role based access control model is
that, permissions are associated with functional roles in organizations, and members of
the roles acquire all permissions associated with the roles. Allocation of permission to
users is achieved by assigning roles to users. An obligation is associated with privileges,
and when an operation is performed, the obligation associated to the privilege which au-
thorizes the operation is activated. Obligations are requirements to be performed by a
specific deadline. Failure of the fulfilling an obligation will incur a sanction.

Some of the main features of a node in a Grid are reliability, degree of accepted
requests, computational capabilities, degree of faults and degree of trust for confidential
data. These different features set up important differences among the nodes and the
possible kinds of coalitions that can be formed and maintained. In this scenario, as in
the following examples, we do not consider the way the coalitions are formed but we
are interested in coalitions’ evolution. We think of already formed coalitions and we
discuss the notion of stability and the possible ways to regulate these coalitions thanks
to the use of obligations. The idea is that coalitions emerge thanks to the preferred
relationships among the different nodes, e.g., each node maintains a sort of list of the
more trusted nodes forming a coalition with it. Reciprocity-based coalitions can be
viewed as a sort of virtual organizations in which there is the constraint that each node
has to contribute something, and has to get something out of it. For example, in a virtual
organization each node has to be useful to the other and thus it has to have at least one
of the previous cited features.

The scenario of virtual organizations based on Grid networks represents a case study
able to underline the benefits of a normative multiagent paradigm for requirements anal-
ysis. First of all, in the normative multiagent paradigm as well as in the common mul-
tiagent one, the autonomy of agents is the fix point of all representations, i.e., the Grid
philosophy imposes the autonomy of the nodes composing it. Second, the normative
multiagent paradigm allows a clear definition of the notion or role and its associated
permissions, i.e. the role based access control policy needs a design able to assign roles
and represents all the consequent constraints based on them. Third, the normative mul-
tiagent paradigm allows the introduction at requirements analysis level of obligations
able to model the system. Fourth, the concept of coalition and the constraints introduced
by this concept to the early and late requirements model can design the concept of “lo-
cal network" in virtual organizations. Finally, the modeling activities of dependency
modeling, dynamic dependency modeling and conditional dependency modeling depict
the system using structures similar to the Grid network itself.
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3 Institutional MAS: agents, roles and assignments

Since lastyears, many factors have caused a great increase of the complexity of soft-
ware systems. Applications such as e-commerce, e-services, e-science, e-research are
clear example of this kind. The software for these applications has to be based on open
architectures and it has to evolve over time to integrate new hardware components and
answer to the necessity of new requirements. Our model is addressed to the representa-
tion of the requirements of the system using the normative multiagent paradigm. This
model is based firstly on an ontology containing a number of concepts related to each
other. We divide our ontology in three submodels: the agent model, the institutional
model, and the role assignment model, as shown in Figure 2. The Figure depicts the
three submodels which group the concepts of our ontology.

Fig. 2.The NorMAS-RE conceptual metamodel.

Such adecomposition is common in organizational theory, because the organiza-
tion can be designed without having to take into account the agents that will play a role
in it. Also, if another agent starts to play a role, for example if a node with the role of
simple user becomes a VO administrator, then this remains transparent for the organiza-
tional model. Likewise, agents can be developed without knowing in advance in which
institution they will play a role.

The notion of agent and all its features as goals, capabilities, are used in the concep-
tual modeling as in TROPOS [10]. In our model, we add to these notions those related
to the institution such as the notion of role and all its institutional goals, capabilities and
facts. Both these notions, combined in the combined view, are used in the conceptual
modeling and to each agents it is possible to assign different roles depending on the
organization in which the agent is playing. Adding the institution, to each agent are as-
sociated both a number of physical features and a role with all its institutional features.
In this way, early and late requirements can be based both on agents and on roles. The
models in NorMAS-RE are acquired as instances of a conceptual metamodel resting on
the concepts presented in the following subsections. We present our three submodels as
definitions and each definition contains the concepts belonging to this particular subset
of the ontology.
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3.1 Agent View

An agentcan be defined as an entity characterized by a number of features as his capa-
bilities, called skills, his world description and his goals, such as the tasks he want to
achieve. The representation of the system from a material point of view, called Agent
view, can be imagined as composed by a set of agents, each of them with its associated
sets of skills and goals and a set of actions, a set of facts describing the world and a set
of rules that allow the application of an action by an agent that can perform it and the
consequences of the action on the system. The definition of the agent view is as follows:

Definition 1 (Agent view).
〈A,F,G,X, goals: A → 2G, skills : A → 2X , rules : 2X → 2G〉 consists of a set
of agentsA, a set of factsF , a set of goalsG, a set of actionsX, a functiongoals
that relates with each agent the set of goals it is interested in, a functionskills that
describes the actions each agent can perform, and a set of rules, represented by the
functionrules that relate sets of actions with the sets of goals they see to.

Example 1.Considering a virtual organization on a Grid with a role based access con-
trol policy, the agent view is used to describe the set of legitimate users of the system,
represented inside the Grid as nodes. Each user is provided by a set of actions he can do,
represented by the setX, e.g., to save a file on his file system or to start a computation
on his personal computer, and by a set of goals he would fulfill, represented as the set
G, e.g., he wants to reserve half of his available memory for his data or he has to obtain
the result of a computation in two hours. These actionsX can be compared to the op-
erations that are recognized by the system. Functionsgoals andskills link each agent
with the actions he can perform and with the goals he would obtain. Functionrules is
a sort of action-consequence function, relating sets of actions with the goals they allow
to fulfill, e.g., to obtain the results of a computation in two hours, the user has to start
the computation on his personal computer.

3.2 Institutional View

A social structure is modeled as a collection of agents, playing roles regulated by norms
where “interactions are clearly identified and localized in the definition of the role itself"
[37]. The notion of role is notable in many fields of Artificial Intelligence and, partic-
ularly, in multiagent systems where the role is viewed as an instance to be adjoined to
the entities which play the role. According to Ferber [17], “A role describes the con-
straints (obligations, requirements, skills) that an agent will have to satisfy a role, the
benefits (abilities, authorizations, profits) that an agent will receive in playing that role,
and the responsibilities associated to that role". In TROPOS [10], the role is one of the
three specification of the concept of actor and it is an abstract characterization of the
behaviour of the social actor inside the specific context of the application domain. In the
NorMAS-RE model the notion of role is inserted into the submodel called institutional
view. The institutional view is defined as follows:

Definition 2 (Institutional view).
〈RL, IF,RG,X, igoals : RL → 2RG, iskills : RL → 2X , irules : 2X → 2IF 〉
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consists of a set of role instancesRL, a set of institutional factsIF , a set of public
goals attributed to rolesRG, a set of actionsX, a functionigoals that relates with
each role the set of public goals it is committed to, a functioniskills that describes the
actions each role can perform, and a set of institutional rulesirules that relates a set
of actions and the set of institutional facts they see to.

Example 2.The institutional view represents in the Grid scenario a sort of model for the
role based access control policy. In fact, this view represents all the possible roles that
can be instantiated in the system and all the possible actions and goals related to each
of these roles. For example, we can think to a Grid system with the two basic roles of
virtual organization administrator and virtual organization member. These two roles are
different depending on the actions they can perform. For example, the VO administrator
has the possibility to assign to the VO members the privileges they need to enable access
to its resource. Our approach gives the opportunity to define not only the capabilities of
a particular role but it allows also the definition of institutional goals associated to roles,
differently from other approaches such as [38] [32]. The institutional view is a way to
represent permissions of the users of the system. Users, being assigned to a particular
role, acquire all permissions (in this view represented as rules by the functionirules)
associated to the role. In this way, the allocation of permissions to users is achieved
by assigning roles to users. In the Grid computing field, a permission is an approval of
performing an operation on a specific target. In our model, we represent a permission in
a virtual organization as the actions that a role can perform and what kind of goals these
actions allow to achieve. For example, a user asks for saving a file on the file system of
another node. This user is associated to a role, since he belongs to a virtual organization
regulated by a role based access control policy. The request can be processed either
by the local VO administrator or by the user that has received the request. If the user
requesting the service has a role that can perform this action, the request is accepted and
the file is saved. In this case, we consider for simplicity the case in which the request
is always accepted if the role has the permission to do it without thinking of malicious
behaviours.

3.3 Role Assignment View

In TROPOS [10], the position of the actor represents a set of roles played by a single
agent. In our model, we introduce the third submodel,the Role assignment view, which
links the agent and the institutional view to each other, by relating agents to roles.

Definition 3 (Assignment view).
〈A,RL, roles : RL → A〉 consists of a set of agentsA, a set of role instancesRL, and
a functionroles assigning a role to its player inA.

Example 3.The assignment view relates each agent with the role it is associated with.
In virtual organizations, this kind of assignments is done by the VO administrator, in
the centralize model, and by the VO local administrators, in the decentralized model.
In our model, there is not a constraint on what kind of agent has the power to assign
roles and thus privileges to the users. The assignment view can be eventually restricted
to one of the two cases of centralized and decentralized model.
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3.4 Combined View

In NorMAS-RE,the system is provided with two distinct views, the material one, called
the agent view, and the institutional one, called institutional view, that aims to regulate
the behaviour of the agents and to presents the permissions associated to each role.
Usually, in a multiagent system each agent is related to a set of facts and goals the
other agents cannot change since all the agents are autonomous. All these features are
presented in the concepts of the agent view. But a multiagent system is composed by a
multitude of agent that, thanks to their existence inside a social structure, are provided
by new sets of facts and goals, the institutional ones, representing permissions. Permis-
sions are allocated to roles and it is specified by the institutional view. The combined
view unifies the agent view and the institutional view thanks to the assignment view
providing thus the combined and unified conceptual metamodel:

Definition 4 (Combined view).
Let 〈A,RL, roles : RL → A〉 be a role assignment view for the agents and role in-
stances defined in the agent view〈A,F,G,X, goals: A → 2G, skills: A → 2X , rules :
2X → 2G〉 and institutional view〈RL, IF,RG,X, igoals : RL → 2RG, iskills :
RL → 2X , irules : 2X → 2IF 〉. The role playing agents areRPA = {〈a, r〉 ∈
A × RL | r ∈ roles(a))}. The combined view associates with the role playing agents
the elements of the agent and institutional view.

Example 4.The agents start with their sets of personal beliefs and goals and, only after
their insertion inside a social structure, they enlarge their sets of goals and beliefs.
In particular, the set of goals is enlarged with new normative goals that represent the
responsibilities of the agent inside its social structure while the set of beliefs is enlarged
with new normative beliefs representing the set of constitutive norms of the systems,
norms based on the collective acceptance of the society representable by means of an
institutional ontology.

3.5 Dependency Modeling

A NorMAS-RE model is a directed labeled graph whose nodes are instances of the
metaclasses of the metamodel, e.g., agents, goals, facts, and whose arcs are instances
of the metaclasses representing relationships between them such as dependency, dy-
namic dependency, conditional dependency. The building of a model in NorMAS-RE
involves many activities contributing to the process of definition of the model itself.
Our modeling is based on the theory of the social power and dependence pioneered by
Castelfranchi [14] as starting point and then developed in the context of coalition for-
mation by Sichman [29] and Sauro [25]. The theory of social power and dependence is
an attempt to transfer theories developed initially in the field of sociology to the field
of multiagent systems and to refine them. This theory models the potential interactions
among the agents which lead to the achievement of a shared goal, i.e. cooperation, or
the reciprocal satisfaction of their own goals, i.e. social exchange. This involves the de-
velopment of a social reasoning mechanism that analyzes the possibility to profit from
mutual-dependencies, e.g., the case in which two agents depend on each other for the
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satisfaction of a shared goal, or reciprocal-dependencies, e.g., thecase in which two
agents depend on each other for the satisfaction of two different goals.

In a multiagent system, since an agent is put into a system that involves also other
agents, he can be supported by the others to achieve his own goals if he is not able to do
them alone. This leads to the concept of power representing the capability of a group of
agents (possibly composed only by one agent) to achieve some goals (theirs or of other
agents) performing some actions without the possibility to be obstructed. The power of
a group of agents is defined as follows:

Definition 5 (Agents’ power).
〈A,G, power : 2A → 22G

〉 whereA is a set of agents,G is a set of goals. The function
power relates with each setS ⊆ A of agents the sets of goalsG1

S , . . . , Gm
S they can

achieve.

Example 5.In the Grid scenario, the simplest kind of example of power consists in the
power of the local or global administrator to give to common users the possibility to
access to a resource. Particularly, if we consider a role based access control policy, the
Grid administrator has the power to give to the common users, under request, a new role
which makes him able to access to a resource. Other kinds of powers are, for example,
the power to perform a heavy computation or to memorize a great amount of data.

The notion of power brings to the definition of a structure with the aim to show
the dependencies among agents. In order to define these relations in terms of goals
and powers, we adopt, as said, the methodology of dependence networks as developed
by Conte and Sichman [30]. In this model, an agent is described by a set of prioritized
goals, and there is a global dependence relation that explicates how an agent depends on
other agents for fulfilling its goals. For example,dep({a, b}, {c, d}) = {{g1, g2}, {g3}}
expresses that the set of agents{a, b} depends on the set of agents{c, d} to see to their
goals{g1, g2} or {g3}. For each agent we add a priority order on its goals, and we say
that agenta gives higher priority to goalg1 than to goalg2, written as{g1} >(a) {g2},
if the agent tries to achieve goalg1 before it tries to achieveg2. In other words, it gives
more attention tog1 than tog2. A dependence network is defined as follows:

Definition 6 (Dependence Networks (DN)).
A dependence network is a tuple〈A,G, dep,≥〉 where:

– A is a set of agents;
– G is a set of goals;
– dep: 2A × 2A → 22G

is a function that relates with each pair of sets of agents all
the sets of goals on which the first depends on the second.

– ≥: A → 2G × 2G is for each agent a total pre-order on goals which occur in
his dependencies:G1 ≥ (a)G2 implies that∃B,C ⊆ A such thata ∈ B and
G1, G2 ∈ depend(B,C).

Dependence networks represent our first modeling activity, thedependency model-
ing, consisting in the identification of the dependencies among the agents and among
the roles. In the early requirements phase, we model the dependencies among the agents
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and the roles associated to the agents of the organization. In this way, we represent the
domain stakeholders and we model them using the multiagent paradigm with the ad-
dition of the normative component with its related concepts. These dependencies are
based both on goals and institutional goals. In the phase of late requirements, the same
kind of approach is followed but the agents involved in the dependence network are
those of the future system. A graphical representation of the model obtained follow-
ing thedependency modelingis built following the legend of Figure 3 which describes
the agents (depicted as white circles), the roles (depicted as black circles), the agents
assigned to roles (depicted as grey circles), the agents’/roles’ goals (depicted as white
rectangles) and the dependency among agents (one arrowed line connecting two agents
with the addition of a label which represents the goal on which there is the dependency).
For simplicity, the legend considers the dependency only among agents but these de-
pendencies can be also among roles or agents assigned to roles.

Fig. 3. The legend of the graphical representation of the modeling activities ofdepen-
dencyanddynamic dependency.

We present a first example of modeling a virtual organization based on a Grid net-
work containing only the notions of the agent view.

Example 6. Considering a Grid composed by the nodes of Figure 1, we can imagine
to view each node as an agent and we can form the following dependence network
DN = 〈A,G, dep,≥〉:

1. AgentsA = {n1, n2, n3, n4, n5, n6};
2. GoalsG = {g1, g2, g3, g4, g5, g6};
3. dep({n1}, {n2}) = {{g1}}: agentn1 depends on agentn2 to achieve the goal

{g1}: to save the filecomp.log;
dep({n2}, {n3}) = {{g2}}: agentn2 depends on agentn3 to achieve the goal
{g2}: to run the filemining.mat;
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dep({n3}, {n1}) = {{g5}}: agentn3 depends on agentn1 to achieve the goal
{g5}: to save the filesatellite.jpg;
dep({n4}, {n6}) = {{g3}}: agentn4 depends on agentn6 to achieve the goal
{g3}: to run the fileresults.mat;
dep({n6}, {n5}) = {{g4}}: agentn6 depends on agentn5 to achieve the goal
{g4}: to save the filesatellite.mpeg;
dep({n5}, {n3}) = {{g6}}: agentn5 depends on agentn3 to achieve the goal
{g6}: to have the authorization to open the filedataJune.mat;

Fig. 4.Dependence Network of Example 6.

Example 6shows the dependence network based on a simple Grid example com-
posed by six agents. The kind of dependencies are all related to the agent view and
they always refer to material goals and not to the institutional ones. This dependence
network aims to give a different representation of the system which can be used, for ex-
ample, for the design of the Grid network. Using dependence networks as methodology
to model a system advantage us from different points of view. First, they are abstract,
so on the one hand they can be used for example for conceptual modeling, simulation,
design and formal analysis. Second, they are used in high level design languages, like
TROPOS [10], so they can be used also in software implementation.

4 Dynamic Dependency Modeling

In this section, we answer to the following subquestions:How to extend dependence
networks to build a new modeling activity, called dynamic dependency modeling, able
to model the dynamics intrinsic to the notions of the institutional view?And, how to
model coalitions in dependence networks?

In multiagent environments, autonomous agents may need to cooperate in order
to fulfill their goals. Each group of agents may have different degrees of efficiency
in the achievement of its own goals due to differing capabilities of its members. A
requirements analysis model has to consider also the possible presence of groups of
agents collaborating to each other. We call these groups coalitions. In this section, we
introduce the concept of coalition in the NorMAS-RE conceptual metamodel.
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4.1 Dynamic Dependence Networks

In Section3, we introduced the different views composing our conceptual metamodel.
On the one hand, we have the agent view where one of the main features is that, since
agents are autonomous by definition, no goals and skills can be added to an agent. On
the other hand, we have the institutional view where the institutional goals, skills and
rules can be added to role, always maintaining the assumption of agents’ autonomy.
The main changes that can occur thanks to the introduction of the institutional view
during the system’s evolution are the addition or deletion of anigoal, of an iskill
and of anirule. These additions and deletions change the number of dependencies
and the agents involved in them, passing from a dependence network to another one.
This change can be represented by means of dynamic dependence networks. We extend
Sichman and Conte’s [30] theory for conditional dependencies, in which agents can
create or destroy dependencies by introducing or removing powers and goals of agents.
Goals can be introduced if goals are conditional, or when the agent can create normative
goals by creating obligations for the other agents. Otherwise, if aniskill or anirule is
introduced, we have the representation of permissions since these additions allow the
role to perform a wider number of actions to achieve its goals.

Dependence networks are used to specify early requirements in the TROPOS method-
ology [10], and to model and reason about the interactions among agents in multiagent
systems. Dynamic dependence networks have been firstly introduced by Caire et al.
[11] and then treated in Boella et al. [6], in which a dependency between agents de-
pends on the actions of other agents and, in particular, agents can delete the goals of the
other ones. Here we distinguish “negative” dynamic dependencies where a dependency
exists unless it is removed by a set of agents due to removal of a goal or ability of an
agent, and “positive” dynamic dependencies where a dependency may be added due to
the power of a third set of agents.Dynamic dependency modelingrepresents the second
activity modeling for requirements analysis of the system using NorMAS-RE.

Definition 7 (Dynamic Dependence Networks (DDN)).
A dynamic dependence network is a tuple〈A,G, dyndep−, dyndep+,≥〉 where:

– A is a set of agents;
– G is a set of goals;
– dyndep− : A×2A×2A → 22G

is a function that relates with each triple of a agent
and two sets of agents all the sets of goals in which the first depends on the second,
unless the third deletes the dependency.

– dyndep+ : A×2A×2A → 22G

is a function that relates with each triple of a agent
and two sets of agents all the sets of goals on which the first depends on the second,
if the third creates the dependency.

– ≥: A → 2G × 2G is for each agent a total pre-order on goals which occur in
his dependencies:G1 ≥ (a)G2 implies that∃B,C ⊆ A such thata ∈ B and
G1, G2 ∈ dyndep−(a,B,C) or G1, G2 ∈ dyndep+(a,B,C).

The static dependencies are defined by dep(a,B) = dyndep−(a,B, ∅).

A graphical representation of the model obtained following thedynamic dependency
modelingactivity is built following the legend of Figure 3 which describes the sign of
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the dynamic dependency (depicted as a black square) and the dynamic dependency
among agents (depicted as one arrowed line connecting two agents with the addition of
a label which represents the goal on which there is the dependency and another arrowed
dotted line with the sign’s label connecting an agent to the arrowed plain line that can
be deleted or added by this agent).

Example 7. Considering a Grid composed by the nodes of Figure 1 and the depen-
dence network of Example 6, we can form the following dynamic dependence network
DDN = 〈A,G, dyndep−, dyndep+,≥〉:

1. AgentsA = {n1, n2, n3, n4, n5, n6};
2. GoalsG = {g1, g2, g3, g4, g5, g6};
3. dep({n1}, {n2}) = {{g1}}: agentn1 depends on agentn2 to achieve the goal

{g1}: to save the filecomp.log;
dep({n2}, {n3}) = {{g2}}: agentn2 depends on agentn3 to achieve the goal
{g2}: to run the filemining.mat;
dep({n3}, {n1}) = {{g5}}: agentn3 depends on agentn1 to achieve the goal
{g5}: to save the filesatellite.jpg;
dep({n4}, {n6}) = {{g3}}: agentn4 depends on agentn6 to achieve the goal
{g3}: to run the fileresults.mat;
dep({n6}, {n5}) = {{g4}}: agentn6 depends on agentn5 to achieve the goal
{g4}: to save the filesatellite.mpeg;
dyndep−(n5, {n3}, {n6}) = {{g6}}: agentn5 does not depend on agentn3 to
achieve the goal{g6} (to have the authorization to open the filedataJune.mat), if it
is deleted by agentn6;
dyndep+(n5, {n4}, {n6}) = {{g6}}: agentn5 depends on agentn4 to achieve the
goal{g6} (to have the authorization to open the filedataJune.mat), if it is created
by agentn6;

Fig. 5.Dynamic Dependence Network of Example 7.

Example 7presents the dynamic dependence network of the Grid scenario. We can
note that in this network each agent has its associated role since all the nodes are grey
ones. Suppose to have a Grid network composing a virtual organization where the local
VO administrator is agentn6. Agentn6 has delegated the power to give the authoriza-
tion to access to the files of the VO to agentn3 but now, since, for example, this node
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became not safe, the VO administrator has to delegate this power toanother node and it
chooses noden4. The dynamic dependence network reflects these actions and thus we
have one dynamic dependency for the deletion and another one for the addition.

4.2 Coalitions in Dynamic Dependence Networks

In a multiagent system, we can characterize three different notions of coalitions. A
coalition can be defined in dependence networks, based on the idea that to be part of a
coalition, every agent has to contribute something, and has to get something out of it.
Roughly speaking, a coalition can be formed when there is a cycle of dependencies (the
definition of coalitions is more complicated due to the fact that an agent can depend
on a set of agents, see below). We show how dependence networks can be used in the
requirements analysis for coalitions’ evolution, by assuming that goals are maintenance
goals rather than achievement goals, which give us automatically a longer term and
more dynamic perspective.

A coalition can be represented by a set of dependencies, represented byC(a,B,G)
wherea is an agent,B is a set of agents andG is a set of goals. Intuitively, the coalition
agrees that for eachC(a,B,G) part of the coalition, the set of agentsB will see to the
goalG of agenta. Otherwise, the set of agentsB may be removed from the coalition
or be sanctioned. The three notions of coalitions defined below make a distinction be-
tween the coalitions which cannot be attacked by the others with addition or removal
of dynamic dependencies and thus which are actually formed, vulnerable coalitions of
which the existence can be destroyed by the deletion of dynamic dependencies and, fi-
nally, potential coalitions, those coalitions which can be formed depending on additions
and deletions of dynamic dependencies.

Definition 8 (Coalition).
LetA be a set of agents andG be a set of goals. A coalition function is a partial function
C : A × 2A × 2G such that{a | C(a,B,G)} = {b | b ∈ B,C(a,B,G)}, the set of
agents profiting from the coalition is the set of agents contributing to it.

Let 〈A,G, dyndep−, dyndep+,≥〉 be a dynamic dependence network, and dep the
associated static dependencies.

1. A coalition functionC is a coalition if ∃a ∈ A,B ⊆ A,G′ ⊆ G such that
C(a,B,G′) impliesG′ ∈ dep(a,B). These coalitions which cannot be destroyed
by addition or deletion of dependencies by agents in other coalitions.

2. A coalition functionC is a vulnerable coalition if it is not a coalition and∃a ∈
A,D,B ⊆ A,G′ ⊆ G such thatC(a,B,G′) impliesG′ ∈ ∪Ddyndep−(a,B,D).
Coalitions which do not need new goals or abilities, but whose existence can be
destroyed by removing dependencies.

3. A coalition functionC is a potential coalition if it is not a coalition or a vulnerable
coalition and∃a ∈ A,D,B ⊆ A,G′ ⊆ G such thatC(a,B,G′) implies

G′ ∈ ∪D(dyndep−(a,B,D) ∪ G′ ∈ dyndep+(a,B,D))

Coalitions which could be created or which could evolve if new abilities or goals
would be created by agents of other coalitions on which they dynamically depend.
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Example 8.Example 7presents two different coalitions. On the one hand, we have a
real coalition composed by agentsn1, n2 andn3. On the other hand, we have a potential
coalition, such as a coalition which could be formed if agentn6 really performs the
dynamic addition making agentn5 dependent on agentn4.

Fig. 6.The legend of the graphical representation of the modeling activities ofdynamic
dependencyrepresenting coalitions,potential coalitions and vulnerable coalitions.

These three notions of coalitions represent in the NorMAS-RE model the constraints
for coalitions based on thedynamic dependency modeling. The graphical representation
of the coalition model is depicted in Figure 6 which describes coalitions (depicted as
sets of agents and dependencies included in a dotted circle) and vulnerable and potential
coalitions (depicted as sets of agents and dependencies in a circle in which one or more
of these dependencies can be added or deleted by another agent with a labeled dynamic
dependency). There are various further refinements of the notion of coalition. For ex-
ample, Boella et al. [4] look for minimal coalitions. In this paper we do not consider
these further refinements.

5 Conditional Dependency Modeling

In this section, we answer to the subquestionshow to introduce obligations in depen-
dence networks defining a new modeling activity, the conditional dependency modeling
andhow to define new constraints for the coalitions’ representation for this new kind of
networks.

Normative multiagent systems are “sets of agents (human or artificial) whose inter-
actions can fruitfully be regarded as norm-governed; the norms prescribe how the agents
ideally should and should not behave. [...] Importantly, the norms allow for the possi-
bility that actual behavior may at times deviate from the ideal, i.e., that violations of
obligations, or of agents’ rights, may occur" [13]. An obligation is a requirement which
must be fulfilled to take some course of action, whether legal or moral. The notion of
conditional obligation with an associated sanction is the base of the so called regulative
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norms. Obligations are defined in terms of goals of the agent and boththe recognition of
the violation and the application of the sanctions are the result of autonomous decisions
of the agent. The association of obligations with violations or sanctions is inspired by
Anderson’s reduction of deontic logic to alethic logic [1].

A well-known problem in the study of deontic logic is the representation of contrary-
to-duty structures, situations in which there is a primary obligation and what we might
call a secondary obligation, coming into effect when the primary one is violated [23]. A
natural effect coming from contrary-to-duty obligations is that obligations pertaining to
a particular point in time cease to hold after they have been violated since this violation
makes every possible evolution in which the obligation is fulfilled inaccessible. A clas-
sical example of contrary-to-duty obligations is given by the so called “gentle murder”
by Forrester [18] which says “do not kill, but if you kill, kill gently”.

The introduction of norms in dependence networks to present a new modeling activ-
ity is based on the necessity to design systems based on norms, particularly obligations.
An example of these real applications is due to the introduction of obligations in vir-
tual Grid-based organizations [38] where obligations, as shown in Section 2, are used
to enforce the authorization decisions. NorMAS-RE introduces obligations and asso-
ciates to the violation of these obligations, sanctions and secondary obligations. This is
a new design model since, in approaches like [38], obligations are considered simply
as tasks that have to be fulfilled when an authorization is accepted/denied while in ap-
proaches like [22], the failure in fulfilling the obligation incurs a sanction but there is
no secondary obligation.

The first step toward the introduction of obligations directly in dependence networks
is to refine the two notions of goal introduced in Section 3. Physical goals are those
goals proper of the agent, e.g., in the Grid scenario these are the personal goals of
the users of the system, while institutional goals represent those goals associated to a
particular role and not to a single agent, e.g., in the Grid scenario, a VO member node
has the goal to obtain an authorization to access to a particular file of another node. The
introduction of obligations underlines the necessity to introduce a new kind of goal, the
normative goals. These goals originate from norms and they represent the obligation
itself. We define a new set of normative concepts, based on Boella et al. [3] model of
obligations, and we group them in a new view, called the normative view. The normative
view is composed by a set of normsN and three main functions,oblig, sanct andctd
representing obligations, sanctions and contrary to duty obligations. A portion of the
NorMAS-RE metamodel concerning some of the main concepts is shown the UML
class diagram of Figure 12.

Definition 9 (Normative View).
Let the agent view〈A,F,G,X, goals: A → 2G, skills: A → 2X , rules : 2X → 2G〉
and the institutional view〈RL, IF,RG,X, igoals : RL → 2RG, iskills : RL →
2X , irules : 2X → 2IF 〉, the normative view is a tuple〈A,G,RG,N, oblig, sanct, ctd〉
where:

– A is a set of agents,G is a set of goals,RG is a set of institutional goals;
– N is a set of norms;
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– the functionoblig : N ×A → 2G∪RG is a function that associates with each norm
and agent, the goals and institutional goals the agent must achieve to fulfill the
norm. Assumption:∀n ∈ N anda ∈ A, oblig(n, a) ∈ power({a}).

– the functionsanct : N × A → 2G∪RG is a function that associates with each
norm and agent the goals and institutional goals that will not be achieved if the
norm is violated by agenta. Assumption: for eachB ⊆ A andH ∈ power(B) that
(∪a∈AV (n, a)) ∩ H = ∅.

– the functionctd : N × A → 2G∪RG is a function that associates with each norm
and agent the goals and institutional goals that will become the new goals the agent
has to achieve if the norm is violated by agenta. Assumption:∀n∈ N anda ∈ A,
ctd(n, a) ∈ power({a}).

Normative goals represent a subset of the union of the personal and institutional
goals presented in the agent view and in the institutional view. In Figure 7 the new con-
ceptual metamodel of our model is provided. In this enlarged version of the conceptual
metamodel the notions of obligation, sanction and secondary obligation are added.

Fig. 7.The new NorMAS-RE conceptual metamodel.

To model obligations, we introduce a set of norms, we associate with each norm
the set of agents that has to fulfill it, and for each norm we represent how to fulfill it,
and what happens when it is not fulfilled. In particular, we relate norms to goals in the
following two ways. First, we associate with each normn a set of goals and institutional
goalsoblig(n) ⊆ G ∪ RG. Achieving these normative goalsoblig(n) means that the
norm n has been fulfilled; not achieving these goals means that the norm is violated.
We assume that every normative goal can be achieved by the group, i.e., the group
has the power to achieve it. Second, we associate with each norm a set of goals and
institutional goalssanct(n) ⊆ G ∪ RG which will not be achieved if the norm is
violated (i.e., when the goals resulted from the norm are not achieved) and it represents
the sanction associated with the norm. We assume that the group of agents does not have
the power to achieve these goals. Third, we associate with each norm (called primary
obligation) another norm (called secondary obligation) represented as a set of goals and
institutional goalsctd(n) ⊆ G ∪RG that has to be fulfilled if the primary obligation is
violated.
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Current work on normative systems’ formalizations is declarative in nature, focused
on the expressiveness of the norms, the definition of formal semantics and the verifi-
cation of consistency of a given set. Our approach to norms, using the methodology of
dependence networks, is different and is based on the definition of conditional depen-
dence networks. Our aim is not to present a new theorem that, using norms semantics,
checks whether a given interaction protocol complies with norms. We are more inter-
ested in considering, in the context of requirements analysis, how agents’ behaviour is
effected by norms and in analyzing how to constraint the design of coalitions’ evolution
thanks to a normative system. There are two main assumptions in our approach. First
of all we assume that norms can sometimes be violated by agents in order to keep their
autonomy. The violation of norms is handled by sanctions and contrary to duty mech-
anisms. Second, we assume that, from the institutional perspective, the internal state
of the external agents is neither observable nor controllable but the institutional state
or public state of the external agents is note since linked to the role associated to the
external agent and it can be changed by the agents having this power. Thus, we cannot
avoid a forbidden action associated to a goal by a particular rule and we cannot impose
an obligatory action in the goals of the agents.

In Section 4, we introduced dynamic dependence networks as a development of the
model of dependence networks. In dynamic dependence networks, an agent creates the
dependency either creating the obligation, i.e., he creates a new institutional goal for
another agent, or creating the power to achieve a goal. In this section, we define a new
modeling activity, calledconditional dependency modeling, to support the early and
late requirements analysis of a system representing obligations and, in particular, sanc-
tions and contrary-to-duty obligations. Conditional dependence networks are defined as
follows:

Definition 10 (Conditional Dependence Networks (CDN)).
A conditional dependence network is a tuple〈A,G, cdep, odep, sandep, ctddep〉 where:

– A is a set of agents;
– G is a set of goals;
– cdep: 2A × 2A → 22G

is a function that relates with each pair of sets of agents all
the sets of goals on which the first depends on the second.

– odep: 2A × 2A → 22G

is a function representing a dependency based on obliga-
tions that relates with each pair of sets of agents all the sets of goals on which the
first depends on the second.

– sandep⊆ (OBL ⊆ (2A × 2A × 22G

)) × (SANCT ⊆ (2A × 2A × 22G

)) is
a function relating obligations to the dependency which represent their sanctions.
Assumption:SANCT ∈ cdep andOBL ∈ odep.

– ctddep⊆ (OBL1 ⊆ (2A×2A×22G

))×(OBL2 ⊆ (2A×2A×22G

)) is a function
relating obligations to the dependency which represent their secondary obligations.
Assumption:OBL1, OBL2 ∈ odep andOBL1 ∩ OBL2 = ∅.

The graphical representation of the model obtained following theconditional de-
pendency modelingactivity is built following the legend of Figure 8 which describes
the obligation-based dependency (depicted as a striped arrowed line), the obligation-
based dependency with the associated sanction expressed as conditional dependency
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(depicted as a striped arrowed line representing the obligation connectedto a common
arrowed line representing the sanction by a striped line) and the obligation-based de-
pendency with the associated secondary obligation (depicted as a striped arrowed line
representing the primary obligation connected to another striped arrowed line represent-
ing the secondary obligation by a striped line). The two functionsctddepandsandep
are graphically represented as the striped line connecting the obligation to the sanction
or to the secondary obligation.

Fig. 8.The legend of the graphical representation of the modeling activity ofconditional
dependency.

Example9. Considering Grid’s nodes of Example 7, depicted in Figure 5, we can add
two constraints for the requirements analysis phase under the form of obligations and
we can build the following conditional dependence networkCDN = 〈A,G, cdep, odep, sandep, ctddep〉:

1. AgentsA = {n1, n2, n3, n4, n5, n6};
2. GoalsG = {g1, g2, g3, g4, g5, g6, g7, g8};
3. cdep({n1}, {n2}) = {{g1}}: agentn1 depends on agentn2 to achieve the goal

{g1}: to save the filecomp.log;
dep({n2}, {n3}) = {{g2}}: agentn2 depends on agentn3 to achieve the goal
{g2}: to run the filemining.mat;
dep({n3}, {n1}) = {{g5}}: agentn3 depends on agentn1 to achieve the goal
{g5}: to save the filesatellite.jpg;
dep({n4}, {n6}) = {{g3}}: agentn4 depends on agentn6 to achieve the goal
{g3}: to run the fileresults.mat;
dep({n6}, {n5}) = {{g4}}: agentn6 depends on agentn5 to achieve the goal
{g4}: to save the filesatellite.mpeg;
dep({n5}, {n4}) = {{g6}}: agentn5 depends on agentn4 to achieve the goal
{g6}: to have the authorization to open the filedataJune.mat;
odep({n2}, {n1}) = {{g7}}: agentn2 is obliged to perform goal{g7} concerning
agentn1 : to run the filemining.matwith the highest priority;
odep({n4}, {n5}) = {{g8}}: agentn4 is obliged to perform goal{g8} concerning
agentn5 : to share results of the running of filedataJune.matwith agentn5;
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odep({n4}, {n6}) = {{g8}}: agentn4 is obliged to perform goal{g8} concerning
agentn6 : to share results of the running of filedataJune.matwith agentn6;
sandep{(({n2}, {n1}) = {{g7}}, ({n1}, {n2}) = {{g1}})};
ctddep{(({n4}, {n5}) = {{g8}}, ({n4}, {n6}) = {{g8}})};

Example 9 shows the subsequent step after the deletion and the insertion of the
two dynamic dependencies of Example 7. In this situation, following the definition of
coalition, we can imagine to have two local coalitions composing a virtual organization,
the first one composed by nodesn1, n2, n3 and the other composed by nodesn4, n5

andn6. Since these two subsets of the virtual organization have to work with a good
cohesion then it is possible to insert some constraints, made clear by obligations. The
first obligation consists in giving the highest priority to, for example, a computation
for an agent composing the same local coalition as you. This first obligation is related
to a sanction if it is violated. This link is made clear by the functionsandepand it
represents the deletion of a dependence concerning a goal of the agent that has to fulfill
the obligation. The second obligation, instead, is related to a secondary obligation and
it means that the agent has to share the results of a computation with a member of its
local coalition but, if it does not fulfill this obligation then it has to share these results
with another member of the local coalition.

Fig. 9.Conditional Dependence Network of Example 9.

In this new kind of network, if a goal, set by an obligation, is not fulfilled then the
conditional dependency related to this obligation has two possible developments: if a
sanction is associated to the norm, a goal cannot be achieved and thus the conditional
dependency related to that goal has to be deleted or, if a contrary-to-duty obligation,
which means a secondary obligation, is associated to the norm then the conditional
dependency related the goals set by this secondary obligation has to be added. We rep-
resent obligations, sanctions and contrary-to-duty obligations as tuples of dependencies
related to each other. An obligation is viewed as a particular kind of dependency and
it is related to other dependencies: dependencies due to sanctions and dependencies
due to secondary obligations. In the first case, we have that sanctions are common de-
pendencies, already existing inside the system that, because of their connection with
the obligation, can be deleted. In particular, if the obligation is not fulfilled, then the
dependency related to the obligation with the role to be its sanction is deleted. In the
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second case, instead, a primary obligation is related to a number ofsecondary obliga-
tions. A graphical representation of the evolutions of conditional dependence networks
is provided in Figure 10:

Fig. 10.The evolution of conditional dependence networks.

In the first case, if the obligation is fulfilled and it is linked to a sanction then the
obligation can be removed and also the connection among the obligation and the sanc-
tion. The only dependency that remains in the network is the one related to the sanction
that passes from being a conditional dependency to a common dependency. If the obli-
gation is not fulfilled then it is deleted and the deletion involves also the conditional
dependency representing the sanction. The sanction consists exactly the deletion of this
conditional dependency. In the second case, if the obligation is fulfilled and it is linked
to a secondary obligation then the obligation is deleted and also the secondary obliga-
tion is deleted since there is no reason to already exists. If the obligation, instead, is not
fulfilled then the primary obligation is deleted but the secondary obligation not. Note
that in Figure 10 are depicted only the conditional dependencies and the obligational
dependencies and not all the other kinds of possible dependencies of the network.

Two case studies: transactions and personal norms.In this section, we analyze two
particular case studies using our representation of obligations. The first one consists
in transactions. A transaction is an agreement or communication carried out between
separate entities, often involving the exchange of items of value, such as information,
goods, services and money. This is the basic idea underlying norm emergence. Let us
consider the case of two agentsa andb, wherea is the buyer andb is the seller. If we
consider two goals such asg1: book sent by the sellerb to the buyera andg2: money
transferred from the buyera to the sellerb, we have the dependence network depicted
in Figure 11-(b). The two agents depend on each other to achieve their goals, the seller
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is waiting for its payment and the buyer is waiting for its good. Whenintroduced, our
representation of obligations allows to arrive to a very simplified version of the network
in which each agent depends on itself to not violate the obligation. The dependence
network derived after the norm creation is much more simpler than the previous one
representing however the same concepts. This simplified version of the network, repre-
senting obligations, can be used for the design and, in particular for the requirements
analysis phases, of the multiagent system allowing to individuate in a simpler way the
obligation present in it, without the necessity to take into account all the sets of depen-
dencies on goals of the network.

The second case study makes more explicit this necessity to simplify the depen-
dence network with the aim to individuate the obligations is the case of personal norms.
In the real life, everybody’s life is regulated by personal norms likenot kill andnot
leave trash on the roads. These norms are referred to every person and it seems that
everyone depends on the others to achieve these goals that can be represented as goals
of the whole society. It is similar to the social delegation cycle: do not do the others
what you do not want them to do to you. In this case, we can represent the dependence
network as a full connected graph since every agent depends on all the other agents, for
example to not be killed. The simplification brought by the representation of obligations
is relevant, as can be seen in Figure 11-(a).

Fig. 11.Case studies: personal norms and transactions.

5.1 Coalitionsin Conditional Dependence Networks

In this Section, we answer to the subquestion:What constrains are set by obligations to
the conditional dependency modeling concerning coalitions. In Section 4, we presented
three different kinds of coalitions: existing coalitions composed by common dependen-
cies, vulnerable coalitions composed by one or more arcs linked to a dynamic depen-
dency of removal and, finally, potential coalitions composed by one or more arcs linked
to a dynamic dependency of addition. The new kind of dependence networks, condi-
tional dependence networks, has to be taken into account when a system is described
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in terms of coalitions. This means that coalitions, vulnerable coalitionsand potential
coalitions can change depending on the conditional dependencies set by the obligations
of the system. A coalition has to consider also sanctions and secondary obligations,
according to these constraints:

Definition 11 (Constraints for Conditional Dependency Modeling). Let A be a set
of agents andG be a set of goals. A coalition function is a partial functionC ⊆ A ×
2A × 2G such that{a | C(a,B,G)} = {b | b ∈ B,C(a,B,G)}, the set of agents
profiting from the coalition is the set of agents contributing to it.

Introducing conditional dependence networks, the following constraints arise:

– ∀(dep1, dep2) ∈ sandep,dep2 /∈ C if and only if dep1 /∈ C. If the obligation,
associated to the dependencydep1 is not part of the coalitionC then also the
sanctiondep2 associated to the obligation is not part of the coalitionC. If the
obligation, associated to the dependencydep1 is part of the coalitionC then also
the sanctiondep2 associated to the obligation is part of the coalitionC.

– ∀(dep1, dep2) ∈ ctddep,dep2 ∈ C if and only ifdep1 /∈ C. If the primary obli-
gation, associated to the dependencydep1 is not part of the coalitionC then the
secondary obligationdep2 is part of the coalitionC. If the primary obligation,
associated to the dependencydep1 is part of the coalitionC then the secondary
obligationdep2 is not part of the coalitionC.

Example 10.Let us consider the conditional dependence network of Example 9. Ap-
plying these constraints, we have that if the obligation on goalg7 is fulfilled then the
local coalition composed by agentsn1, n2 andn3 already exists since the dependency
associated to the sanction is not deleted. If the obligation on goalg7 is not fulfilled then
the obligation is deleted but also the sanction is deleted and the coalition does not exist
any more. Concerning the second local coalition, if the obligation is fulfilled then both
the primary and the secondary obligation are removed but if the primary obligation is
not fulfilled then the secondary obligation is part of the local coalition composed by
agentsn4, n5 andn6.

5.2 Regulation of Stability

In game theoretical approaches [27], stability may be taken into account when distribut-
ing the payoff of the coalition among its members. Roughly speaking, payoffs should be
divided in a fair way to maintain stability. The core, for example, provides a concept of
stability for coalitional games and a payoff is in the core only if no coalition has an in-
centive to break off from the grand coalition and form its own group. Other approaches
of the same kind are provided by the other solution concepts such as the Shapley value
and the nucleous. Given a previously formed coalitional configuration, game theory
usually concentrates on checking its stability or its fairness and on the calculation of
the corresponding payments. But game theory rarely takes into consideration the spe-
cial properties of a multi-agent environment such as, for example, goal-based agents.
Coalitions change dynamically due to rapid changes in the tasks and resource availabil-
ity, and therefore relying on the initial configurations is misleading.
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Fig. 12. The UML class diagram specifying the main concepts of the NorMAS-RE
metamodel.

In thissection, we present a first step toward the definition of a notion of stability for
coalitions individuated in the context of one of our three modeling activities. The im-
portance of the definition of a notion of stability for the modeling analysis, particularly
for the requirements analysis phases, is related to the issues of security and efficiency.
For example, in the Grid scenario, it is very important to have the guarantee that the two
subsets composing the virtual organization are stable in the sense that they represent se-
cure and efficient “group" of nodes with a great internal cohesion. This approach has the
aim to present the problem of coalitions’ stability from a different point of view respect
the point of view presented in game theoretical approaches. The main difference is in
the notion of agent used in the NorMAS-RE model, such as not an agent viewed only
as a utility maximizer but a goal-based agent. In this sense, our definition of agent is
more complex and with many facets than the agents presented in game theory. Starting
from Section 4, where we distinguished among three different kinds of coalitions, we
can start to define coalitions’ stability in the following way:

Definition 12 (Coalitions’ stability). A coalition C is called stable if∃a ∈ A,B ⊆
A,G′ ⊆ G such thatC(a,B,G′) impliesG′ ∈ dep(a,B) and¬(∃a ∈ A,D,B ⊆
A,G′ ⊆ G such thatC(a,B,G′) impliesG′ ∈ ∪Ddyndep−(a,B,D)). A coalition is
stable if it is formed by dependencies relying its members and there is not the possibility
to delete one these dependencies by another agent, inside or outside the coalition itself.

Conditional dependencies add new possibility to see to the stability of a coalition. In
fact, we can claim that one of the main interests of the agents involved in a coalition is to
maintain its stability. This maintenance can be achieved using norms such as obligations
to regulate the behaviour of the members of the coalition. The use of obligations can
follow two different lines:
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– Obligations to regulate dynamic dependencies: this first kind of obligation is ad-
dressed toeach member of a coalition with the aim to avoid, imposing a sanction
or a secondary obligation, the mining of the stability of a coalition. Following the
notion of stability, the first norm of all the agents when they become members of a
coalition is informally:If an agent, member of a coalition, has the power to delete
one or more of the dependencies constituting the coalition itself then it is obliged
to not do this deletion. This norm is addressed only to those agent belonging to
the coalition since, as in real cases, it is always possible for an external agent or
coalition to attack another coalition with the aim to decrease its influence. This
obligation can be linked to sanctions and secondary obligations of different kinds,
such as for example the secondary obligation to create another dependency with the
aim to strengthen the coalition. It is also possible to impose a sanction to the agent,
for example deleting all the dependencies in which it depends on other agents, pre-
venting him to achieve its goals.

– Obligations to regulate agents’ behaviour: this second kind of obligations is not
related to the dependencies and dynamic dependencies describing the system, but
it is addressed to the regulation of the behaviour of the agents depending on their
membership to a coalition. These kind of obligations are of the typeIf an agent
belongs to a coalition then it has to satisfy first those requests coming from the
other members of the coalition and, only after, requests coming from outsiders.
These rules aim to strengthen the unity of the coalition and to improve the work
inside it.

6 Related work

The related work section is divided into three main sections with the aim to follow bet-
ter the different research lines along which the paper is developed. The three sections
consists in 1) works on agent-based software engineering, 2) works on coalition forma-
tion and coalitions’ evolution taking into account both game theoretical approaches and
social networks ones, 3) works on normative multiagent systems and institutions. The
second section presents also a number of works devoted to the definition of the notion
of stability for coalitions.

6.1 Agent-based software engineering

The idea of focusing the activities that precede the specification of software require-
ments, in order to understand how the intended system will meet organizational goals,
is not new. It has been first proposed in requirements engineering, specifically in Eric
Yu’s work with his i* model [36]. This model has been applied in various application
areas, including requirements engineering, business process re-engineering, and soft-
ware process modeling. The i* model offers actors, goals and actor dependencies as
primitive concepts [35]. The rationale of the i* model is that by doing an earlier analy-
sis, one can capture not only the what or the how, but also the why a piece of software is
developed. This, in turn, supports a more refined analysis of system dependencies and

27



encourages a uniform treatment of the system’s functional and non-functionalrequire-
ments. As stated in the introduction and in the paper, the most important example for
our model consists in the TROPOS methodology [10] that aspires to span the overall
software development process, from early requirements to implementation. Other ap-
proaches to software engineering are those of KAOS [15] which covers only the late
requirements phase, GAIA [34] which covers both the late requirements phase and the
architectural design, AAII [21] and MaSE [16] which cover the two phases of archi-
tectural and detailed design, and AUML [2] which covers only the detailed design.
The main difference between these approaches and our approach is in the use at the
same time of the normative multiagent paradigm based on both the notion of institution
and the notion of obligation, the graphical modeling language based on dependencies
among agents and the covering of the very early phases of requirements analysis.

6.2 Coalitions’ formation and evolution

One of the most important issues in the field of multiagent systems concerns the descrip-
tion and formalization of coalition formation. Although there were many approaches
defining coalition formation, to represent different perspectives. Two representative ex-
amples are given by the model of Shehory and Kraus [26] and the one of Sichman and
Conte [29][30]. The approach of Shehory and Kraus [26] is based on the assumption
that autonomous agents in the multiagent environments may need to cooperate in order
to fulfill tasks. They present algorithms that enable the agents to form groups and assign
a task to each group, calling these groups coalitions. However, Shehory and Kraus’ work
considers tasks which are not related to the individual goals of the agents in the coali-
tion and it does not consider the motivations for agents to enter the coalition, nor the
dependencies existing among the agents. They only address cases in which dependen-
cies among tasks are due to competing resources’ requirements or execution precedence
order. Sichman [29], instead, introduces a different point of view. He presents coalition
formation using a dependence-based approach based on the notion of social dependence
introduced by Castelfranchi [14]. This model introduces the notion of dependence sit-
uation, which allows an agent to evaluate the susceptibility of other agents to adopt his
goals, since agents are not necessarily supposed to be benevolent and therefore auto-
matically adopt the goals of each other. In this dependence-based model, coalitions can
be modeled using dependence networks. A definition of coalitions inspired by depen-
dence networks is given by Boella et al. [4]. The authors represent a potential coalition
as a labeled AND-graph of dependencies among agents. These AND-graphs consist of
a set of nodes which denotes the agents involved in the coalition and a set of labeled
arcs.

Coalitions’ stability The work that, to our knowledge, gives a first definition of stabil-
ity is the paper of Zlotkin and Rosenschein [39]. In a task oriented domain, a coalition
can coordinate by redistributing their tasks among themselves. It seems intuitively rea-
sonable that agents in a coalition game should not suffer by coordinating their actions
with a larger group. In other words, if you take two disjoint coalitions, the utility they
can derive together should not be less than the sum of their separate utilities, at the
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worst, they could coordinate by ignoring each other. This property iscalled superad-
ditivity. This work introduce the notion of stability of a coalition using the concept of
superadditivity. The stability condition relates to the payoff vector that assigns to each
agent a utility. There are three levels of stability conditions: individual, group and coali-
tion rationality. Individual rationality means that no individual agent would like to opt
out of the full coalition, group rationality means that the group as a whole would not
prefer any other payoff vector over this vector and coalition rationality means that no
group of agents should have an incentive to deviate from the full coalition and create a
subcoalition for each subset of agents. To ensure stability, they need to find a consensus
mechanism that is resistant to any coalition manipulation. Another work on this issue
is from Sandholm and Lesser [24]. In this paper, the optimal coalition structure and its
stability are significantly affected by the agents algorithms performance profiles and the
unit cost of computation.

6.3 Normative multiagent systems and institutions

An example of normative multiagent system introducing obligations has been done by
Boella and van der Torre [7]. In this work, to model obligations they introduce a set of
norms, associated with each norm the set of agents that has to fulfill it and what happens
when it is not fulfilled. In particular, they relate norms to goals in the following two
ways. First, each norm is associated to a set of goals. Achieving these normative goals
means that the norm has been fulfilled; not achieving these goals means that the norm
is violated. They assume that every normative goal can be achieved by the group, that
means that the group has the power to achieve it. The second point is that each norm
is associated to another set of goals which will not be achieved if the norm is violated,
this is the sanction associated to the norm. They assume that the group of agents does
not have the power to achieve these goals, otherwise they would avoid the sanction.

An interesting approach to the application of the notion of institution to multiagent
systems is defined in Sierra et al. [31]. Electronic Institutions (EIs) provide the vir-
tual analogue of human organizations in which agents, playing different organizational
roles, interact to accomplish individual and organizational goals. EIs introduce sets of
artificial constraints that articulate and coordinate interactions among agents. In this ap-
proach, roles are defined as patterns of behavior and are divided into institutional roles
(those enacted to achieve and guarantee institutional rules) and non-institutional roles
(those requested to conform to institutional rules). Like us, the purpose of their norma-
tive rules is to affect the behavior of agents by imposing obligations or prohibitions.

Another approach to EIs is given by Bogdanovych et al. [8]. In this approach they
propose the use of 3D Virtual Worlds to include humans into software systems with a
normative regulation of interactions. The normative part can be seen as defining which
actions require an institutional verification assuming that any other action is allowed.
Inside the 3D Interaction Space, an institution is represented as a building where the
participants are represented as avatars. Once they enter the building their actions are
validated against the specified institutional rules. In the last two works, unlike us, the
concept of institution is presented by a practical approach without a formal definition of
the concept of institution and a description of its dynamics while they are similar to our
one in the establishment of a different level of the organization related to the institution.
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The problem of dynamic institutions is treated in Bou et al. [9] asan extension to
EIs definition with the capability to decide in an autonomous way how to answer dy-
namically to changing circumstances through norm adaptation and changes in institu-
tional agents. The assumption for EIs to adapt is that EIs seek specific goals. The paper
presents the normative transition function that maps a set of norms into another one. As
our approach, agents participating in the system have social interactions mediated by
the institution and the consequences of these interactions is a change in the institutional
state of an agent. The difference with our approach consists in the definition of the in-
stitution as an entity with own goals, the running example given into the paper is that of
the institution of the Traffic Regulation Authority with the goal to decrease the number
of accidents below a given threshold, and states.

An interesting approach is presented in Vazquez-Salceda et al. [33] where they pro-
pose the Organizational Model for Normative Institutions (OMNI) framework. OMNI
brings together some aspects from two existing frameworks: OperA and HARMONIA.
OperA is a formal specification framework that focuses on the organizational dimension
while HARMONIA is a formal framework to model especially highly regulated elec-
tronic organizations from an abstract level to the final protocols that implement norms.
In OMNI, roles are often dependent on other roles for the realization of their objectives.
Societies establish dependencies and power relations between roles, indicating relation-
ships between roles. These relationships describe, like in our approach, how actors can
interact and contribute to the realization of the objectives of each other.

7 Conclusions

This paper provides a detailed account of NorMAS-RE, a new requirements analysis
model based on the normative multiagent paradigm, following the TROPOS method-
ology [10]. The paper presents and discusses the early and late requirements phases
of systems design. The first part of the paper presents the key concepts of our model
dividing them into three submodels, one representing the agents and their mentalistic
notions of goals and facts, the second representing the roles and their associated notions
of institutional goals and facts and, finally, the third representing the mapping between
agents and roles. The second part of the paper presents our graphical representations for
the three modeling activities by which NorMAS-RE is composed. The three modeling
activities are calleddependency modeling,dynamic dependency modelingandcondi-
tional dependency modelingand they are based on the notions of institution, obligation,
sanction and secondary obligation. The addition of normative concepts as the last ones
is a relevant improvement to requirements analysis since it allows first to constraint the
construction of the requirements modeling and second to represent systems, as in the
Grid scenario, in which there are explicit obligations regulating the behaviour of the
components composing it. Moreover, the NorMAS-RE model is defined also to model
the requirements analysis phases in a context in which there is the possible presence of
coalitions and we present the first step toward the definition of the notion of coalitions’
stability for our modeling activities.

Our long term objective is to provide a detailed account of the NorMAS-RE model
and to start the development of the other phases of design analysis of a system such
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as architectural and detailed design phases and the implementation phase,as done for
example by the TROPOS methodology. Moreover, the NorMAS-RE model in its current
form is also not suitable for agents requiring advanced reasoning mechanisms for plans,
goals and negotiations. Further extensions will be required to the NorMAS-RE model
to address this class of software applications.
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Abstract. Multi-agent systems are viewed as consisting of individual
agents whose behaviors are regulated by an organization artefact. This
paper presents a simplified version of a programming language that is
designed to implement norm-based artefacts. Such artefacts are specified
in terms of norms being enforced by monitoring, regimenting and sanc-
tioning mechanisms. The syntax and operational semantics of the pro-
gramming language are introduced and discussed. A logic is presented
that can be used to specify and verify properties of programs developed
in this language.

1 Introduction

In this paper, multi-agent systems are considered as consisting of individual
agents that are autonomous and heterogenous. Autonomy implies that each in-
dividual agent pursues its own objectives and heterogeneity implies that the
internal states and operations of individual agents may not be known to exter-
nal entities [14, 7]. In order to achieve the overall objectives of such multi-agent
systems, the observable/external behavior of individual agents and their inter-
actions should be regulated/coordinated.

There are two main approaches to regulate the external behavior of individual
agents. The first approach is based on coordination artefacts that are specified in
terms of low-level coordination concepts such as synchronization of processes[12].
The second approach is motivated by organizational models, normative systems,
and electronic institutions[13, 10, 7, 8]. In such an approach, norm-based arte-
facts are used to regulate the behavior of individual agents in terms of norms
being enforced by monitoring, regimenting and sanctioning mechanisms. Gen-
erally speaking, the social and normative perspective is conceived as a way to
make the development and maintenance of multi-agent systems easier to man-
age. A plethora of social concepts (e.g., roles, social structures, organizations,
institutions, norms) has been introduced in multi-agent system methodologies
(e.g. Gaia [14]), models (e.g. OperA [6], Moise+ [9], electronic institutions and
frameworks (e.g. AMELI [7], S-Moise+ [9]).

The main contribution of this paper is twofold. On the one hand, a simplified
version of a programming language is presented that is designed to implement
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multi-agent systems in which the observable (external) behavior of individual
agents is regulated by means of norm-based artefacts. Such artefacts are imple-
mented in terms of social concepts such as norms and sanctions, monitor the
actions performed by individual agents, evaluate their effects, and impose sanc-
tions if necessary. On the other hand, we devise a logic to specify and verify
properties of programs that implement norm-based artefacts.

In order to illustrate the idea of norm-based artefacts, consider the following
simple example of a simulated train station where agents ought to buy a ticket
before entering the platform or trains. To avoid the queue formation, agents are
not checked individually before allowing them to enter the platform or trains.
In this simulation, being on the platform without a ticket is considered as a
violation and getting on the train without having a ticket is considered as a
more severe violation. A norm-based artefact detects (all or some) violations by
(all or some) agents and reacts on them by issuing a fine if the first violation
occurs, for instance by charging the credit card of the defecting user, and a
higher fine if the second violation occurs.

In this paper, we first briefly explain our idea of normative multi-agent sys-
tems and discuss two norm-based approaches to multi-agent systems, that is,
ISLANDER/AMELI [7] and S-MOISE+ [9]. In section 3, we present the syn-
tax and operational semantics of a programming language designed to imple-
ment normative multi-agent systems. This programming language allows the
implementation of norm-based artefacts by providing programming constructs
to represent norms and mechanisms to enforce them. In section 4, a logic is pre-
sented that can be used to specify and verify properties of norm-based artefacts
implemented in the presented programming language. Finally, in section 5, we
conclude the paper and discuss some future directions in this research area.

2 Norms and Multi-Agent Systems

Norms in multi-agent systems can be used to specify the standards of behavior
that agents ought to follow to meet the overall objectives of the system. How-
ever, to develop a multi-agent system does not boil down to state a number of
standards of behavior in the form of a set of norms, but rather to organize the
system in such a way that those standards of behavior are actually followed by
the agents. This can be achieved by regimentation [10] or enforcement mecha-
nisms, e.g., [8].

When regimenting norms all agents’ external actions leading to a violation
of those norms are made impossible. Via regimentation (e.g., gates in train sta-
tions) the system prevents an agent from performing a forbidden action (e.g.,
entering a train platform without a ticket). However, regimentation drastically
decreases agent autonomy. Instead, enforcement is based on the idea of respond-
ing after a violation of the norms has occurred. Such a response, which includes
sanctions, aims to return the system to an acceptable/optimal state. Crucial for
enforcement is that the actions that violate norms are observable by the system
(e.g., fines can be issued only if the system can detect travelers entering the
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platform or trains without a ticket). Another advantage of having enforcement
over regimentation is that allowing for violations contributes to the flexibility
and autonomy of the agent’s behavior [3]. These norms are often specified by
means of concepts like permissions, obligations, and prohibitions.

In the literature of multi-agent systems related work can be found on elec-
tronic institutions. In particular, ISLANDER[7] is a formal framework for spec-
ifying norms in institutions, which is used in the AMELI platform [7] for exe-
cuting electronic institutions based on norms provided in it. However, the key
aspect of ISLANDER/AMELI is that norms can never be violated by agents.
In other words, systems programmed via ISLANDER/AMELI make only use of
regimentation in order to guarantee the norms to be actually followed. This is
an aspect which our approach intends to relax guaranteeing higher autonomy to
the agents, and higher flexibility to the system.

A work that is concerned with programming multiagent systems using (among
others) normative concepts is also S-MOISE+, which is an organizational mid-
dleware that follows the Moise+ model[9]. This approach, like ours, builds on
programming constructs investigated in social and organizational sciences. How-
ever, S-MOISE+ lacks formal operational semantics, which is instead the main
contribution of the present paper to the development of programming languages
form multi-agent systems. Besides, norms in S-MOISE+ typically lack monitor-
ing and sanctioning mechanisms for their implementation which are, instead, the
focus of our proposal. It should be noted that [11] advocates the use of artifacts
to implement norm enforcement mechanisms. However, it is not explained how
this can be done using those artifacts.

To summarize, ISLANDER/AMELI implements norm via full regimenta-
tion, while in S-MOISE+ violations are possible, although no specific system’s
response to violations is built in the framework. We deem these shortcomings
to have a common root, namely the absence of a computational model of norms
endowed with a suitable operational semantics. The present paper fills this gap
along the same lines that have been followed for the operationalization of BDI
notions in the APL-like agent programming languages [5, 4]. Finally, it should be
noted that besides normative concepts MOISE+ and ISLANDER/AMELI also
provide a variety of other social and organizational concepts. Since the focus of
this paper is on the normative aspect, the above discussion is limited hereto.
Future research will focus on other social and organizational concepts.

3 Programming Multi-Agent Systems with Norms

In this section, we present a programming language to facilitate the implemen-
tation of multi-agent systems with norms, i.e., to facilitate the implementation
of norm-based artefacts that coordinate/regulate the behavior of participating
individual agents. A normative multi-agent system (i.e., a norm-based artefact)
is considered to contain two modules: an organization module that specifies
norms and sanctions, and an environment module in which individual agents
can perform actions. The individual agents are assumed to be implemented in
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a programming language, not necessarily known to the multi-agent system pro-
grammer, though the programmer is required to have the reference to the (ex-
ecutable) programs of each individual agent. It is also assumed that all actions
that are performed by individual agents are observable to the multi-agent system
(i.e., norm-based artefact). Note that the reference to the (executable) programs
of individual agents are required such that multi-agent systems (i.e., normative
artefact) can observe the actions generated by the agent programs. Finally, we
assume that the effect of an individual agent’s action in the external environment
is determined by the program that implements the norm-based artefact (i.e., by
the multi-agent system program). Most noticeably it is not assumed that the
agents are able to reason about the norms of the system.

The programming language for normative multi-agent systems provides pro-
gramming constructs to specify the effect of an agent’s actions in the environ-
ment, norms, sanctions, and the initial state of the environment. Moreover, the
programming language is based on a monitoring and a sanctioning mechanism
that observes the actions performed by the agents, determines their effects in the
shared environment, determines the violations caused by performing the actions,
and possibly, imposes sanctions. A program in this language is the implemen-
tation of a norm-based artefact. As we assume that the norm-based artefacts
determine the effects of external actions in the shared environment, the pro-
gramming language should provide constructs to implement these effects. The
effect of an agent’s (external) actions is specified by a set of literals that should
hold in the shared environment after the external action is performed by the
agent. As external actions can have different effects when they are executed in
different states of the shared environment, we add a set of literals that function
as the pre-condition of those effect.

We consider norms as being represented by counts-as rules [13], which ascribe
“institutional facts” (e.g. “a violation has occurred”), to “brute facts” (e.g. “an
agent is on the train without ticket”). For example, a counts-as rule may express
the norm ”an agent on the train without ticket counts-as a violation”. In our
framework, brute facts constitute the environment shared by the agents, while
institutional facts constitute the normative/institutional state of the multi-agent
system. Institutional facts are used with the explicit aim of triggering system’s
reactions (e.g., sanctions). As showed in [8] counts-as rules can enjoy a rather
classical logical behavior, and are here implemented as simple rules that relate
brute and normative facts. In the presented programming language, we distin-
guish brute facts from normative (institutional) facts and assume two disjoint
sets of propositions to denote these facts.

Brute and institutional facts constitute the (initial) state of the multi-agent
system (i.e., the state of the norm-based artefact). Brute facts are initially set by
the programmer by means of the initial state of the shared environment. These
facts can change as individual agents perform actions in the shared environment.
Normative facts are determined by applying counts-as rules in multi-agent states.
The application of counts-as rules in subsequent states of a multi-agent system
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realizes a monitoring mechanism as it determines and detects norm violations
during the execution of the multi-agent system.

Sanctions are also implemented as rules, but follow the opposite direction of
counts-as rules. A sanction rule determines which brute facts will be brought
about by the system as a consequence of the normative facts. Typically, such
brute facts are sanctions, such as fines. Notice that in human systems sanctions
are usually issued by specific agents (e.g. police agents). This is not the case
in our computational setting, where sanctions necessarily follow the occurrence
of a violation if the relevant sanction rule is in place (comparable to automatic
traffic control and issuing tickets). It is important to stress, however, that this is
not an intrinsic limitation of our approach. We do not aim at mimicking human
institutions but rather providing the specification of computational systems.

3.1 Syntax.

In order to represent brute and institutional facts in our normative multi-agent
systems programming language, we introduce two disjoint sets of propositions to
denote these facts. The syntax of the normative multi-agent system programming
language is presented below using the EBNF notation. In the following, we use
<b-prop> and <i-prop> to be propositional formulae taken from two different
disjoint sets of propositions. Moreover, we use <ident> to denote a string and
<int> to denote an integer.

N-MAS Prog := "Agents: " (<agentName> <agentProg> [<nr>])+ ;
"Facts: " <bruteFacts>
"Effects: " <effects>
"Counts-as rules: " <counts-as>
"Sanction rules: " <sanctions>;

<agentName> := <ident>;
<agentProg> := <ident>;
<nr> := <int>;
<bruteFacts> := <b-literals>;
<effects> := ({<b-literals>} <actionName> {<b-literals>})+;
<counts-as> := ( <literals> ⇒ <i-literals> )+;
<sanctions> := ( <i-literals> ⇒ <b-literals>)+;
<actionName> := <ident>;
<b-literals> := <b-literal> {"," <b-literal>};
<i-literals> := <i-literal> {"," <i-literal>};
<literals> := <literal> {"," <literal>};
<literal> := <b-literal> | <i-literal>;
<b-literal> := <b-prop> | "not" <b-prop>;
<i-literal> := <i-prop> | "not" <i-prop>;

In order to illustrate the use of this programming language, consider the fol-
lowing underground station example.
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Agents: passenger PassProg 1
Facts: {-at platform, -in train, -ticket}
Effects: {-at platform} enter {at platform},

{-ticket} buy ticket {ticket},
{at platform, -in train} embark {-at platform, in train}

Counts as rules: {at platform , -ticket} ⇒ {viol1},
{in train , -ticket} ⇒ {viol⊥}

Sanction rules: {viol1} ⇒ {fined10}
This program creates one agent called passenger whose (executable) specifi-

cation is included in a file with the name PassProg. The Facts, which implement
brute facts, determine the initial state of the shared environment. In this case,
the agent is not at the platform (-at platform) nor in the train (-in train)
and has no ticket (-ticket). The Effects indicate how the environment can
advance in its computation. Each effect is of the form {pre-condition} action
{post-condition}. The first effect, for instance, means that if the agent per-
forms an enter action when not at the platform, the result is that the agent
is on the platform (either with or without a ticket). Only those effects that are
changed are thus listed in the post-condition. The Counts as rules determine
the normative effects for a given (brute and normative) state of the multi-agent
system. The first rule, for example, states that being on the platform with-
out having a ticket is a specific violation (marked by viol1). The second rule
marks states where agents are on a train without a ticket with the specifically
designated literal viol⊥. This literal is used to implement regimentation. The op-
erational semantics of the language ensures that the designated literal viol⊥ can
never hold during any run of the system (see Definition 3). Intuitively, rules with
viol⊥ as consequence could be thought of as placing gates blocking an agent’s
action. Finally, the aim of Sanction rules is to determine the punishments
that are imposed as a consequence of violations. In the example the violation of
type viol1 causes the sanction fined10 (e.g., a 10 EUR fine).

Counts-as rules obey syntactic constraints. Let l = (Φ ⇒ Ψ) be a rule, we
use condl and consl to indicate the condition Φ and consequent Ψ of the rule l,
respectively. We consider only sets of rules such that 1) they are finite; 2) they
are such that each condition has exactly one associated consequence (i.e., all the
consequences of a given conditions are packed in one single set cons); and 3)
they are such that for counts-as rule k, l, if consk ∪ consl is inconsistent (i.e.,
contains p and−p), then condk ∪ condl is also inconsistent. That is to say, rules
trigger inconsistent conclusions only in different states. In the rest of this paper,
sets of rules enjoying these three properties are denoted by R.

3.2 Operational Semantics.

One way to define the semantics of this programming language is by means of
operational semantics. Using such semantics, one needs to define the configu-
ration (i.e., state) of normative multi-agent systems and the transitions that
such configurations can undergo through transition rules. The state of a multi-
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agent system with norms consists of the state of the external environment, the
normative state, and the states of individual agents.

Definition 1. (Normative Multi-Agent System Configuration) Let Pb and Pn be
two disjoint sets of literals denoting atomic brute and normative facts (includ-
ing viol⊥), respectively. Let Ai be the configuration of individual agent i. The
configuration of a normative multi-agent system is defined as 〈A, σb, σn〉 where
A = {A1, . . . , An}, σb is a consistent set of literals from Pb denoting the brute
state of multi-agent system and σn is a consistent set of literals from Pn denoting
the normative state of multi-agent system.

The configuration of such a multi-agent system can change for various rea-
sons, e.g., because individual agents perform actions in the external environ-
ment or because the external environment can have its own internal dynamics
(the state of a clock changes independent of an individual agent’s action). In
operational semantics, transition rules specify how and when configurations can
change, i.e., they specify which transition between configurations are allowed
and when they can be derived. In this paper, we consider only the transition
rules that specify the transition of multi-agent system configurations as a result
of performing external actions by individual agents. Of course, individual agents
can perform (internal) actions that modify only their own configurations and
have no influence on the multi-agent system configuration. The transition rules
to derive such transitions are out of the scope of this paper.

Definition 2. (Transitions of Individual Agent’s Actions) Let Ai and A′i be
configurations of individual agent i, and α(i) be an (observable) external action
performed by agent i. Then, the following transition captures the execution of an
external action by an agent.

Ai
α(i)−→ A′i : agent i can perform external action α

This transition indicates that an agent configuration can change by perform-
ing an external action. The performance of the external action is broadcasted
to the multi-agent system level. Note that no assumption is made about the
internals of individual agents as we do not present transition rules for deriving
internal agent transitions (denoted as A −→ A′). The only assumption is that
the action of the agent is observable. This is done by labeling the transition with
the external action name.

Before presenting the transition rule specifying the possible transitions of the
normative MAS configurations, the closure of a set of conditions under a set of
(counts-as and sanction) rules needs to be defined. Given a set R of rules and
a set X of literals, we define the set of applicable rules in X as ApplR(X) =
{Φ ⇒ Ψ | X |= Φ}. The closure of X under R, denoted as ClR(X), is inductively
defined as follows:

B: ClR
0 (X) = X ∪ (

⋃
l∈ApplR(X) consl)

S: ClR
n+1(X) = ClR

n (X) ∪ (
⋃

l∈ApplR(ClRn (X)) consl)
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Because of the properties of finiteness, consequence uniqueness and consistency
of R one and only one finite number m + 1 can always be found such that
ClR

m+1(X) = ClR
m(X) and ClR

m(X) 6= ClR
m−1(X). Let such m + 1 define the

closure X under R: ClR(X) = ClR
m+1(X). Note that the closure may become

inconsistent due to the ill-defined set of counts-as rules. For example, the counts-
as rule p ⇒ −p (or the set of counts as rules {p ⇒ q , q ⇒ −p}), where p and q
are normative facts, may cause the normative state of a multi-agent system to
become inconsistent.

We can now define a transition rule to derive transitions between normative
multi-agent system configurations. In this transition rule, the function up deter-
mines the effect of action α(i) on the environment σb based on its specification
(Φ α(i) Φ′) as follows:

up(α(i), σb) = (σb ∪ Φ′) \ ({p | −p ∈ Φ′} ∪ {−p | p ∈ Φ′})
Definition 3. (Transition Rule for Normative Multi-Agent Systems) Let Rc be
the set of counts-as rules, Rs be the set of sanction rules, and (Φ α(i) Φ′) be the
specification of action α(i). The multi-agent transition rule for the derivation of
normative multi-agent system transitions is defined as follows:

Ai ∈ A & Ai
α(i)→ A′i & σb |= Φ & σ′b = up(α(i), σb)

σ′n = ClRc(σ′b) \ σ′b & σ′n 6|= viol⊥ & S = ClRs(σ′n) \ σ′n & σ′b ∪ S 6|= ⊥
〈A, σb, σn〉 −→ 〈A′, σ′b ∪ S, σ′n〉

where A′ = (A\{Ai})∪{A′i} and viol⊥ is the designated literal for regimentation.

This transition rule captures the effects of performing an external action by an
individual agent on both external environments and the normative state of the
MAS. First, the effect of α on σb is computed. Then, the updated environment
is used to determine the new normative state of the system by applying all
counts-as rules to the new state of the external environments. Finally, possible
sanctions are added to the new environment state by applying sanction rules
to the new normative state of the system. In should be emphasized that other
multi-agent transition rules, such as transition rules for communication actions,
are not presented in this paper because the focus here is on how norms determine
the effects of external actions.

Note that the external action of an agent can be executed only if it would
not result in a state containing viol⊥. This captures exactly the regimentation
of norms. Hence, once assumed that the initial normative state does not include
viol⊥, it is easy to see that the system will never be in a viol⊥-state. It is
important to note that when a normative state σ′n becomes inconsistent, the
proposed transition rule cannot be applied because an inconsistent σ′n entails
viol⊥. Also, note that the condition σ′b∪S 6|= ⊥ guarantees that the environment
state never can become inconsistent. Finally, it should be emphasized that the
normative state σ′b is not defined on σn and is always computed anew.
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4 Logic

In this section, we propose a logic to specify and verify liveness and safety prop-
erties of multi-agent system programs with norms. This logic, which is a variant
of Propositional Dynamic Logic (PDL, see [2]), is in the spirit of [1] and rely on
that work. It is important to note that the logic developed in [1] aims at spec-
ifying and verifying properties of single agents programmed in terms of beliefs,
goals, and plans. Here we modify the logic and apply it to multi-agent system
programs. We first introduce some preliminaries before presenting the logic.

4.1 Preliminaries

We show how the programming constructs can be used for grounding a logical
semantics. Let P denote the set of propositional variables used to describe brute
and normative states of the system. It is assumed that each propositional vari-
able in P denotes either an institutional/normative or a brute state-of-affairs:
P = Pn ∪ Pb and Pn ∩ Pb = ∅. A state s is represented as a pair 〈σb, σn〉 where
σb = {(−)p1, . . . , (−)pn : pi ∈ Pb} is a consistent set of literals (i.e., for no p ∈ Pb

it is the case that p ∈ σb and −p ∈ σb), and σn is like σb for Pn.
Rules are pairs of conditions and consequences ({(−)p1, . . . , (−)pn | (−)pi ∈

X}, {(−)q1, . . . , (−)qk | (−)qi ∈ Y }) with X and Y being either σb or σn when
applied in state 〈σb, σn〉. Following [8], if X = σb and Y = σn then the rule
is called bridge counts-as rule; if X = Y = σn then the rule is an institutional
counts-as rule; if X = σn and Y = σb then the rule is a sanction rule. Literals
p’s and q’s are taken to be disjoint. Leaving technicalities aside, bridge counts-as
rules connect brute states to normative/institutional ones, institutional counts-as
rules connect institutional facts to institutional facts, and sanction rules connect
normative states to brute ones.

Given a set R of rules, we say a state s = 〈σb, σn〉 to be R-aligned if for all
pairs (condk, consk) in R: if condk is satisfied either by σb (in the case of a bridge
counts-as rule) or by σn (in the case of an institutional counts-as or a sanction
rule), then consk is satisfied by σn (in the case of a bridge or institutional counts-
as rule) or by σb (in the case of a sanction rule), respectively. States that are
R-aligned are states which instantiate the normative system specified by R.

Let the set of agents’ external actions Ac be the union
⋃

i∈I Aci of the finite
sets Aci of external actions of each agent i in the set I. We denote external actions
as α(i) where α ∈ Aci and i ∈ I. We associate now with each α(i) ∈ Aci a set of
pre- and post-conditions {(−)p1 ∈ σb, . . . , (−)pn ∈ σb}, {(−)q1 ∈ σ′b, . . . , (−)qk ∈
σ′b} (where p’s and q’s are not necessarily disjoint) when α(i) is executed in a
state with brute facts set σb which satisfies the pre-condition then the resulting
state s′ has the brute facts set σ′b which satisfies the post-condition (including
replacing p with−p if necessary to preserve consistency) and it is such that the
rest of σ′b is the same as σb. Executing an action α(i) in different configurations
may give different results. For each α(i), we denote the set of pre- and post-
condition pairs {(prec1, post1), . . . , (precm, postm)} by Cb(α(i)). We assume
that Cb(α(i)) is finite, that pre-conditions preck, precl are mutually exclusive
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if k 6= l, and that each pre-condition has exactly one associated post-condition.
We denote the set of all such pre- and post-conditions of all agents’ external
actions by C.

Now everything is put into place to show how the execution of α(i) in a
state with brute facts set σb also univocally changes the normative facts set
σn by means of the applicable counts-as rules, and adds the resulting sanctions
by means of the applicable sanction rules. If α(i) is executed in a state 〈σb, σn〉
with brute facts set σb, which satisfies the pre-conditions, then the resulting state
〈σ′b ∪ S, σ′n〉 is such that σ′b satisfies the brute post-condition of α(i) (including
replacing p with −p if necessary) and the rest of σ′b is the same of σb; σ′n is
determined by the closure of σ′b with counts-as rules Rc; sanctions S are obtained
via closure of σ′n with sanction rules Rs.

4.2 Language

The language L for talking about normative multi-agent system programs is just
the language of PDL built out of a finite set of propositional variables P ∪−P
(i.e., the literals built from P ), used to describe the system’s normative and
brute states, and a finite set Ac of agents’ actions. Program expressions ρ are
built out of external actions α(i) as usual, and formulae φ of L are closed under
boolean connectives and modal operators:

ρ ::= α(i) | ρ1 ∪ ρ2 | ρ1; ρ2 | ?φ | ρ∗

φ ::= (−)p | ¬φ | φ1 ∧ φ2 | 〈ρ〉φ

with α(i) ∈ Ac and (−)p ∈ P ∪−P . Connectives ∨ and →, and the modal operator
[ρ] are defined as usual.

4.3 Semantics.

The language introduced above is interpreted on transition systems that gener-
alize the operational semantics presented in the earlier section, in that they do
not describe a particular program, but all possible programs —according to C—
generating transitions between all the Rc and Rs-aligned states of the system.
As a consequence, the class of transition systems we are about to define will
need to be parameterized by the sets C, Rc and Rs.

A model is a structure M = 〈S, {Rα(i)}α(i)∈Ac, V 〉 where:

– S is a set of Rc and Rs-aligned states.
– V = (Vb, Vn) is the evaluation function consisting of brute and normative

valuation functions Vb and Vn such that for s = 〈σb, σn〉, Vb(s) = σb and
Vn(s) = σn.

– Rα(i), for each α(i) ∈ Ac, is a relation on S such that (s, s′) ∈ Rα(i) iff for
some (preck, postk) ∈ C(α(i)), preck(s) and postk(s′), i.e., for some pair
of pre- and post-conditions of α(i), the pre-condition holds for s and the
corresponding post-condition holds for s′. Note that this implies two things.
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First, an α(i) transition can only originate in a state s which satisfies one of
the pre-conditions for α(i). Second, since pre-conditions are mutually exclu-
sive, every such s satisfies exactly one pre-condition, and all α(i)-successors
of s satisfy the matching post-condition.

Given the relations corresponding to agents’ external actions in M , we can define
sets of paths in the model corresponding to any PDL program expression ρ in
M . A set of paths τ(ρ) ⊆ (S × S)∗ is defined inductively:

– τ(α(i)) = {(s, s′) : Rα(i)(s, s′)}
– τ(φ?) = {(s, s) : M, s |= φ}
– τ(ρ1 ∪ ρ2) = {z : z ∈ τ(ρ1) ∪ τ(ρ2)}
– τ(ρ1; ρ2) = {z1 ◦ z2 : z1 ∈ τ(ρ1), z2 ∈ τ(ρ2)}, where ◦ is concatenation of

paths , such that z1 ◦z2 is only defined if z1 ends in the state where z2 starts
– τ(ρ∗) is the set of all paths consisting of zero or finitely many concatenations

of paths in τ(ρ) (same condition on concatenation as above)

Constructs such as If φ then ρ1 else ρ2 and while φ do ρ are defined as
(φ?; ρ1) ∪ (¬φ?; ρ2) and (φ?; ρ)∗;¬φ, respectively. The satisfaction relation |= is
inductively defined as follows:

– M, s |= (−)p iff (−)p ∈ Vb(s) for p ∈ Pb

– M, s |= (−)p iff (−)p ∈ Vn(s) for p ∈ Pn

– M, s |= ¬φ iff M, s 6|= φ
– M, s |= φ ∧ ψ iff M, s |= φ and M, s |= ψ
– M, s |= 〈ρ〉φ iff there is a path in τ(ρ) starting in s which ends in a state s′

such that M, s′ |= φ.
– M, s |= [ρ]φ iff for all paths τ(ρ) starting in s, the end state s′ of the path

satisfies M, s′ |= φ.

Let the class of transition systems defined above be denoted MC,Rc,Rs where
C is the set of pre- and post-conditions of external actions, Rc is the set of
counts-as rules and Rs the set of sanction rules.

4.4 Axiomatics.

The axiomatics shows in what the logic presented differs w.r.t. standard PDL. In
fact, it is a conservative extension of PDL with domain-specific axioms needed
to axiomatize the behavior of normative multi-agent system programs.

For every pre- and post-condition pair (preci, posti) we describe states sat-
isfying preci and states satisfying posti by formulas of L. More formally, we
define a formula tr(X) corresponding to a pre- or post-condition X as follows:
tr((−)p) = (−)p and tr({φ1, . . . , φn}) = tr(φ1) ∧ . . . ∧ tr(φn). This allows us
to axiomatize pre- and post-conditions of actions. The conditions and conse-
quences of counts-as rules and sanction rules can be defined in similar way as
pre- and post-conditions of actions, respectively. The set of models MC,Rc,Rs is
axiomatized as follows:
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PDL Axioms and rules of PDL
Ax Consistency Consistency of literals: ¬(p ∧−p)
Ax Counts-as For every rule (condk, consk) in Rc: tr(condk) → tr(consk)
Ax Sanction For every rule (violk, sanck) in Rs: tr(violk) → tr(sanck)
Ax Regiment viol⊥ → ⊥
Ax Frame For every action α(i) and every pair of pre- and post-conditions

(precj , postj) in C(α(i)) and formula Φ built out of Pb not containing any
propositional variables occurring in postj :

tr(precj) ∧ Φ → [α(i)](tr(postj) ∧ Φ)
This is a frame axiom for actions.

Ax Non-Executability For every action α(i), where all possible pre-conditions
in C(α(i)) are prec1, . . . , preck: ¬tr(prec1)∧ . . .∧¬tr(preck) → ¬〈α(i)〉>
where > is a tautology.

Ax Executability For every action α(i) and every pre-condition precj in C(α(i)):
tr(precj) → 〈α(i)〉>
Let us call the axiom system above AxC,Rc,Rs , where C is the set of brute

pre- and post-conditions of atomic actions, Rc is the set of counts-as rules, and
Rs is the set of sanction rules.

Theorem 1. Axiomatics AxC,Rc,Rs is sound and weakly complete for the class
of models MC,Rc,Rs .

Proof. Soundness is proven as usual by induction on the length of derivations.
We sketch the proof of completeness. It builds on the usual completeness proof
of PDL via finite canonical models. Given a consistent formula φ to be proven
satisfiable, such models are obtained via the Fischer-Ladner closure of the set
of subformulae of the formula φ extended with all pre- and post-conditions of
any action α(i) occurring in φ. Let FLC(φ) denote such closure. The canonical
model consists of all the maximal AxC,Rc,Rs-consistent subsets of FLC(φ). The
accessibility relation and the valuation of the canonical model are defined like in
PDL and the truth lemma follows in the standard way. It remains to be proven
that the model satisfies the axioms. First, since the states in the model are
maximal and consistent w.r.t. Ax Counts-as, Ax Sanction, Ax Consistency, and
AxRegiment, they are Rc- and Rs-aligned, σb and σn are consistent, and no state
is such that σn |= viol⊥. Second, it should be shown that the canonical model
satisfies the pre- and post-conditions of the actions occurring in φ in that: a) no
action α(i) is executable in a state s if none of its preconditions are satisfied by s,
and b) if they hold in s then the corresponding post-conditions hold in s′ which
is accessible byRα(i) from s. As to a), if a state s in the canonical model does
not satisfy any of the preconditions of α(i) then, by Ax Non-Executability and
the definition of the canonical accessibility relation, there is no s′ in the model
such that sRα(i)s

′. As to b), if a state s in the canonical model satisfies one of
the preconditions precj of α(i) thentr(precj) belongs to s and, by Ax Frame,
[α(i)]tr(postj) also do. Now, Ax Executability guarantees that there exists at
least one s′ such that sRα(i)s

′, and, for any s′ such that sRα(i)s
′, by the definition

of such canonical accessibility relation, s′ contains tr(postj) (otherwise it would

12



not be the case that sRα(i)s
′). On the other hand, for any literal (−)p in s not

occurring intr(postj), its value cannot change from s to s′ since, if it would,
then for Ax Frame it would not be the case that sRα(i)s

′, which is impossible.
This concludes the proof.

4.5 Verification

To verify a normative multi-agent system program means, in our perspective,
to check whether the program implementing the normative artefact is soundly
designed w.r.t. the regimentation and sanctioning mechanisms it is supposed to
realize or, to put it in more general terms, to check whether certain property
holds in all (or some) states reachable by the execution traces of the multi-agent
system program. In order to do this, we need to translate a multi-agent system
program into a PDL program expression.

As explained in earlier sections, a multi-agent system program assumes a
set of behaviors A1, . . . , An of agents 1, . . . , n, each of which is a sequence of
external actions (the agents actions observed from the multi-agent level), i.e.,
Ai = α1

i ; α
2
i , . . . where αj

i ∈ Ac. 1 Moreover, a multi-agent system program with
norms consists of an initial set of brute facts, a set of counts-as rules and a set
of sanction rules which together determine the initial state of the program. In
this paper, we consider the execution of a multi-agent program as interleaved
executions of the involved agents’ behaviors started at the initial state.

Given I as the set of agents’ names and Ai as the behavior of agent i ∈ I,
the execution of a multi-agent program can be described as PDL expression⋃

interleaved({Ai|i ∈ I}), where interleaved({Ai|i ∈ I}) yields all possible
interleavings of agents’ behaviors, i.e., all possible interleavings of actions from
sequences Ai. It is important to notice that

⋃
interleaved({Ai|i ∈ I}) corre-

sponds to the set of computations sequences (execution traces) generated by the
operational semantics.

The general verification problem can now be formulated as follows. Given a
multi-agent system program with norms in a given initial state satisfying φ ∈ L,
the state reached after the execution of the program satisfies ψ, i.e.:

φ → 〈[
⋃

interleaved({Ai|i ∈ I})]〉ψ

In the above formulation, the modality 〈[. . .]〉 is used to present both safety [. . .]
and liveness 〈. . .〉 properties. We briefly sketch a sample of such properties using
again the multi-agent system program with norms which implements the train
station example with one passenger agent (see Section 3).

Sanction follows violation. Entering without a ticket results in a fine, i.e.,

−at platform ∧−train ∧−ticket→ [enter](viol1 ∧ pay10).

1 Note an agent’s behavior can always be written as a (set of) sequence(s) of actions,
which in turn can be written as a PDL expressions.
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Norm obedience avoids sanction. Buying a ticket if you have none and
entering the platform does not result in a fine, i.e.:

−at platform∧−train→ 〈 If−ticket then buy ticket; enter 〉 (at platform∧−pay10).

Regimentation. It is not possible for an agent to enter the platform and em-
bark the train without a ticket, i.e.:

−at platform ∧−train ∧−ticket→ [enter; embark]⊥

Note that there is only one passenger agent involved in the example program.
For this property, we assume that the passenger’s behavior is enter; embark.
Note also that:

⋃
interleaved({enter; embark}) = enter; embark.

Below is the proof of the regimentation property above with respect to the
multi-agent system program with norms that implements the train station with
one passenger.

Proof. First, axiom Ax Frame using the specification of the enter action (with
pre-condition {-at platform} and post-condition {at platform}) gives us
(1) −at platform ∧ −in train ∧ −ticket →

[enter] at platform ∧ −in train ∧ −ticket
Moreover, axiom Ax Frame using the specification of the embark action (with
pre-condition {at platform, -in train} and post-condition {-at platform,
in train}) gives us
(2) at platform ∧ −in train ∧ −ticket →

[embark] −at platform ∧ in train ∧ −ticket
Also, axiom Ax Counts-as and the specification of the second counts-as rule of
the program give us
(3) in train ∧ −ticket→ viol⊥
And axiom Ax Regiment together with formula (3) gives us
(4) in train ∧ −ticket→ ⊥
Now, using PDL axioms together with formula (1), (2), and (4) we get first
(5) −at platform ∧ −in train ∧ −ticket → [enter][embark] ⊥
and thus
(6) −at platform∧−in train∧−ticket → [enter; embark] ⊥. This completes
the derivation.

5 Conclusions and Future Work

The paper has proposed a programming language for implementing multi-agent
systems with norms. The programming language has been endowed with formal
operational semantics, therefore formally grounding the use of certain social
notions —eminently the notion of norm, regimentation and enforcement— as
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explicit programming constructs. A sound and complete logic has then been
proposed which can be used for verifying properties of the multi-agent systems
with norms implemented in the proposed programming language.

We have already implemented an interpreter for the programming language
that facilitates the implementation of multi-agent systems without norms (see
http://www.cs.uu.nl/2apl/). Currently, we are working to build an inter-
preter for the modified programming language. This interpreter can be used
to execute programs that implement multi-agent systems with norms. Also, we
are working on using the presented logic to devise a semi-automatic proof checker
for verification properties of normative multi-agent programs.

We are aware that for a comprehensive treatment of normative multi-agent
systems we need to extend our framework in many different ways. Future work
aims at extending the programming language with constructs to support the im-
plementation of a broader set of social concepts and structures (e.g., roles, power
structure, task delegation, and information flow), and more complex forms of en-
forcement (e.g., policing agents) and norm types (e.g., norms with deadlines).
Another extension of the work is the incorporation of the norm-awareness of
agents in the design of the multi-agent system. We also aim at extending the
framework to capture the role of norms and sanctions concerning the interaction
between individual agents.

The approach in its present form concerns only closed multi-agent systems.
Future work will also aim at relaxing this assumption providing similar formal
semantics for open multi-agent systems. Finally, we have focused on the so-
called ’ought-to-be’ norms which pertain to socially preferable states. We intend
to extend our programming framework with ’ought-to-do’ norms pertaining to
socially preferable actions.
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Abstract. Corporate Social Responsibility (CSR), such as pro-environmental
behaviour and fair trade, is a kind of normative behaviour by private
companies to provide a quasi-public good. We study dissemination mech-
anism of CSR with a multi-agent model in which corporation agents and
consumer agents interact with each other. We show that the mechanism
to disseminate CSR is a positive feedback between the corporations’ pop-
ularity seeking behaviour and the consumers’ social learning in which
CSR-seeking preference is evaluated according to both the local average
of the preferences of surrounding consumers and the global average of the
investment in CSR by all corporations. We also discuss an institutional
design to establish CSR from an objectionable social state.

Keywords. CSR (corporate social responsibility), Quasi-public good,
Institutional design, Positive Feedback, Multi-agent simulation

1 Introduction

Corporate Social Responsibility (CSR) is to take responsibility by organizations
including private companies for the effect of their activities on all stakeholders
such as customers, employees, shareholders, investors, communities and so on. A
typical CSR activity is pro-environmental behaviour. CSR is a kind of normative
action by private companies and is considered as an enlightened movement,
since such activity must contribute to sustainability. From economic theoretical
viewpoint, however, it is said that CSR is inefficient and impossible to maintain
in a competitive market. If we consider CSR is an effective means for attaining
sustainable society, we need to know a scheme to disseminate and to establish
CSR activities in our society. Further, considering the scheme, both theoretically
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and empirically, may lead us to an understanding of a method to make agents
behave normatively.

In this paper, we study dissemination mechanism of CSR activities using
a multi-agent simulation. We think of CSR as an institution. Here we use the
term institution in Veblen’s sense, namely an institution is a habit of thought
common to the majority of individuals in a society [1]. A habit of thought is a
kind of a value or a preference. In order to establish CSR activities in a society,
stakeholders must have value/preference that CSR activities are nice or agreeable
for them in spite of demerit such as higher prices of private goods. Although
preference of people must change in order to disseminate CSR, preference is
taken as fixed in the standard economic theory. Thus, we consider a multi-agent
system for flexible modelling of agents’ thought and behaviour.

2 Modelling CSR

2.1 Conceptualization of CSR

Before making a multi-agent model of CSR, we need to conceptualise CSR itself.
Here we look at CSR as to provide both a private good and a quasi-public good
by companies in their activities. A quasi-public good means the following two.

– Consuming the good by any individuals is not excluded (non-excludability)
and one’s consumption lessens the benefit of others’ consumption (rivalness).
Global environment is an example.

– A good produces private benefit in addition to social benefit. Donation is an
example, in which we can feel satisfaction which is a private benefit.

2.2 Multi-agent modelling of CSR dissemination

We describe an outline of our multi-agent model. In the model, there are two
types of agents, corporations and consumers, both are aligned in two-dimensional
planes, respectively. The two-dimensional planes are models of relational space
of the agents, not physical/geographical spaces.

The corporations produce private and quasi-public goods simultaneously.
They have strategies to decide ratios of invest in the quasi-public goods, θi =
[0, 1], called “invest ratio”. The higher the invest ratio of a corporation is, the
higher the price of the corporation’s product is. The dissemination of CSR in
this model is defined as follows: most corporations are going to take very high
value of the invest ratio.

Each consumer buys a product of a corporation. The consumers have pref-
erences that decide the ratio of importance of the quasi-public good to the price
of the private good, denoted by αj = [0, 1] and called “importance ratio”. Each
consumer chooses one corporation according to his/her importance ratio, where
he/she is likely to adopt a corporation having the similar value of the invest ratio
to that of his/her importance ratio. This choice is not always exact. We use the
Boltzmann distribution in order to take probabilistic choice into account.
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The corporations change their strategies according to the popularity share,
that is, how they are adopted by the consumers. They try to copy the invest
ratio of the most popular corporation in their vicinity (8 agents). This adoption
is also not exact. A normal random noise with 0 mean and 0.1 standard deviation
is added to the original value.

Concerning the preference of consumers, we investigate four models, one is
fixed and three adaptive:

1. fixed preference
2. income standard
3. local standard
4. glocal standard (glocal means global + local)

Each consumer evaluates his/herself and surrounding consumers (8 agents) ac-
cording to a standard, which is different point among the three adaptive prefer-
ence models.

In the second model, the consumers refer to the income as the standard.
Since a consumer with higher value of the importance ratio buys a product with
higher price, his/her income gets lower. Therefore, the income standard is the
synonym for disregard of the quasi-public good.

In the third model, the local standard, the consumer uses a weighted arith-
metic average of the disregard, (1 − α), and the importance ratio, α, of the
quasi-public good to evaluate themselves. The weight of the importance ratio
is the local average of the importance ratio of the neighbouring agents. The
evaluation standard is defined by the following equation:

V L
ij (t) = (1 − ⟨αi(t)⟩) (1 − αij(t)) + ⟨αi(t)⟩αij(t) , (1)

where

– V L
ij (t): the evaluation of the jth consumer of the ith consumer’s neighbour

at the tth period in the local standard model,
– ⟨αi(t)⟩: the average of α of 8 consumers in the neighbour of the ith consumer

at the tth period,
– αij (t): the importance ratio of the jth consumer of the ith consumer’s neigh-

bour at the tth period.

In the fourth model, the glocal standard, the consumers use both global
and local information to evaluate themselves. While the local information is the
same as the local standard model, ⟨αi(t)⟩, the global information is the average
of invest ratios, θs of all the corporations’ and is used only for the weight of the
importance ratio term. That is,

V GL
ij (t) = (1 − ⟨αi(t)⟩) (1 − αij(t)) + (⟨αi(t)⟩ + ⟨θ(t− 1)⟩)αij(t) , (2)

where

– V GL
ij (t): the evaluation of the jth consumer of the ith consumer’s neighbour

at the tth period in the glocal standard model,
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– ⟨θ(t − 1)⟩: the average of invest ratio θ of all corporations at the (t − 1)th
period.

We use social learning, i.e., imitation, for the adaptive change of agents’
preferences. The reason why we take social learning is that we consider agents
as social individuals that the individuals’ ways of thought, including values,
preferences and cognitive frameworks, develop through interactions with others
in a society[2]. In each adaptive model, if a consumer takes the lowest in the
neighbour according to the standard, he/she imitates the importance ratio of
the highest consumer in the surrounding. The imitated value is perturbed by a
normal random number with 0 mean and 0.1 standard deviation.

3 Simulation Results

We summarise the results of computer simulations of the above four models. The
sizes of the corporation plane and the consumer plane are 10×10 and 100×100,
respectively. Thus, the total number of corporations and consumers are 100 and
10000, respectively. The initial states of the invest ratios and the importance
ratios are prepared with a uniform distribution.

There is no interesting phenomenon in the fixed preference and the income
standard models. In the fixed preference model, the CSR is not disseminated.
A little corporations takes high invest ratio. But that is a mere reflection of the
existence of the consumers with high importance ratio prepared by the initial
uniform distribution. This result is qualitatively equivalent to an economic the-
oretical model [3]. This is a reasonable consequence since the fixed preference is
the equivalent setting to the presumption of the standard economic theory.

Since the income standard means disregard of the quasi-public good, as we
mentioned already, the society is occupied by the consumers with very low impor-
tance ratio in the income standard model. As they select cheap price products,
the corporations also take the low invest strategy in the quasi-public good. The
CSR fades away.

3.1 Local Standard Model

In the local standard model, the frequencies of the corporations’ invest ratios
and that of the consumers’ importance ratios change with time as shown in
Fig. 1. These graphs represent the dynamics of histograms with 0.1 bin width.
The consumers converge to a distribution in which both large (α ≥ 0.8) and
small (α ≤ 0.2) importance ratios have greater volumes. Other importance ra-
tios are almost even. On the other hand, the corporations continually change
their invest ratios. They pursue popularity share by changing their strategies.
If a corporation has a top popularity, surrounding corporations come to take
the similar invest ratio to the top corporation. As the number of corporations
increase at the ratio range of the top popularity, they share the consumers. As
a consequence, the popularity of each corporation at this ratio range declines.
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Fig. 1. The dynamics of the frequency of the corporations’ invest ratios (upper) and
that of the consumers’ importance ratios (lower) in the local standard model. The x
axis is the period and the y axis is the number of agents. The color legend is shown at
the right upper corner.
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By keeping such popularity seeking action, the frequency of the invest ratio does
not converge to a fixed state.

Figure 2 shows the spatial configuration of the consumers’ importance ratio
in their two-dimensional plane. Interestingly, the plane converge to an inho-
mogeneous state. The consumers with high importance ratio (blue) and those
with low ratio (red) form clusters. The intermediate ratio consumers are at the
boundaries of two types of clusters.

Fig. 2. The spatial distribution of the consumers’ importance ratios in the local stan-
dard model at the 500th period. The color legend is shown at the right of the figure.

The results shown here are similar to the reality. An empirical investigation
says that consciousness about CSR and environment-friendliness is stratified in
a society [4]. There are individuals with high consciousness followed by middle
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and low. People with high consciousness often form groups. People inside of the
group have strong relationships.

The spatial inhomogeneity remains because the consumer agents in the local
standard model refer local (their surrounding) consumers to evaluate themselves,
that is ⟨αi(t)⟩. There is no absolute standard. Under this circumstance, such a
situation occurs that an agent A is the lowest rank according to an agent B’s
standard, but the agent B is the lowest rank according to the agent A’s standard.
In this situation, both agents do not have incentives to change themselves, thus
the inhomogeneity and diversity are maintained.

Although the observed phenomena is realistic as well as interesting, and
corporations with high invest ratio exist to some extent, the ratio of them is not
enough. We conclude that CSR is not disseminated in the local standard model.

3.2 Glocal Standard Model

The change of the frequency of the corporations’ invest ratios and that of the
consumers’ importance ratios are depicted in Fig. 3. In this case, very large
importance ratio (α ≥ 0.9) permeates rapidly among the consumers. Behind the
consumers movement, corporations with very large invest ratio (θ ≥ 0.9) also
increase and finally occupy the society. We consider this state as CSR established.
The spatial distribution of the consumers’ importance ratios has islands in which
consumers having very low importance ratio are at the core (Fig. 4).

We introduce the average of invest ratio of all corporation as global informa-
tion into the weight for the second term of the evaluation standard (refer to eq.
(2)) that puts importance on CSR, but not into that of disregarding CSR (first
term of eq. (2)). This is a trick to expand large invest ratios. The mechanism to
disseminate CSR is the followings:

1. There are consumers with high importance ratios to some extent.
2. Such consumers choose corporations with high invest ratio.
3. In order to improve popularity, corporations imitate the strategies of the

chosen corporations.
4. As a result, the average of the corporations’ invest ratio, ⟨θ(t)⟩, increases.
5. The weight of the CSR-seeking term in the glocal evaluation standard, refer

to eq. (2), increases and the social learning by the consumers is directed to
higher importance ratio.

6. The consumers are likely to increase their importance ratio. (back to 2.)

This is a positive feedback mechanism between the corporations’ popularity
seeking behaviour and the consumers’ social learning. In this feedback loop, the
consumers’ CSR-seeking preference is evaluated according to both the local av-
erage of the preferences and the global average of all corporations’ investment
in CSR, and then the consumers learn socially, i.e., imitate locally. As a phe-
nomenon level, this positive feedback is also observed as a mutual strengthen
between the consumers’ consciousness putting importance on CSR and the cor-
porates’ investment in the quasi-public good. Here, the important point is that
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Fig. 3. The dynamics of the frequency of the corporations’ invest ratios (upper) and
that of the consumers’ importance ratios (lower) in the glocal standard model. The x
axis is the period and the y axis is the number of agents. The color legend is shown at
the right upper corner.
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Fig. 4. The spatial distribution of the consumers’ importance ratios in the glocal stan-
dard model. The color legend is shown at the right of the figure.
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the corporations take just myopic actions, popularity seeking. The spread of the
importance of CSR in the consumers precedes the strategy of corporations. That
is, an institution to putting importance on CSR establishes in the sub-parts of
consumer society first. The corporations pursue the institution, and this action
promotes an atmosphere or a public opinion that CSR is important. The atmo-
sphere, then, boosts the consumers’ change to higher importance ratio through
social learning.

4 Institutional Design

If the positive feedback mechanism works well, even in the society under an
objectionable state, that is, only with low importance ratio consumers, CSR
may be disseminated. We are able to also consider an institutional design in
which a policy is employed to realise a desirable social state. Here we suppose a
policy to regulate all corporations to maintain the least ratio of the investment
in the quasi-public good.

We investigate how CSR is established by controlling the minimum value of
the invest ratio of the corporations and the maximum value of the importance
ratio of the consumers at the initial state. The former corresponds to the strength
of the regulation by the policy and the latter the desirability of social state. We
calculate the average of the consumers’ importance ratio at the final (converged)
state. While the definition of the establishing CSR in this paper is maintaining
the higher invest ratio in a quasi-public good by the corporations, we observe
the state of the consumer society, since we already know that establishing the
institutions in the consumers leads the dissemination of CSR.

In Fig.5, the result of this calculation is shown. We can see two regions,
establishment of CSR (the value of z is 1.0) and complete loss of CSR (the value
of z is 0.0). There is a steep cliff between these two regions. This is because
there is a threshold for the positive feedback mechanism above mentioned to
work. This result suggests that if the social state is not so desirable but not too
objectionable, say the maximum of α is 0.6, the regulation by the policy need
not to be so strong, the minimum θ is 0.3.

In order to disseminate and establish CSR, we need to constitute a society
like the fourth model, the glocal standard model. But the reality at the present
seems to be in the third model, the local standard. The difference is whether
people take the global information such as an atmosphere putting importance on
CSR into consideration to evaluate themselves. From the viewpoint of institu-
tional design, a possible way for the shift from the local to the glocal standard is
to give publicity to the present status of corporations’ CSR activities by munici-
pality or government. When we successfully shift to the society supposed by the
glocal standard model, there are two scenarios. One is an optimistic scenario in
which CSR disseminate and is established by itself if there are consumers with
enough high consciousness about CSR. The other is less optimistic one, we need
a regulation on corporations activities to make a least level of investment in a
quasi-public good, if there is not enough high conscious people.
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Fig. 5. The effect of regulation and the initial social state on the dissemination of CSR.
The left axis is the minimum of the regulated invest ratio of the corporations, the right
axis is the maximum of the initial importance ratio of the consumers, and the z axis
is the average of the importance ratios of the consumers (averaged in 5 simulations).

5 Conclusion

In this paper, we study a mechanism to disseminate CSR activities, a normative
action by corporations. The CSR is conceptualised as providing a quasi-public
good simultaneously in addition to a private good. Using multi-agent simula-
tions, we showed that the criteria to disseminate CSR were to take global in-
formation such as the average amount of investment in CSR into consideration
to evaluate consumers themselves. The dissemination mechanism is a positive
feedback between the consumers’ social leaning of their preference putting im-
portance on CSR and the corporates’ popularity seeking. We also showed that by
regulating the least amount of investment in CSR by corporates, dissemination
could be launched even in an objectionable society.
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and stochastic approaches and machine learning on the other is gaining
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including inductive (stochastic) logic programming. In contrast, the use
of formal knowledge (including knowledge about social norms) for the
provision of hard constraints and prior knowledge for some stochastic
learning or modeling task is much less frequently approached. Although
we do not propose directly implementable technical solutions, it is hoped
that this work is a useful contribution to a discussion about the useful-
ness and feasibility of approaches from norm research and formal logic
in the context of stochastic behavioral models, and vice versa.
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1 Introduction

This extended abstract discusses various approaches to the constraining of Par-
tially Observable Markov Decision Processes (POMDPs) using social norms and
logical assertions in a dynamic logic framework. Whereas the exploitation of
synergies among formal logic on the one hand and stochastic approaches and
machine learning on the other is gaining significantly increasing interest since
several years, most of the respective approaches fall into the category of rela-
tional learning in the widest sense [12], including inductive (stochastic) logic
programming. In contrast, the use of formal hard constraints and prior knowl-
edge for other stochastic modeling or machine learning tasks is relatively sel-
dom approached (”hard” constraint in the sense that the constraint cannot be
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overwritten, ignored or weakened). Among the existing approaches which al-
low for the specification of hard constraints of stochastic tasks are [5, 11], and,
closer to our work, various extensions of Golog, such as [7, 6]. [7, 6] allow for the
logic-based partial specification of a program and the automatic and optimal
completion of this program, which is viewed as a Markov Decision Process (re-
spectively a POMDP in case of [7]). In contrast to these approaches, we propose
to take an ordinary POMDP (which could be manually created or automati-
cally learned) and a set of ”ordinary” modal logic formulas, and use the latter
in order to modify the given POMDP and/or a standard algorithm for solving
this POMDP (i.e., the search for an optimal behavior policy) so that certain ac-
tion sequences become impossible or less probable (because they would violate a
norm), or obligatory. Besides this, our approach uses a variant of dynamic logic,
whereas Golog is based on the situation calculus. We find dynamic logic more
useful for dealing with complex actions (patterns and compositions of elemen-
tary actions) than the situation calculus, and specifically for the specification of
norms about complex actions.
We believe that the normative constraining of a stochastic model of an agent’s
environment would be useful for various potential applications. Agents in a mul-
tiagent system are potentially subject to social norms (respectively, sanctions in
case of norm violating behavior) and need to take these norms into consideration
when they plan their behavior. If the environment is noisy and/or only partially
accessible to the agent’s perception, or - more generally - if the agent is uncertain
about the state of its environment, it needs to maintain a stochastic model of
this environment and act in dependency from uncertain beliefs - including the
compliance or intentional noncompliance with any of the norms. While it would
be possible for the agent to consult its ”norm base” (or to query the norma-
tive system in some way) at each step, it appears to be much more efficient to
embed the knowledge about norms directly into the stochastic decision model
of the agent, in terms of expected positive or negative rewards in case of norm
obedience or failure to do so, respectively.
Although we do not propose directly implementable technical solutions in this
paper, it is hoped that this work is a useful contribution to a discussion about
the usefulness and feasibility of approaches from norm research and formal logic
in the context of stochastic uncertainty modeling, and vice versa.

The remainder of this work is organized as follows: the next section describes
the deontic logic we use to represent behavioral norms. Section 3 provides a brief
introduction of POMDPs. Section 4 outlines and discusses various possibilities
for the logical constraining of POMDPs using our formal framework. Section 5
concludes.

2 Representing Norms Using Dynamic Logic

We use Propositional Deontic Logic (PDeL) [1] to represent the norms [10] which
the agent is subject to as well as the agent’s knowledge. PDeL is a variant of
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Propositional Dynamic Logic (PDL) [14, 2], and has as such properties which
are very handy in our context: it is not only a well-researched language with a
sound axiom system, but its Kripke-style semantics is also relatively close to the
representation of Markov processes we will use later. More precisely, our seman-
tics of PDeL uses Kripke structures where the meaning of a certain construct
is defined in terms of the current state and actions which define transitions to
one ore more other states. We will use this later to constrain a Partially Ob-
servable Markov Decision Process (POMDP) [4, 8, 13]. Furthermore, PDeL deals
well with conflicting obligations and avoids several paradoxes known from other
deontic logics [1].

And finally, it can be shown that certain description logics are syntactic
variants of PDL [3], a fact which might be useful in order to represent PDeL
encodable norms and knowledge on the Semantic Web. However, we have not
investigated this possibility in this work.

PDeL is a normal modal logic K with additional axioms for actions. The only
modal operator [α] has more or less the same meaning as in standard dynamic
logic and corresponds to an action-annotated necessity multi-modality �action.
I.e., [α]φ denotes a sufficient precondition for φ after action α has been per-
formed. Obligation, permission and prohibition are derived from this modality
together with a special proposition V which is used as a marker for undesir-
able states. Although this appears at a first glance as a kind of work-around
compared to deontic logics with a dedicated deontic modality, it is actually an
elegant solution which nicely reflects the agent’s rationale for observing a norm
and furthermore allows for a straightforward mapping of Kripke states to the
reward-annotated (i.e., more or less desired) states of a POMDP. We are aware
of the limitations arising from the fact that our logical framework (but of course
not the POMDPs) only has neutral and undesirable states but cannot express
positive rewards directly. That is, we can only model negative sanctions. Future
versions might overcome this limitation.

We assume in this paper that there is a single agent which would be nega-
tively sanctioned if it would not observe all given norms as far as possible (that
is, under the provision that the respective desired states are reachable), and that
all norms are equally preferred. However, there is no principled reason why these
assumptions could not be dropped, at the price of a technically somewhat more
complex model.

In the following, we present an abbreviated account of PDeL; for full details
please refer to [1]. First, we introduce the following sets:

– A non-empty set Act of action expressions. Although PDeL is not identical
with PDL, we make use of the PDL terminology and refer to the elements
of Act as programs.

– A non-empty set Act0 of atomic actions.
– A non-empty set Φ of formulas.
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which are the smallest sets satisfying the following conditions (with α, α1, α2 ∈
Act, φ, φ1, φ2 ∈ Φ):

1. A0 ⊂ Act
2. ∅ ∈ Act, Any ∈ Act (∅ stands for ”failure” (an impossible action with no

successor state), Any for ”any actions” (some non-deterministically choosen
atomic actions are performed simultaneously.))

3. α1;α2 ∈ Act (sequential composition)
4. α1 ∪ α2 ∈ Act (choice. Perform either α1 or α2.)
5. α1&α2 ∈ Act (joint action. Perform α1 and α2 concurrently.)
6. φ→ α1/α2 ∈ Act (conditional action. If φ holds in the current state, perform
α1, and α2 otherwise.)

7. α ∈ Act (negated action. Not action α)
8. V ∈ Φ (the special proposition which marks ”unpleasant states”)
9. φ1 ∨ φ2, φ1 ∧ φ2, φ1 → φ2, φ1 ≡ φ2,¬φ ∈ Φ

10. [α]φ,< α > φ ∈ Φ (with <> being the dual of [], with σ |=< α > φ ⇔def

σ |= ¬[α]¬φ)

Norms can be specified using the following abbreviations:

Prohibition σ |= Fα⇔def σ |= [α]V (we say that it is forbidden to do α)
Obligation σ |= Oα⇔def σ |= Fα (we say that the agent is obliged to do α)
Permission σ |= Pα⇔def σ |= ¬Fα (we say that it is permitted to do α)

2.1 Semantics and Axioms of PDeL

The Kripke-style semantics, based on the semantics of PDL, is outlined in Sec-
tion 4.1.

Axioms (in addition to those of propositional logic):

[α](φ1 → φ2)→ ([α]φ1 → [α]φ2) (1)
[α1;α2]φ ≡ [α1]([α2]φ) (2)

[α1 ∪ α2]φ ≡ [α1]φ ∧ [α2]α (3)
[α1]φ ∨ [α2]φ→ [α1&α2]φ (4)

[φ1 → α1/α2]φ2 ≡ (φ1 → [α1]φ2) ∧ (¬φ1 → [α2]φ2) (5)
< α > φ ≡ ¬[α]¬φ (6)

[α1;α2]φ ≡ [α1]φ ∧ [α1][α2]φ (7)
[α1]φ ∨ [α2]φ→ [α1 ∪ α2]φ (8)

[α1&α2]φ ≡ [α1]φ ∧ [α2]φ (9)

[φ1 → α1/α2]φ2 ≡ (φ1 → [α1]φ2) ∧ (¬φ1 → [α2]φ2) (10)
[α]φ ≡ [α]φ (11)

[∅]φ (12)
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3 Partially Observable Markov Decision Processes

Partially Observable Markov Decision Processes (POMDPs) model an agent’s
decision problems in some environment where the agent’s perception is limited
or noisy [4, 8, 13]. The primary goal of the agent is to find an optimal action
policy, that is, to find a sequence of decisions regarding its behavior such that
its reward is maximized.

Formally, a POMDP is a tuple (S,A0, T,R,O,Ω), where

– S is a finite, non-empty set of world states, denoted in this paper as ”states”
or ”Markovian states” (the latter in demarcation from the larger set of world
states used in the Kripke structures),

– A0 is the finite set of atomic actions,
– T : S ×A0 → Π(S) is the state-transition function. For each state and each

(atomic) agent action a ∈ A0 it yields a probability distribution over states.
T (σ, a, σ′) stands for the probability that the agent ends in state σ′ given it
starts in state σ and performs atomic action a.

– Ω is the set of all possible observations the agent can make in its environment.
– R : S ×A0 → R is the agent’s reward function. It yields for each action and

each state the immediate reward R(s, α) for taking this action.
– O : S ×A0 → Π(Ω) is the observation function, which gives for each action

and each resulting state a probability distribution over possible observations.
O(σ′, a, o) stands for the probability of making observation o after perform-
ing atomic action a ∈ A0 and ending with this action in state σ′.

We use the same symbol A0 for the set of atomic actions in PDeL, since
both sets are actually identical in our framework. S should correspond to a set
of states (worlds) in the Kripke-structures (cf. the next section).

The next state and the reward depend only on the current state and the
performed action. That is, POMDPs fulfil the Markov property.

A POMDP models an uncertain part of the agent’s subjective and dynamic
beliefs about a noisy environment in which the agent takes action. However,
we do not make this explicit in our logical framework (which would require us
to introduce inter alia a doxastic modality and a probability distribution over
states, as in, e.g., [9]). Instead we will later update a given, inaccurate POMDP
with certain knowledge from our PDeL knowledge base (KB). The KB and the
POMDP can then either co-exist, or only the POMDP is maintained.

Given a POMDP, the agent’s tasks are i) to update its belief state in de-
pendency from its previous belief state, the agent’s current observation, and the
agent’s last action and ii) to generate optimal actions, depending on the belief
state and expected rewards.

A belief state is a probability distribution over world states. It can be seen
as a roundup of the agent’s initial belief state updated by its past experiences.
Because of this, it is not required to take into account the history of past actions
and observations explicitly for decision making. However, there are infinitely
many belief states.
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Formally, a belief state is a function b : S × [0; 1] and b(s) is the probability
that the agent is in state s, with

∑
s∈S b(s) = 1.

Computing a new belief state b′ = τ(b, α, o) given the old belief state b,
an action α and an observation o (state estimation) is not very complicated.
τ(b, α, o) is called the belief state transition function.

b′(s′) = Pr(s′|o, α, b) (13)

=
Pr(o|s′, α, b)Pr(s′|a, b)

Pr(o|α, b)
(14)

=
Pr(o|s′, α)

∑
s∈S Pr(s

′|α, b, s)Pr(s|a, b)
Pr(o|α, b

(15)

=
O(s′, α, o)

∑
s∈S T (s, α, s′)b(s)

Pr(o|α, b)
(16)

The belief states together with their updating function form a certain kind
of observable Markov Decision Process, a so-called continuous state space belief-
MDP. This insight is crucial for solving a POMDP, since it allows to formulate
the solution of the POMDP (i.e., the optimal behavioral policy) as the solution
of this kind of MDP.
The belief-MDP is defined as a tuple (B,A0, τ, r), with:

– B being the set of belief states, as defined above,
– A0 being the same action set as for the POMDP,
– τ being the belief state transition function, and
– r : B ×A0 → R, the reward function of the belief states, with
r(b, a) =

∑
s∈S b(s)R(s, a) (R is the agent’s reward function as defined for

the POMDP, i.e., operating on actual world states instead of uncertain beliefs
about such states).

The so-called optimal value function V ∗ finally yields the agent’s subjective value
of being in a certain belief state. Many POMDP solving approaches compute or
approximate this function using dynamic programming updates of sub-optimal
value functions and derive from the optimal (or good enough) value function the
optimal (or good enough) action policy (e.g., [4, 13]). There are also algorithms
which search the space of policies directly for the optimal policy (e.g., [8]). The
latter type of algorithms nevertheless also requires to know the corresponding
value functions of policies, in order to evaluate policies and to single out the
optimal policy (or a good enough approximation). The following recursive defi-
nition of V ∗ is called the dynamic programming equation of the POMDP (γ is
a discount factor):

V ∗(b) = maxα∈A0(r(b, a) + γΣo∈OPr(o|b, a)V ∗(τ(b, a, o))) (17)

Unfortunately, the belief-MDP is over a continuous state space, which poses
various problems. But fortunately, POMDP solvers can exploit the fact that the
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MDP for which the optimal value function is a solution is a converted POMDP,
a fact which yields certain useful properties of the function.

4 Modal-Logical Constraining of POMDPs

We assume a given POMDP and a knowledge base (KB) of PDeL assertions.
The task of combining these two in order to retrieve a new, normatively and
assertively constrained POMDP is twofold:

– Obtaining a constrained belief estimator from prior knowledge in the KB
and

– pruning the set of potentially optimal action policies when solving the POMDP
in order to observe the the norms encoded in the KB.

4.1 Assigning Propositions to Markovian States

The states of a POMDP don’t tell us anything about the values of the propo-
sitional variables in the respective states. In contrast, the KB basically tells us
which propositions hold after a certain program has terminated. A Kripke model
K is defined by K = (K,mK, |=), with (K,mK) being the Kripke frame consisting
of the set of world states K, and the meaning of each atomic formula and each
atomic action, given as a mapping mK of this formula/action to a subset of the
world states (that is, the states where the formula holds) or set of pairs of world
states, respectively (that is, the ”input state” which is mapped to the ”output
state” via an action). mK can be extended inductively to work with any formula
and complex actions (programs) too.

Formally:

mK(ψ) ⊂ K foreach ψ ∈ Φ, and (18)
mK(α) ⊂ K ×K foreach α ∈ Act (19)

With this, we can define the semantics of PDeL formulas based on the se-
mantics of PDL [2], like:

σ |= [α]ψ ⇔def ∀σ′ : if (σ, σ′) ∈ mK(α) then σ′ |= ψ (20)

Theoretically, we could use this semantics directly i) to update the POMDP
state transition matrix with definite transitions, ii) to set an element (subjective
state probability) of a POMDP belief state to zero if the respective state would
be logically impossible, and iii) to gain knowledge about the values of proposition
variables after each belief update. In case i) and ii), the given POMDP is treated
as possibly partially invalid, and the invalid parts are precisely those which are
”overwritten” with definite prior knowledge deductively obtained from the KB.
We treat approaches iii) and i) as mutually exclusive: iii) ”believes” the result
of the POMDP state estimation, whereas i) possibly extinguishes a result of the
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probabilistic state estimation.

ii) is expressed as follows:

if σ |= [a]ψ, a ∈ A0 and σ′ 2 ψ then b′(σ′) = 0, (21)

with b′ = τ(b, a, o), for any observation o. In addition, a re-normalization of the
probabilities of the other states is required, so that the sum of the probabilities
becomes 1 again - which means that it is not possible to make all states impos-
sible states at the same time!

For iii), we need to extend our notion of belief states to logically-annotated
belief states bΦ : S × ([0; 1]× Φ). Then we have the rule

if σ |= [a]ψ, a ∈ A0 then b′Φ(σ′) = (
O(σ′, a, o)

∑
σ∈S T (σ, a, σ′)b(σ)

Pr(o|a, b)
, ψ), (22)

for any observation o.

The retrieval of formal knowledge about a possible state during state esti-
mation can be useful for the acting agent, provided it can interpret the logical
annotations.

i) can be expressed using the rule

if σ |= [a]ψ, a ∈ A0 and σ′ 2 ψ then T (σ, α, σ′) = 0 (23)

(again, this would require normalization of the belief state to make it represent
a probability distribution).

Practically, it would make sense to consider only formulas which hold in all
states:

|= ψ ⇔def ∀σ ∈ K : σ |= ψ

The constraining of belief updates does then not depend on the respective
previous states anymore.

But still the approaches i)-iii) have obviously two shortcomings: firstly, we
do not know the mapping of Markovian states to states in K. Secondly, they
work only with atomic actions.

The first problem could be solved by considering POMDPs with logically-
annotated Markovian states (not to be confused with the logically-annotated
belief states above). If we would annotate a subset of the states with a set of
formal assertions each, we could nullify those parts of the current belief state
which are logically inconsistent w.r.t. the KB. Let φ : S → 2Φ be a function
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which maps a Markovian state to a (possibly empty) set of assertions which are
known by the agent to hold in this state. Then

if |= [a]ψ, a ∈ A0 and |= ¬(ψ ∧
∧

f∈φ(σ′)

) then b′(σ′) = 0, (24)

with b′ = τ(b, a, o), for any observation o and any previous belief state b.

Getting rid of the second shortcoming would be a bit more tricky: we deal
with state transitions instead of action histories: each Markovian state is a suf-
ficient statistics in the sense that the probability distribution of successor states
depends only on this state (and the current action and observation) and not on
any preceding states or action history.

4.2 Constraining the Optimal Action Policy using Norms

Each atomic actions sequence which leads to a world state where the special
proposition V holds should be removed from the set of candidates for the opti-
mal action policy, or the value (utility) of such states should be reduced. With
this, it becomes more unlikely than otherwise (but not necessarily impossible)
that the solution of the POMDP tells the agent to run into a norm-violating
state.

In the most simple case, the agent is forbidden to take a single atomic action.
In POMDP terms, this can be taken into account by reducing the respective re-
ward of performing this action in any state:

if |= Fa, a ∈ A0 then ∀σ ∈ S : R(σ, a) = %. Here, the reward is simply set
to some negative value % in order to make action a less desirable.

We could alternatively annotate all states but one which are reachable via a
with ¬V . However, a POMDP does not allow us to make a certain action always
lead to an ”impossible” Markovian state.

The general case of prohibited (obligatory, allowed) complex actions is sig-
nificantly more complicated:

The sequences of atomic actions described by a certain action expression can
be represented as so-called s-traces (synchronicity traces) [1]. To represent the
set of all s-traces for a certain action expression, we use the notation [[α]]. The
exact definition of this function can be found in [1]. Each s-trace s ∈ [[α]] is a
sequence S1, ..., Sn, ... of so-called synchronicity sets (s-sets) Si. A single s-set if
a subset of Act0. Intuitively, a single s-set represents a number of atomic actions
which are performed concurrently (if the set contains more than one action), or
a single atomic action. We call each possible sequence of atomic actions within
[[α]] a run of α.
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To enact the prohibition of a complex action α using its s-traces, we propose
the following alternative approaches:

1. Modify the optimal policy directly, in order to make the execution of any
action sequence within [[α]] impossible.

2. Modify (decrease) the values of the belief states which are reachable using
action sequences in [[α]].

3. Modify (lower) those vectors which contribute to the value function com-
puted during value or policy iteration and which represent an action within
an action sequence in [[α]] (see below).

Both policy search and value function search algorithms for solving a POMDP
require the computation of value functions (cf. Section 3), from which the opti-
mal policy can be derived directly. For approach 1, we assume that the optimal
policy (ignoring norms) is already given, in form of a finite-state machine (FSM).
A FSM can always be used to represent the optimal behavioral policy of a finite-
horizon POMDP, which appears to be a reasonable restriction in our context
[8].

Fig. 1. A simple FSM representing a policy

Figure 1 depicts a FSM which represents a policy for some POMDP as fol-
lows: each node (FSM state, labeled with a number inside of the respective node)
is annotated with an action ai which the agents takes in this FSM state. If the
policy is optimal, this action is optimal in the respective FSM state. State 1
is the start state. Each arc represents a possible observation zi following the
respective action and leads to a new FSM state. There can be more FSM states
than world states.

Assume we have |= F (a1; a1); a2. The s-trace of the forbidden program would
then simply consist of a single, deterministic run of atomic actions. Removing
this sequence from the FSM could yield the new FSM depicted in Figure 2 (with
the dashed arc not being part of the FSM). Of course, this FSM is just one
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Fig. 2. An updated FSM representing a policy with forbidden paths

among many possible updated FSMs. The major shortcoming of approach 1 is
obviously that the agent is not prevented from starting a forbidden action se-
quence. The sequence is simply cut off before it finishes and makes the agent
stop then. Re-directing the agent to some random state instead appears not to
be an improvement.

Approach 2 requires us to keep track of actions during the iterative belief state
updates, provided the used POMDP solving algorithm allows us to do this. We
assume again that |= F (a1; a1); a2. The set of belief states the agent might end
in after performing run a1 ◦ a1 is computed as Ba1◦a1 = {τ(τ(bs, a1, o1), a1, o2)
for all possible observations oi and initial belief states bs}.

After(!) having computed the optimal value function, the agent can incre-
mentally update its belief state and compute at each step the optimal action
from the optimal value function. Should the agent run into one of the belief
states in Ba1◦a1 , and the optimal action policy (ignoring norms) suggests to
take action a2 next, it could, as with approach 1, avoid doing so. Again, this
approach is rather unconvincing. To be more interesting appears a reduction of
the values of the belief states {τ(τ(τ(bs, a1, o1), a1, o2), a2, o3)} during the search
for the optimal value function. This way, the agent is more likely to be prevented
of running into a forbidden sequence of acting, since the value of a certain state
includes the values of succeeding states.

Finally, approach 3 makes use of the fact that each state of a (possibly yet
sub-optimal) FSM representing a policy during the search for an optimal policy
(using one of the POMDP solvers which search the policy space directly for the
optimal policy) corresponds to a vector vi(s) of the piecewise linear and convex
value function which can be computed from this FSM under certain conditions
[8]. The value function is the solution of the following system of equations, with
one equation for each pair of FSM state i and Markovian state σ:

vi(σ) = R(σ, a(i)) + γ
∑
σ′,z

Pr(σ′|σ, a(i))Pr(z|σ′, a(i))vl(i,z)(σ
′) (25)
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Performing a forbidden sequence of atomic actions as determined by the FSM
and observations yields a resulting FSM state which corresponds to exactly one
of these vectors vi, which is associated with the optimal action in this state.
Lowering this vector, i.e., modifying the value function at this place, would lower
the value of this FSM, and would, as we assume, lead in the next policy search
step to a FSM which is closer to norm-observing behavior. The advantage of this
approach is that from a modified set of vectors (which is then in addition also
improved by a dynamic programming update) a new FSM can be constructed
very easily [8]. However, this approach would require extensive experimental
evaluation in order to judge whether it would actually make sense in a concrete
scenario.

5 Conclusion

In this extended abstract we have proposed various initial means for the embed-
ding of knowledge about norms and formal knowledge in general into POMDPs,
hoping to initiate a new line of future research. Although we have hopefully
given some initial insight into the challenge, a lot of work remains to be done:

– Identification of application scenarios which are on the one hand rich enough
to allow for a more or less realistic normative system, but which are on the
other hand still approachable by contemporary POMDP solver.

– Detailed empirical and theoretical analysis of the constraining task, with a
detailed comparison of the proposed and further ways of incorporating norms
into POMDPs and stochastic decision processes in general.

– Detailed empirical and theoretical analysis of how the constraining affects
the POMDP solving algorithm.

– Consideration of more complex kinds of norms, such as norm hierarchies and
preferences among norms.
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Abstract. The design of self-organizing systems and particular multia-
gent systems (MAS) is a non trivial task. On the one hand the particular
system should show a dynamic behavior according to its environment,
to gain a central advantage of distributed systems, on the other hand
it has to act on behalf of its user and the final results have to possess
acceptable quality. Especially the quality of the overall system’s behavior
can become a critical issue, if the subsystems have their own objectives
they have to optimize. In this paper we present a methodology that can
be integrated into MAS for adapting their behavior allowing local op-
timization while respecting an acceptable level of the system’s global
goals.

Keywords. balancing autonomy, multiagent simulation, manufacturing
control

1 Introduction

In the last years, a trend towards decentralized designs of decision support and
decision taking systems can be observed. In contrast to the centralized systems,
it is in practical cases not possible to compute optimal results according to a
global objective function. Resulting plans and schedules will be suboptimal [1,2].
Even so decentralized control systems are in the focus of current discussion and
research. The reason is that (cf. [3])

– systems with higher flexibility and reliability can be designed and
– decentralized control becomes part of current company organization.

But it turns out to be hard to design systems that on the one hand show a flexible
behavior and on the other hand act on behalf of the user and reach acceptable
solution quality in comparison with e.g. centralized solution approaches. This is
especially the case if the entire systems comprise of subsystems that have a local
objective they try to optimize. Note that this is a typical situation if the entire
system was developed following the divide and conquer engineering paradigm.

The idea of self-organizing systems have attracted attention by researchers
that try to overcome this design problem by allowing the system to self-configure

Dagstuhl Seminar Proceedings 09121 
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itself to the given environments and given objective functions. In the following
we look only at such systems. That is each agent has its local goals and objective
function that it tries to optimize while achieving its goals. Moreover the agents
form a MAS that have to fulfill global goals and to optimize a global objec-
tive function within a dynamic environment. As a consequence of the complex
problem and the dynamic environment a flexible solution, e.g. based on a MAS,
has advantages to classical centralized optimizing approaches. Norms have been
identified to be a valuable method to allow multiagent systems (MAS) flexible
behavior still having a hand on the overall system behavior. But the norm de-
sign and system configuration respectively calibration can become a complex
and time consuming issue. The idea of dynamic adaptation is that the system
adjusts itself seamlessly to the given situation [4]. In this paper we outline a
method that can be integrated into a MAS that gives the ability of dynamic
adaptation respecting local and global goals and objectives. Local entities can
perform their actions, and if necessary adapt, enforced or not, their behavior
towards the global objective. This step is called strategy revision. If this revi-
sion is not sufficient for some reason, a more general scheme is applied. Based
on sociologically concepts we propose a reflection phase that allows to change
the existing strategy revision strategies or even objectives. Within this method
norms can play an important role, as they can not only be used to control the
system directly, but can be used guiding the reflection phase as well.

As a step within this methodology we present one possible implementation
of the strategy revision step, called regulated autonomy [5]. This is a centralized
rule-based implementation of a strategy revision step. For the evaluation of this
approach we use a very simple manufacturing scenario. A simple scenario is
chosen to provide competitive results of this technology with other classical
approaches, that typically cannot be applied to complex problems as they can
be found in practice.

This paper is structured as follows. In the next section we outline related work
concerning with the notion of autonomy in MAS and the adaption of autonomy
at runtime. The related work for norm-based systems is left open for further
discussion. In section 3 the principles of reflections are presented. The concept
of regulated autonomy, already developed as an efficient implementation of a
strategy revision strategy is presented in section 4. Finally we summarize and
sketch possible issues to be addressed in future research.

2 Related Work

In this section we review existing work on autonomy and adaption of autonomy
in MAS. The special focus of norms is left open for further discussions during
the workshop.

2.1 Autonomy in MAS

In the literature, there are discussions on different levels of autonomy [6,7]. The
definition of autonomy in the literature ranges from very wide autonomy [8] to
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restricted cases [9].
In early multiagent research, Castelfranchi and Conte [8] discuss a very high
degree of autonomy, such as the influence of predefined norms, behavior patterns,
or procedures is irrelevant, and the relevance is very low with respect to the
action-selection process within an agent, respectively.
A more theoretical and interdisciplinary approach to define the term autonomy
was presented by Bertschinger et al. [10]. Their key question is how autonomy
can be measured. Therefore, they use an information theoretic perspective which
bases on the distinction between the system and its environment. Depending on
the ability of the system to influence the environment, Bertschinger et al. present
different metrics for autonomy.
Additionally, the scope of autonomy – or more precisely the scope or the context
autonomy refers to – is discussed by Kirn [11]. Kirn points out that autonomy
can address different aspects:

– association autonomy (decision freedom towards the participation of agent
societies)

– cooperation autonomy (towards the participation in cooperative processes)
– execution autonomy (local execution)
– resource autonomy (disposition of local resources)
– communication autonomy (this is the participation in communication)

In each of these aspects, the autonomy can be specified for the agent.
Bradshaw et al. [12] define the term autonomy in respect to their research about
adjustable autonomy. From their perspective, autonomy is mainly characterized
by two aspects:

– self-sufficiency, as the capability of an entity to take care of itself and
– self-directedness, as the freedom from outside control.

According to Bradshaw et al., autonomy can be related to two dimensions. A
descriptive dimension which describes if the agent is capable to perform an ac-
tion and a prescriptive dimension describing if the agent is allowed to perform
an action.
Barber and Martin [13] define and measure autonomy as the interdependency of
an agent in its decision making to achieve its goals. An agent is autonomous if
it is capable to pursue some goals without interference by other agents.
Luck et al. [14] present a strong definition of autonomy. According to them
the self-generation of goals is the defining characteristic about autonomy. These
goals are generated or derived from motivations an agent has encoded.
Schillo [15,16] introduces a “Framework for self-Organization and Robustness in
Multiagent systems” (FORM) where delegation is the main concept in order to
describe organizational relationships. He distinguishes between task and social
delegation and four different mechanisms for these two delegation modes (Eco-
nomic Exchange, Gift Exchange, Authority, and Voting). He defines a spectrum
of seven organizational forms for groups of agents by using the delegation types
and modes as building blocks: Single Autonomous Agents, Task Delegation, Vir-
tual Enterprise, Cooperation, Strategic Network, Group, and Corporation.
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Nickles et al. [17] present a specification schema for computational autonomy
based on sociological role theory, namely RNS (“Roles, Norms, Sanctions”), in
order to “support developers of agent-oriented applications in specifying the kind
and level of autonomy (...)”. The viewpoint of the authors is that agents act as
role owners encountering certain norms in a social frame which regulates the
behavior of the agents. In RNS, three types of norms (“permissions, obligations,
and interdictions”) as well as two sanction types (“reward and punishment”) are
distinguished [17]. The sanctions can be specified explicitly by the designer and
thus provide means to control the autonomy of the agents.
Nevertheless, autonomy is a property, which may lead to partially unwanted
system states resulting from conflicting or inconsistent goal sets. The dynamic
and complex interdependencies of autonomous subsystems can lead to systems
whose organization emerges at runtime. Thus, software engineers of autonomous
systems may not consider any possible constellation of subsystems at design
time.

2.2 Runtime Adaptation of Autonomy in MAS

The runtime adaptation of autonomy in MAS is addressed by researchers with
different application scenarios in mind, thus different terminologies evolved.
From the research about mixed-initiative interactions where agents and humans
work together, mostly agents are guided by human operators. In this area the
term adjustable autonomy has been established. Work about adjustable auton-
omy can be found, for instance, in [18,15,19,12]. Here we detail the approach
by Bradshaw et al. [12]. The goal of adjustable autonomy is to maximize the
opportunities for local adaption to unforseen problems and opportunities while
assuring humans that agent behavior will be kept in desired bounds. Therefore
different adaptations are possible:

– adjusting permission, add or remove rights
– adjusting obligations, add or remove tasks
– adjusting possibilities, add or remove skills
– adjusting capabilities, add or remove resources

These adjustments are done by the human operator, at his will.
With a slight different notion, but with the human-agent interaction focus Urbig
and Schröter [20] describe the concept of “dynamic degrees of delegation” from
“Full Autonomy to Manual Control”. The work is based on the C-IPS approach
which addresses different aspects of negotiation decisions in agents (C-IPS stands
for external constraints (C), negotiation issues (I), partners (P), and negotiation
steps (S)). Basically, agents would act with full autonomy. In order to let the user
control the agent, Urbig and Schröter introduce means to distinguish between
situations where the user should be involved and situations that can be handled
autonomously by the agent. The degree of delegation can be specified for different
decision types and dynamically changed during run time.
In the context of robotics, different levels of autonomy are discussed by [21].
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Gancet and Lacroix define five levels of autonomy and define for each level
which abilities and permissions a robot has with the given autonomy level.
Mailer [22] addresses the area of distributed problem solving where he found that
it is useful to dynamically centralize the solving of overlapping subproblems in
order to find solutions more quickly. He calls this approach mediation-based as
it combines techniques from centralized and decentralized problem solving.
Barber et al. [23] present the concept of “Dynamic Adaptive Autonomy”. This
allows agents to switch autonomy within a defined spectrum. Thereby according
to their notion of autonomy, presented above. The degree of autonomy depends
on the goal. Thus for different goals of an agent, it can have different levels of
autonomy.

Our approach is also of the second kind allowing a runtime adaptation of
autonomy during runtime. An superior entity can force agents to follow certain
strategies or to perform actions needed to obtain the desired overall system’s
performance.

3 Reflection

As mentioned in the introduction, there are challenges in engineering multia-
gent systems with respect to their properties of autonomy and interaction. The
key reasons for applying agent technology in complex economical environments
can be found in the high level of modularization and information hiding as well
as potential for positive emergent effects. The question arises, if such an emer-
gent behavior, i.e., a macroscopic behavior on the basis of microscopic interac-
tions, is beneficial for the global system. In the beginning of multiagent research,
this assumption was stated as a fact. Recent research focuses on sophisticated
design of the autonomous subsystems to enable a positive effect of the whole
system [24,25]. De Wolf and Holvoet [26] propose an approach for engineering
self-organizing systems. Their approach is based on the analysis of the system
after implementation and before delivery. Because of the well-known complexity
of testing concurrent systems, the approach seems to be adequate for systems
with a moderate amount of internal states, where no extensive internal states or
static strategic behavior exists. However, sophisticated engineering is required
to ensure the desired behavior on the basis of autonomous systems respectively
balancing microscopic and macroscopic behavior.

In social science, the phenomena of microscopic-macroscopic interaction is
widely researched [27,28,29]. Norms and regulations are introduced in a social
system to establish a better system performance. In the following we introduce
a methodology which is based on results from social science by Luhmann [30].
The theory focusses on reorganization processes in societies and specifies dif-
ferent steps of individual and social reflection. In this work, a system has the
ability to reflect about its overall performance explicitly within negotiations.
In an interdisciplinary research [1], we conceptualized a social mechanism as
an explanatory model for societies based on the work of [30]. On this basis, a
conceptual model for reflection in multiagent systems has been developed.
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The multiagent conceptualization of reflection is based on the assumption
that a multiagent system was chosen deliberately as a system design. In conse-
quence, autonomy of the agents is not a side effect but one of the key features. If
dependability on the multiagent level is in question, then some dynamic mecha-
nism is required, which allows for context-dependent adjustment of the individ-
ual behavior. As the autonomy is a key feature, the adjustment of the individual
behavior should be as restricted as possible. Furthermore, we aim at a reflection
methodology, which preserves local autonomy even by global adjustment.

In economical systems we know these mechanisms for a long time. In the last
decades, there is a trend in business administration manage people by delegating
tasks with the definition of the context rather than supervising each step of
execution. If the context or the boundaries are not met, the management is
involved again to handle the exception. Keeping this in mind, the methodology
of reflection consists of four steps as illustrated in Figure 1.

Fig. 1. Reflection in multiagent systems

The process of reflection is divided in two different parts. In the observation
and analysis step, the individual agents are reflecting their behavior with respect
to the global goals. The step of joint solution and institutionalization includes a
group of agents which try to solve a problem cooperatively.

The approach is based on a group of agents which can be formed dynami-
cally in runtime or specified at design-time. In either way, it is assumed, that
the group of agents have some common goals and the fulfilment of this goal can
be measured by the group or some other instance with communication capabil-
ities. Furthermore, for each goal, there are different levels of goal satisfaction,
i.e., 0 implies that a goal is completely unsatisfied and 1 indicates that the goal
has been satisfied. For utility-based goals a continuous scale is assumed while
for logic-based goals the goal-satisfaction is a binary function. Additionally, we
assume that the consideration of global goals in every deliberation step would be
inadequate with respect to computational or memory consumption. The basic
assumption is that global system goals are known and that it is possible to evalu-
ate a situation to what extent the target setting is achieved, i.e., a system has the
ability to reflect about its overall performance explicitly within negotiations. It
is distinguished between three color codes: target accomplished (“green”), target
slightly failed (“yellow”), and target failed (“red”).
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The global context emerges from a cooperation or a collaboration. In a co-
operation, agents does not have to fulfill the criteria of individual rationality as
introduced by Sandholm [31], i.e., agents may ”suffer” by a joint solution with-
out compensation. In collaborations, i.e., in settings, where competing agents
are cooperating for a specific task, process, or time period, it is important, that
the solution strategy is modeled in such a way, that each agent meets individual
rationality, i.e., the agents are better off participating in the group than not
participating.

In the observation stage, each agent reports its performance to a blackboard
or central entity (group coordinator) within the group. The blackboard or the
group coordinator computes the goal satisfaction on the basis of the individ-
ual results. Together with the concrete satisfaction level, the goal satisfaction
is available for any agent of the group. If the goal-satisfaction is classified as
deficient, the agents should adjust their operational autonomy. Doing so, the
agents should plan the next action or action sequence under consideration of the
global goal. E.g., assume that a BDI agent has instantiated an intention and
associates this intention with a partial global plan. The agent would now choose
a linearization of the plan which is most suitable for supporting the global goal.

The observation stage is used for normal system performance. If the system
performance with respect to a specific goal is critical (or cannot be achieved com-
pletely for some time, code “yellow”), the multiagent system’s state changes to
the analysis stage. In this stage, the agents have to communicate their currently
pursued goals. The analysis is performed by the agents cooperatively or by a
central entity (group manager). The group manager has to identify the inter-
dependencies of the goal selections of the individual agents and missing system
performance on the group level. These interdependencies are then published.
Under consideration of the autonomy of individual agents, the tactical auton-
omy has to be adjusted by the agents. Each agent should consider the effects
of its goal instantiation, e.g., in our example the step of associating a plan to
intentions, with respect to the group performance.

There are situations where an uncoordinated treatment of the mismatch of
global goals by individual adaptations cannot lead to satisfying results. This can
be the case especially if many agents adapt their behavior in a similar way which
can lead to the over-achievement of one goal while the performance decreases
w.r.t. other system goals. In the case of a severe system performance, the group
of agents is transformed into the joint solution group. Here, the group manager
mediates the negotiation about individual agents’ goals. The agents are assumed
to improve their strategic autonomy, i.e., the agents instantiate those goals which
help the group performance.

The solution which has been negotiated in the group and which restored
system’s performance is generalized as a social rule for later usage in severe
situations (phase four), i.e., the experiences of phase three are made persistent
for future situations and costly computation and communication can be avoided
by handling similar situations in previous phases. For more details about this
approach see [1].
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4 Regulated Autonomy

As already mentioned the concept of regulated autonomy is an implementation
of the strategy revision, shown in figure 1. It is implemented in as a rule-based
approach with a centralized entity for monitoring. Typically for rule-based sys-
tems the reaction scheme is statically encoded.

The main idea of the concept of regulated autonomy is sketched in figure 2.
In default mode, each agent is free to select its behavior as desired (Fig. 2a).
Whenever the system performance reaches a critical state, phase two is initi-
ated. In this phase, the manager agent instructs the shop agents to change their
strategy in order to improve the system performance (Fig. 2b). Whenever the
strategy is changed, costs of the strategy adaptation is recorded. If the system’s
overall performance reaches an acceptable status, the entities are allowed to use
their own local strategies again (Fig. 2c).

Fig. 2. Autonomy vs. regulation

4.1 Scenario Settings

As in our previous work we use the job shop scenario presented in [32] and [33].
Therefore, we briefly sketch the scenario here. Figure 3 presents a schematic
overview of the scenario.

Each shop has an input and an output buffer. It offers exactly one operation.
Each job schedules its current jobs using a given dispatching rule. The rules for
the shops are assigned randomly from the set of strategies presented in Table 1.
These strategies are well known, see e.g. [34].

For simplicity reasons, transportation is not modeled explicitly. It is assumed
that enough transport capacity is always available and transportation time is
zero. The job characteristics are taken from Brennan and O [33] where the sce-
nario is used as well. In Table 2 the duration and shop sequence are summarized.
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Fig. 3. Shop layout, according to [32]

Strategy Code Description

SIRO Service in random order

FIFO First in first out

SPT Shortest processing time first

LPT Longest processing time first

WSPT Weighted SPT

Table 1. Dispatching strategies for shops

Step / job type 1 2 3 4

J1 6/1 8/2 13/3 5/4

J2 4/1 3/2 8/3 3/4

J3 3/4 6/2 15/1 4/3

J4 5/2 6/1 13/3 4/4

J5 5/1 3/2 8/4 4/3

Table 2. Process plan for different jobs, encoded as time/operation, according
to Brennan and O [33]
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There exist five different job types which differ in their processing time for
each operation and the sequence of operations needed to be performed. The jobs
choose the next shop using the shortest queue strategy.

As an objective function for the overall system we use the mean flow time.
This implies that, regarding the given dispatching rules, it is known that the SPT
dispatching rule will perform best. This eases the application of a rule-based im-
plementation of the strategy revision process. E.g., if another objective function
is used to minimize the makespan, the optimal distribution of dispatching rules
depends on the set of orders, and has to be computed for each revision process.

As already mentioned there exists one entity, called manager agent, that
supervises the overall performance. If a job is finished, the corresponding job
agent informs the manager and reports the flow time of this job. The manager
agent can monitor the mean flow time according to the jobs finished so far. If
this value falls below a specified threshold, the manager agent can order the
shop agents to work following a specific strategy. Here this is the SPT strategy
which is known to perform best in this scenario. If the actual mean flow time
reaches an acceptable range again, it can allow the shops to work according to
their locally preferred strategy.

4.2 Evaluation

The results presented in this section were computed using a time driven simula-
tion implemented as a multiagent system based on the JAVA agent development
framework JADE1.

For evaluation purposes, we use three basic settings with different control
cycles w.r.t. the overall system’s performance. In the Con01 experiments, the
current quality (mean flow time) is checked after each job. In the Con03 and
Con10 settings, the control interval is set to three and ten, respectively. For
each setting, ten different runs are performed where 100 jobs are generated and
processed. Figure 4 shows the average mean flow times for all three settings2.
The mean flow time is computed every time a job has been finished, i.e., the last
value (job no. 100) indicates the mean flow time of all 100 jobs.

Figure 5 presents Box-Whisker plots of the relative central control time, i.e.,
the ratio of time interval lengths under central control divided by the total time.
Box-Whisker presents the upper and lower quartile and the median. Therefore,
they can be used to discuss the statistically spread of the data. While the mean
central control times of setting Con01 and Con03 do not differ a lot, the mean
value of Con10 is lower indicating that in our experiments central control is
rather infrequent. Having in mind that these regulated strategies are capable to
ensure an adequate level of the overall performance (see [5]) it can be stated,
that this can be done restricting the local autonomy rarely.

1 For the Java Agent DEvelopment Framework see http://jade.tilab.com/.
2 All statistical computations as well as plots have been generated with R Project for

Statistical Computing 2.6.1, see http://www.r-project.org/.

http://jade.tilab.com/
http://www.r-project.org/
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5 Reflection and Norms

So far, we presented a methodology for the dynamic adaptation of multiagent
systems. The concept itself is – deliberately – on a rather abstract level such
that a huge variety of methods for concrete dynamic system design can be de-
rived. Thus, the presented methodology of dynamic adaptation should be rather
seen as a building block for software systems; we explicitly do not propose an
software architecture. The dynamic adaptation, i.e., the strategic management,
of autonomous software systems constitutes the center of our research agenda.
Until now we have investigated three aspects. As a first step we3 have designed
the overall methodology as an interdisciplinary model with a mapping of Luh-
mann’s concept of reflection following to strategic management of autonomous
software systems. In a second step, we4 investigated the feasibility of observa-
tion and analysis of interdependencies between local and global objectives. In
this context, we applied objectives on the basis of key performance indicators
and utility functions; the assessment of dependencies are derived automatically.
The third aspect, the implementation of the strategy revision process, has been
done as a statical rule-based approach (regulated autonomy) which has been
described briefly in previous section.

We rely on mechanisms adapted from social science. To stay in line with
this research and the terminology, the use of norms seems promising. Having
in mind the abstract concept mentioned above, there are no restrictions for the
formalism of norms to be applied.

To our point of view, it is promising to use norms for the implementation
of the following aspects of the reflection methodology. As already mentioned,
the institutionalization phase of the reflection can be implemented as norms to
conserve successful strategies persistently.

In our case study (regulated autonomy) we expect high potential of substi-
tuting the static rules by notions of norms.

The most challenging process step of our methodology is the generation joint
solutions in the recommendation phase. Various approaches like central decision
making, argumentation, negotiation are applicable. We are convinced that none
of the approaches is dominant with respect to different application domains.
Consequently, the process of finding joint solutions should be guided by norms.

Until now the discussion focussed on how to apply norms on the process
of reflection. However, we assume that there is high potential for applying our
methodology of dynamic adaptation to the evolution of norms. From a more
general perspective, this methodology can be used to enrich a model for social
simulation.

We are looking forward to discuss these issues in Dagstuhl.

3 In cooperation with the social scientist Frank Hillebrandt (University of Muenster).
4 Together with the diploma student Florian Pantke (University of Bremen).
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Abstract. Although normative systems, or social laws, have proved to be a highly
influential approach to coordination in multi-agent systems, the issue of compli-
ance to such normative systems remains problematic. In all real systems, it is
possible that some members of an agent population will not comply with the
rules of a normative system, even if it is in their interests to do so. It is there-
fore important to consider the extent to which a normative system is robust, i.e.,
the extent to which it remains effective even if some agents do not comply with
it. We formalise and investigate three different notions of robustness and related
decision problems. We begin by considering sets of agents whose compliance is
necessary and/or sufficient to guarantee the effectiveness of a normative system;
we then consider quantitative approaches to robustness, where we try to identify
the proportion of an agent population that must comply in order to ensure suc-
cess, and finally, we consider a more general approach, where we characterise the
compliance conditions required for success as a logical formula.

1 Introduction

Normative systems, or social laws, have been widely promoted as an approach to co-
ordinating multi-agent systems [11, 12, 6, 8, 1, 2]. The basic idea is that a normative
system is a set of constraints on the behaviour of agents in the system; after imposing
these constraints, it is intended that some desirable overall property will hold. One of
the most important issues associated with such normative systems – and one of the most
ignored – is that of compliance. Put simply, what happens if some system participants
do not comply with the regulations of the normative system? Non-compliance may be
accidental (e.g., a message fails and so some participants are not informed about the
regulations). Alternatively, it may be deliberate but rational (e.g., a participant chooses
to ignore the norms because it does not see them as being in its own best interests), or
deliberately irrational (e.g., a computer virus). Whatever the cause, it seems inevitable
that, in real, large-scale systems, non-compliance will occur, and it is therefore impor-
tant to consider the consequences of non-compliance. Existing research has addressed
the issue of non-compliance in at least two ways.

First, one can design the normative system taking the goals and aspirations of sys-
tem participants into account, so that compliance is the rational choice for partici-
pants [2]. Using the terminology of mechanism design [10, p.179], we try to make
! The content of this paper is also found in a paper appearing in the proceedings of the AAMAS
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compliance incentive compatible. Where this approach is available, it seems highly at-
tractive. However, given some desired objective for a normative system, it is not always
possible to construct an incentive compatible normative system that achieves some out-
come, and even where it is possible, it is still likely that large, open systems will fall
prey to irrational behaviour.

Second, one can combine the normative system with some penalty mechanism, to
punish non-compliance [4]. The advantage of this approach is that it can be applied
to most scenarios, and that it is familiar (this is, after all, how normative systems often
work in the real world). There are many disadvantages, however. For example, it may be
hard to detect when non-compliance has occurred, and in large, Internet-like systems,
it may be hard to impose penalties (e.g., across national borders).

For these reasons, in this paper we introduce the notion of robustness for norma-
tive systems. Intuitively, a normative system is robust to the extent to which it remains
effective in the event of non-compliance by some agents. Following an introduction to
the technical framework of normative systems, we introduce and investigate three ways
of characterising robustness. First, we consider trying to identify coalitions whose com-
pliance is necessary and/or sufficient to ensure that the normative system is effective.
We characterise the complexity of checking these notions of robustness, and consider
cases where verifying these notions of robustness is easier. In addition to verification
we consider the complexity of robust feasibility of a normative system: given a reli-
able coalition, does there exist a normative system which is effective whenever that
coalition complies? We then consider a more quantitative notion of robustness, called
k -robustness, where we try to identify the number of agents that could deviate and still
leave the normative system effective. Finally, we consider a more general, logical ap-
proach of characterising robustness, whereby we define a predicate over sets of agents,
such that this predicate characterises exactly those sets of agents whose compliance
will ensure the success of the normative system. We conclude with a brief discussion,
including some pointers to related and future work.

2 Formal Preliminaries

In this section, we present the formal framework for normative systems that we use
throughout the remainder of the paper. This framework is based on that of [8, 1, 2],
which is in turn descended from [11]. Although our presentation is complete, it is suc-
cinct, and readers are referred to [8, 1, 2] for details and discussion.

Kripke Structures: We use Kripke structures as our basic semantic model for multi-
agent systems [5]. A Kripke structure is essentially a directed graph, with the vertex
set S corresponding to possible states of the system being modelled, and the relation
R ⊆ S × S capturing the possible transitions of the system; S 0 ⊆ S denotes the
initial states of the system. Intuitively, transitions are caused by agents in the system
performing actions, although we do not include such actions in our semantic model (see,
e.g., [11, 8] for models which include actions as first class citizens). An arc (s , s ′) ∈ R
corresponds to the execution of an atomic action by one of the agents in the system.
Note that we are therefore here not modelling synchronous action. This assumption



is not essential, but it simplifies the presentation. However, we find it convenient to
include within our model the agents that cause transitions. We therefore assume a set
A of agents, and we label each transition in R with the agent that causes the transition
via a function α : R → A. Finally, we use a vocabulary Φ = {p, q, . . .} of Boolean
variables to express the properties of individual states S : we use a function V : S → 2Φ

to label each state with the Boolean variables true (or satisfied) in that state.
Formally, an agent-labelled Kripke structure (over Φ) is a 6-tuple:

K = 〈S ,S 0,R,A,α, V 〉,

where: S is a finite, non-empty set of states; S 0 ⊆ S (S 0 '= ∅) is the set of initial states;
R ⊆ S × S is a total binary relation on S , which we refer to as the transition relation;
A = {1, . . . ,n} is a set of agents; α : R → A labels each transition in R with an agent;
and V : S → 2Φ labels each state with the set of propositional variables true in that
state.

We hereafter refer to an agent-labelled Kripke structure simply as a Kripke struc-
ture. A path over a transition relation R is an infinite sequence of states π = s0, s1, . . .
such that ∀u ∈ N: (su , su+1) ∈ R. If u ∈ N, then we denote by π[u] the component in-
dexed by u in π (thus π[0] denotes the first element, π[1] the second, and so on). A path
π such that π[0] = s is an s-path. Let ΠR(s) denote the set of s-paths over R; since
it will usually be clear from context, we often omit reference to R, and simply write
Π(s). We will sometimes refer to and think of an s-path as a possible computation, or
system evolution, from s .

CTL: We use Computation Tree Logic (CTL), a well-known and widely used branching
time temporal logic, to express the objectives of normative systems [5]. Given a set
Φ = {p, q, . . .} of atomic propositions, the syntax of CTL is defined by the following
grammar, where p ∈ Φ:

ϕ ::= * | p | ¬ϕ | ϕ ∨ ϕ | E !ϕ | E(ϕU ϕ) | A !ϕ | A(ϕU ϕ)

The semantics of CTL are given with respect to the satisfaction relation “|=”, which
holds between pointed structures K , s , (where K is a Kripke structure and s is a state
in K ), and formulae of the language. The satisfaction relation is defined as follows:

K , s |= !;
K , s |= p iff p ∈ V (s) (where p ∈ Φ);
K , s |= ¬ϕ iff not K , s |= ϕ;
K , s |= ϕ ∨ ψ iff K , s |= ϕ or K , s |= ψ;
K , s |= A "ϕ iff ∀π ∈ Π(s) : K , π[1] |= ϕ;
K , s |= E "ϕ iff ∃π ∈ Π(s) : K , π[1] |= ϕ;
K , s |= A(ϕU ψ) iff ∀π ∈ Π(s),∃u ∈ N, s.t. K , π[u] |= ψ and ∀v , (0 ≤ v < u) :
K , π[v ] |= ϕ
K , s |= E(ϕU ψ) iff ∃π ∈ Π(s),∃u ∈ N, s.t. K , π[u] |= ψ and ∀v , (0 ≤ v < u) :
K , π[v ] |= ϕ

The remaining classical logic connectives (“∧”, “→”, “↔”) are defined as abbreviations
in terms of ¬,∨ in the conventional way. The remaining CTL temporal operators are



defined:
A♦ϕ ≡ A(*U ϕ) E♦ϕ ≡ E(*U ϕ)
A ϕ ≡ ¬E♦¬ϕ E ϕ ≡ ¬A♦¬ϕ

We say ϕ is satisfiable if K , s |= ϕ for some Kripke structure K and state s in K ; ϕ is
valid if K , s |= ϕ for all Kripke structures K and states s in K . The problem of check-
ing whether K , s |= ϕ for given K , s , ϕ (model checking) can be done in deterministic
polynomial time, while checking whether a given ϕ is satisfiable or whether ϕ is valid
is EXPTIME-complete [5]. We write K |= ϕ if K , s0 |= ϕ for all s0 ∈ S 0, and |= ϕ if
K |= ϕ for all K .

Later, we will make use of two fragments of CTL: the universal language L u (with
typical element µ), and the existential fragment Le (typical element ε):

µ ::= * | ⊥| p | ¬p | µ ∨ µ | µ ∧ µ | A !µ | A µ | A(µU µ)
ε ::= * | ⊥| p | ¬p | ε ∨ ε | ε ∧ ε | E !ε | E ε | E(εU ε)

The key point about these fragments is as follows. Let us say, for two Kripke structures
K1 = 〈S ,S 0,R1,A,α, V 〉 and K2 = 〈S ,S 0,R2,A,α, V 〉 that K1 is a subsystem of
K2 and K2 is a supersystem of K1, (denoted K1 1 K2), iff R1 ⊆ R2. Then we have
(cf. [8]).

Theorem 1 ([8]). Suppose K1 1 K2, and s ∈ S . Then:

∀ε ∈ Le : K1, s |= ε ⇒ K2, s |= ε; and
∀µ ∈ Lu : K2, s |= µ ⇒ K1, s |= µ.

Normative Systems: For our purposes, a normative system (or “norm”) is simply a set
of constraints on the behaviour of agents in a system [1]. More precisely, a normative
system defines, for every possible system transition, whether or not that transition is
considered to be legal or not. Different normative systems may differ on whether or
not a transition is legal. Formally, a normative system η (w.r.t. a Kripke structure K =
〈S ,S 0,R,A,α, V 〉) is simply a subset of R, such that R \ η is a total relation. The
requirement that R \ η is total is a reasonableness constraint: it prevents normative
systems which lead to states with no successor. Let N (R) = {η : (η ⊆ R) & (R \
η is total)} be the set of normative systems over R. The intended interpretation of a
normative system η is that (s , s ′) ∈ η means transition (s , s ′) is forbidden in the context
of η. We denote the empty normative system by η∅, i.e., η∅ = ∅. Let A(η) = {α(s , s ′) |
(s , s ′) ∈ η} denote the set of agents involved in η.

The effect of implementing a normative system on a Kripke structure is to eliminate
from it all transitions that are forbidden according to this normative system (see [8, 1]).
If K is a Kripke structure, and η is a normative system over K , then K † η denotes the
Kripke structure obtained from K by deleting transitions forbidden in η. Formally, if
K = 〈S ,S 0,R,A,α, V 〉, and η ∈ N (R), then let K † η = K ′ be the Kripke structure
K ′ = 〈S ′,S 0′,R′,A′, α′,V ′〉 where:

– S = S ′, S 0 = S 0′, A = A′, and V = V ′;
– R′ = R \ η; and



– α′ is the restriction of α to R ′:

α′(s , s ′) =
{

α(s , s ′) if (s , s ′) ∈ R′

undefined otherwise.

The next most basic question we can ask in the context of normative systems is
as follows. We are given a Kripke structure K , representing the state transition graph
of our system, and we are given a CTL formula ϕ, representing the objective of a nor-
mative system designer (that is, the objective characterises what a designer wishes to
accomplish with a normative system). The feasibility problem is then whether or not
there exists a normative system η such that implementing η in K will achieve ϕ, i.e.,
whether K † η |= ϕ. We say that η is effective for ϕ in K if K † η |= ϕ.

We make use of operators on normative systems which correspond to groups of
agents “defecting” from the normative system. Formally, let K = 〈S ,S 0,R,A,α, V 〉
be a Kripke structure, let C ⊆ A be a set of agents over K , and let η be a normative
system over K . Then η ! C denotes the normative system that is the same as η except
that it only contains the arcs of η that correspond to the actions of agents in C , i.e., η !
C = {(s , s ′) : (s , s ′) ∈ η & α(s , s ′) ∈ C}. Also, η " C denotes the normative system
that is the same as η except that it only contains the arcs of η that do not correspond to
actions of agents in C : η " C = {(s , s ′) : (s , s ′) ∈ η & α(s , s ′) '∈ C}.

3 Necessity and Sufficiency

As we noted in the introduction, the basic intuition behind robust normative systems
is that they remain effective in the presence of deviation, or non-compliance, by some
members of the agent population. As we shall see, there are several different ways of
formulating robustness. Our first approach is to try to characterise “lynchpin” agents
– those agents whose compliance with the normative system is somehow crucial for
the successful operation of the system. This seems appropriate when there are “key
players” in the normative system – for example, where there is a single point of failure.
In this section, we therefore consider coalitions whose compliance is necessary and/or
sufficient to ensure that the normative system is effective.

We say that C ⊆ A are sufficient for η in the context of K and ϕ if the compliance
of C with η is effective, i.e., iff:

∀C ′ ⊆ A : (C ⊆ C ′) ⇒ [K † (η ! C ′) |= ϕ].

The following example illustrates this notion of sufficiency.

Example 1. Consider four agents who are attending a conference with an on-site com-
puter facility. This service centre has currently one printer, two scanners and three PCs
available. Agent a has tasks that require access to a printer and PC, agent b needs a
printer and scanner, agent c is in need of a scanner and PC and agent d will need a
scanner only. The set of agents is A = {a, b, c, d}. They are interested in using re-
sources of type R1,R2,R3, of each resource type Rj there are j instances of each:
R1 = {printer1}, R2 = {scanner1, scanner2}, R3 = {pc1, pc2, pc3}. At a given
point in time, a resource can be owned by an agent. The actions available to the agents



are making available a resource they currently own, or taking possession of a resource
which is available. We assume that the agents never act at exactly the same time; in
particular we assume that actions are turn-based – first a can perform some action, then
b, and so on. A state s is a tuple

s = 〈Oa ,Ob ,Oc,Od , i〉

where, for each i ∈ A, Oi is the set of resources currently owned by i .
The number of agents that own a resource of type j cannot be greater than j . Let,

for each resource Rj and state s , avail(j , s) be the number of resources of type j that
are not owned by an agent. The component i ∈ A of s denotes whose turn it is: we
write turn(s) = i . If Rj ∩ Oi '= ∅, we say that i owns a resource of type j and write
Rj ≺ Oi .

Our agents are not equal. In order to fullfil his task, agent a would every now and
then like to use resources of type R1 and R3 simultaneously. We write Useful(a) =
{R1,R3}. Simililary, Useful(b) = {R1,R2}, Useful(c) = {R2,R3} while Useful(d)
= {R2}.

Let s = 〈Oa ,Ob,Oc ,Od , i〉 and s ′ = 〈O ′
a ,O ′

b ,O
′
c,O ′

d , i ′〉 be two states. Then
(s , s ′) ∈ R iff

1. a ′ = b, b′ = c, c′ = d and d ′ = a;
2. for all k '= i and all j : Rj ≺ Ok ⇔ Rj ≺ O ′

k ;
3. if Rj ≺ O ′

i and Rj '≺ Oi then avail(j , s) > 0.

Furthermore, α(s , s ′) = i when turn(s) = i .
Let the starting state of the system be such that it is agent a’s turn, and nobody

owns any resource. If we call this system K0, then a first norm η0 we impose on K
is that no agent (i) owns two resources of the same type at the same time, (ii) takes
posession of a resource that he does not need, (iii) takes possession of two new resources
simultaneously, and (iv) fails to take possession of some useful resource if it is available
when it is his turn:

η0 =






(s , s ′) |

turn(s) = i , and
(∃j : |O ′

i ∩ Rj | ≥ 2, or
∃j : |O ′

i ∩ Rj | ≥ 1 and Rj '∈ Useful(i), or
∃x , y : x '= y, x , y ∈ O ′

i and x , y '∈ Oi , or
∀j : (Rj ∈ Useful(i), |Oi ∩ Rj | = 0,
avail(j , s) > 0) ⇒ |O ′

i ∩ Rj | = 0).






Let K1 = K0 † η0. Now, in order to formulate some objectives of the system, let a o
j

denote that agent a owns a resource of type j and similarly for the other agents. Let

happy(i) =
∧

Rj∈Useful(i)

ioj

Thus happy(i) means that i is in possession of all his useful resources, simultane-
ously. Our first objective is:

ϕ1 = A
∧

i∈A

A♦happy(i).



The normative system that we will use for it is

η1 = {(s , s ′) | turn(s) = i & Oi = Useful(i)& O ′
i '= ∅}

In words: if at some point an agent simultaneously owns all the resources that are useful
for him, then he will make them available if it is his turn. Which coalitions are sufficient
for this norm in the context of K1 and ϕ1? First of all, consider a coalition without
agent a. If a does not comply with norm η1, then he can grab the printer and hold on
to it forever. Thus, agent b will not be happy, because there is only one printer. The
same argument holds for a coalition without agent b. Thus, it seems that any sufficient
coalition must include both agents a and b. But {a, b} alone is not a sufficient coalition,
as the following scenario illustrates: (1) a grabs a PC; (2) b grabs the printer; (3) c grabs
a scanner; (4) d grabs the other scanner. Now, if c and d do not comply with η 1, it might
be that they never give up their scanners, in which case b never will be happy. However,
if a and b are joined by c in complying with η1, the objective is obtained:

K1 † (η1 ! {a, b, c}) |= ϕ1

– it is easy to see that in fact {a, b, c} is sufficient for η1 in the context of K1 and ϕ1.
But {a, b, c} and its extension {a, b, c, d} are not the only sufficient coalitions in this
context: {a, b, d} is also sufficient.

Now, associated with this notion is a decision problem: we are given K , η, ϕ, and
C , and asked whether C are sufficient for η in the context of K and ϕ. It may appear
at first sight that this is an easy decision problem: don’t we just need to check that
K †(η ! C ) |= ϕ? The answer is no. For suppose the objective is an existential property
η ∈ Le . Then the fact that K † (η ! C ) |= η and C ⊆ C ′ does not guarantee that
K † (η ! C ′) |= η. Intuitively, this is because, if more agents than C comply, then this
might eliminate transitions from K , causing the existential property η to be falsified.

Example 2. We continue Example 1. To demonstrate that sufficiency for a norm in the
context of a system and an objective is not monotonic in the coalition C , consider the
following existential objective:

ϕ2 = E ¬happy(b)

That is, it is possible that b is forever unhappy (we will not discuss why the designer of
the normative system might have such an objective). We have that:

K1 † (η1 ! {b}) |= ϕ2.

That is, if b complies with the norm η1, the objective is true. This is because, for ex-
ample, agent a can block b’s access to the printer. However, as we saw in Example 1,
K1 † (η1 ! {a, b, c}) |= ¬ϕ2, so {b} is not sufficient for the objective ϕ2.

We can prove that, in general, checking sufficiency is computationally hard.

Theorem 2. Deciding C -sufficiency is co-NP-complete.
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Fig. 1. Illustrating the reduction used in Theorem 2: (a) the Kripke structure produced in the
reduction; (b) how the construction corresponds to a valuation: if only agent 1 defects, then the
Kripke structure we obtain corresponds to a valuation in which x1 is true (a state in which x1 is
true is reachable in the resulting structure – E♦x1 in the objective we construct) and all other
variables are false (i.e., are true in unreachable states).

Proof. Membership of co-NP is straightforward from the definitions of the problems.
We prove hardness by reducing TAUT, the problem of showing that a formula Ψ of
propositional logic is a tautology, i.e., is true under all interpretations. Let x 1, . . . , xk

be the Boolean variables of Ψ . The reduction is as follows. For each Boolean vari-
able xi we create an agent ai , and in addition create one further agent, d . We create
3k + 3 states, and create the transition relation R and associated agent labelling α
and valuation V as illustrated in Figure 1(a): inside states are the propositions true
in that state, while arcs between states are labelled with the agent associated with
the transition. Let S 0 = {s0} be the singleton initial state set. We have thus de-
fined the Kripke structure K . For the remaining components, define C = ∅, η =
{(s0, s2), (s2, s3), (s3, s5), (s5, s6), . . . , (s3k+2, s3k+3)} (i.e., all the lower arcs in the
figure), and finally, define ϕ to be the formula obtained from Ψ by systematically re-
placing each Boolean variable xi by (E♦xi). Now, we claim that η is C -sufficient for
ϕ in K iff Ψ is a tautology. First, notice that since C = ∅, then for all C ′ ⊆ A, we have
C ⊆ C ′, and so the problem reduces to the following:

∀C ′ ⊆ A : [K † (η ! C ′) |= ϕ].

The correctness of the reduction is illustrated in Figure 1(b), where we show the Kripke
structure obtained when only agent 1 defects from the normative system; in this case,
the Kripke structure we obtain corresponds to a valuation of Ψ which makes variable x 1

true and all others false.

However, the news is not all bad: for universal objectives, checking sufficiency is
easy.

Corollary 1. Deciding C -sufficiency for objectives µ ∈ Lu is polynomial time decid-
able.



Proof. Simply check that K †(η ! C ) |= µ; since µ ∈ Lu , the fact that K †(η ! C ′) |= µ
for all C ⊆ C ′ ⊆ A follows from Theorem 1.

Next, we consider the obvious counterpart notion to sufficiency; that of necessity.
We say that C are necessary for η in the context of K and ϕ iff C must comply with η
in order for it to be effective, i.e., iff:

∀C ′ ⊆ A : [K † (η ! C ′) |= ϕ] ⇒ (C ⊆ C ′).

The following example illustrates necessity.

Example 3. We continue Example 1. We observed that {a, b, c} and {a, b, d} are suf-
ficient for η1 in the context of K1 and ϕ1. Indeed, {a, b} is necessary for η1 in the
context of K1 and ϕ1. Both a and b must comply with the norm for the objective to be
satisfied.

Theorem 3. Deciding C -necessity is co-NP-complete.

Proof. Membership of co-NP is obvious from the statement of the problem, so consider
hardness. Note that proof of Theorem 2 does not go through for this case: since we
set C = ∅ in the reduction, C are trivially necessary. However, we can use the same
basic construction as Theorem 2 to prove NP-hardness of the complement problem to
C -necessity, i.e., the problem of showing that

∃C ′ ⊆ A : [K † (η ! C ) |= ϕ] ∧ ¬(C ⊆ C ′).

We reduce SAT. Given a SAT instance Ψ , we follow the construction of Theorem 2,
except that set the input coalition C to be C = {d}. It is now easy to see, using a
similar argument to Theorem 2, that Ψ is satisfiable iff ∃C ⊆ A : [K † (η ! C ) |=
ϕ] ∧ ¬(C ⊆ C ′).

The following sums up some general properties of the concepts we have discussed
so far. Here, “sufficient” (“necessary”) means “sufficient (necessary) for η in the context
of K and ϕ”.

Proposition 1.

1. There might be no sufficient coalitions.
2. There is always a necessary coalition: the empty coalition.
3. There might be two disjoint sufficient coalitions.
4. There might be no non-empty necessary coalitions.
5. If C is necessary and C ′ sufficient, then C ⊆ C ′.
6. If there are two disjoint sufficient coalitions, then there is no non-empty necessary

coalition.

Proof.

1. Trivial. Take, e.g., a system consisting of a single state with a self-loop and where
p is true, and let ϕ = E !¬p. η must be empty, and ϕ can never be true.

2. Immediate.



3. Take again the system from the first point, and let ϕ = E !p. Both {a} and {b}
are sufficient, for any a '= b.

4. Take the system and formula in the previous point.
5. Let C be necessary and C ′ sufficient. From sufficiency of C ′ we have that K † (η !

C ′) |= ϕ, and from necessity of C it follows that C ⊆ C ′.
6. Immediate from the above point.

Note that point 5 above implies that every necessary coalition is contained in the
intersection of all sufficient coalitions. Does the other direction hold, i.e., is the inter-
section of all sufficient coalitions necessary? In the general case the answer is “no” , as
the following example illustrates.

Example 4. Take the system in Figure 2, and let ϕ = E !A !p. It is easy to see that:

– {a} is sufficient;
– K † (η ! {b}) |= ϕ;
– None of {b}, {c} or {b, c} are sufficient.

From the first and last point it follows that {a} is the intersection of all sufficent coali-
tions; from the second point it follows that {a} is not necessary.
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Fig. 2. A normative system. The dashed lines indicate “illegal” transitions. The uppermost state
is the single inital state.

However, for universal objectives the greatest necessary coalition is exactly the in-
tersection of the sufficient coalitions:

Lemma 1. When the objective is a formula in Lu , the intersection of all sufficient coali-
tions is a necessary coalition.

Proof. Let ϕ ∈ Lu and let C =
⋂

C ′ sufficient C
′. Assume that K † (η ! C2) |= ϕ; we

must show that C ⊆ C2. From Theorem 1 we have K † (η ! C3) |= ϕ for any C3 such
that C2 ⊆ C3. It follows that C2 is sufficient. But then C ⊆ C2.

Thus, for the case of universal objectives the necessary coalitions are exactly the subsets
of the intersection of the sufficient coalitions. Indeed, in Examples 1 we saw that the
intersection of the sufficient coalitions, consisting of agents a and b, is a necessary
coalition.



3.1 Feasibility of Robust Normative Systems

So far, our technical results have focussed on verifying robustness properties of norma-
tive systems. However, an equally important question is that of feasibility. As we noted
earlier, feasibility basically asks whether there exists some normative system such that,
if this law was imposed (and, implicitly, everybody complies), then the desired effect of
the normative system would be achieved. In the context of robustness, we ask whether
a normative system is robustly feasible. In more detail, we can think about robust feasi-
bility as follows. Suppose we know that some subset C of the overall agent population
is “reliable”, in that we are confident that C can be relied upon to comply with a norma-
tive system. Then instead of asking whether there exists an arbitrary normative system
η that is effective for our desired objective ϕ, we can ask whether there exists a norma-
tive system η such that C is sufficient for η in the context of ϕ. We call this property
C -sufficient feasibility3. Formally, this question is as follows:

∃η ∈ N (R) : (K † η |= ϕ) ∧
∀C ′ ⊆ A : (C ⊆ C ′) ⇒ [K † (η ! C ′) |= ϕ].

It turns out that, under standard complexity theoretic assumptions, checking this prop-
erty is harder than the (co-NP-complete) verification problem.

Theorem 4. Deciding C -sufficient feasibility is Σp
2 -complete.

Proof. We deal with the complement of the problem, which we show to be Π p
2 -complete.

The complement problem is that of deciding:

∀η ∈ N (R) : (K † η |= ϕ) ⇒
∃C ′ ⊆ A : (C ⊆ C ′) ∧ (K † (η ! C ′) '|= ϕ).

Membership is immediate from the definition of the problem. For hardness, we reduce
the problem of determining whether QBF 2,∀ formulae are true [9, p.96]. An instance of
QBF2,∀ is given by a quantified Boolean formula with the following structure:

∀x̄1 ∃x̄2 χ(x̄1, x̄2) (1)

in which x̄1 and x̄2 are disjoint sets of Boolean variables, and χ(x̄1, x̄2) is a propositional
logic formula (the matrix) over these variables. Such a formula is true if for all assign-
ments to Boolean variables x̄1, there exists an assignment to x̄2, such that χ(x̄1, x̄2) is
true under the overall assignment. An example of a QBF 2,∀ formula is:

∀x1∃x2[(x1 ∨ x2) ∧ (x1 ∨ ¬x2)] (2)

The reduction is related to that of Theorem 2, although slightly more involved. Let
x̄ = {x1, . . . , xg} be the universally quantified variables in the input formula, let ȳ =

3 It may at first sight seem strange that we consider this problem: why not simply look for a
normative system η such that A(η) = C ? Our rationale is that the worst case corresponds to
only C complying with the normative system; it may well be that we get better results if more
agents comply.



x1 x2 xg

...
d

1 1

d d d d d

2 2 g g

s0

s1

s2

s3

s4

s5

s6 s(3g)

s(3g+1)

s(3g+2)

s(3g+3)

y1 y2 yh

end...
g+1

d d d d d

g+2 g+2 g+h g+h

s(3g+4)

s(3g+5)

s(3g+6)

s(3(g+h))

s(3(g+h)+1)

s(3(g+h)+2)

s(3(g+h)+3)

d

d

g+1

C

Fig. 3. Illustrating the reduction used in Theorem 4.

{y1, . . . , yh} be the existentially quantified variables, and let χ(x̄ , ȳ) be the matrix. We
create a Kripke structure with 3(3(g + h) + 3) states and g + h agents. We create
variables corresponding to x̄ and ȳ , and in addition to these, we create a variable end .
The overall structure is defined to be as shown in Figure 3; note that end is true only in
the final state of the structure. We set C = {1, . . . , g}, and create the objective ϕ to be

ϕ=̂(¬E♦end) ∨ (¬χ∗(x̄ , ȳ))

where χ∗(x̄ , ȳ) is the CTL formula obtained from the propositional formula χ(x̄ , ȳ) by
systematically substituting (E♦v) for each variable v ∈ x̄∪ȳ . Correctness follows from
construction. Since the complement problem is Π p

2 -complete, C -sufficient feasibility
is Σp

2 -complete.

4 k-Robustness

The notions of robustness described above are based on identifying some “critical”
coalition, whose compliance is either necessary and/or sufficient for the correct func-
tioning of the overall normative system. In this section, we explore a slightly different
notion, whereby we instead quantify the extent to which a normative system is resistant
to non-compliance. We introduce the notion of k -robustness, where k ∈ N: intuitively,
saying that a normative system is k -robust will mean that it remains effective as long as
k arbitrary agents comply.

As with C -compliance, we can consider k -compliance from the point of view of
both sufficiency and necessity. Where k ≥ 1, we say a normative system η is k -sufficient
(w.r.t. some K , ϕ) if the compliance of any arbitrary k agents is sufficient to ensure
that the normative system is effective with respect to ϕ. Formally, this involves checking
that:

∀C ⊆ A : (|C | ≥ k) ⇒ (K † (η ! C )) |= ϕ.

As with checking C -sufficiency, checking k -sufficiency is hard.

Theorem 5. Deciding k -sufficiency is co-NP-complete.

Proof. Membership of co-NP is obvious from the problem definition; for hardness, we
reduce TAUT, constructing the Kripke structure, normative system, and objective as in



the proof of Theorem 2; and finally, we set k = 0. The correctness argument is then as
in Theorem 2.

We define the resilience of a normative system η (w.r.t. K , ϕ) as the largest number
of non-compliant agents the system can tolerate. Formally, the resilience is the largest
number k , k < n , such that

∀C ⊆ A : (|C | ≤ k) ⇒ (K † (η " C )) |= ϕ.

where n is the number of agents. It is easy to see that the resilience of η is the largest
number k such that η is (n − k)-sufficient. Observe that the resilience is undefined iff
the objective does not hold even if all agents comply to the norm (K † η '|= ϕ). It is
immediate that computing the resilience of a normative system is co-NP-complete with
respect to Turing reductions.

Example 5. We continue Example 3. While both {a, b, c} and {a, b, d} are sufficient
coalitions, η1 is not 3-sufficient wrt. K1, ϕ1 because not every three-agent coalition is
sufficient. It is 4-sufficient (the objective is satisfied if the grand coalition complies).
Thus, the resilience is equal to 0.

Now consider the situation where a has left the computer facility; b, c, d remains.
Let K ′

1, η
′
1, ϕ

′
1 be the corresponding variants of K1, η1 and ϕ1. Now, each of {b, c},

{b, d} and {c, d} are sufficient. Thus, η ′
1 is 2-sufficient wrt. K ′

1, ϕ
′
1, and the resilience

is 1.

We then define k -necessity in the obvious way – η is k -necessary (w.r.t. K , ϕ) iff:

∀C ⊆ A : (K † (η ! C )) |= ϕ ⇒ (|C | ≥ k).

Theorem 6. Deciding k -necessity is co-NP-complete.

Proof. Membership of co-NP is again obvious from the problem definition; for hard-
ness, we reduce SAT to the complement problem, proceeding as in Theorem 3; where l
is the number of Boolean variables in the SAT instance, we set k = l + 1. Correctness
of the reduction is then straightforward.

We say that η is k -robust, k ≥ 1, if it is both k -sufficient and k -necessary. In other
words, η is k -robust if it is effective exactly in the event of non-compliance of any
arbitrary coalition of up to n − k agents: η is k -robust iff

∀C ⊆ A : (|C | ≤ n − k) ⇔ (K † (η " C )) |= ϕ.

where n is the number of agents. From the results above, it is immediate that checking
k -robustness is co-NP-complete.

Example 6. We continue Example 5. While {a, b} is the largest necessary coalition,
η1 is 3-necessary wrt. K1, ϕ1 because at least three agents must comply (in this case,
either {a, b, c} or {a, b, d}). It is not k -robust for any k , because it is 4-sufficient but
not 3-sufficient, and 3-necessary but not 4-necessary.

η′
1 is both 2-sufficient and 2-necessary wrt. K ′

1, ϕ
′
1. It is thus 2-robust. Thus, the

objective will be maintained if and only if at least 2 agents comply.



Example 7. We continue Example 6. Consider yet another variant: the agents are again
all four a, b, c, d , but their needs have changed. Now each agent only needs a PC, i.e.,
Useful(a) = Useful(b) = Useful(c) = Useful(d) = {R3}. Now we have that no
singleton coalition is sufficient and every two-agent coalition is sufficient. The system
is 2-sufficient, 2-necessary, 2-robust and its resilience is 4 − 2 = 2.

The following sums up some general properties of the concepts of k -robustness.
Here, “k -sufficient” (“k -necessary”) means “k -sufficient (k -necessary) in the context
of K and ϕ”.

Proposition 2.

1. Any system is 0-necessary.
2. If the system is k -sufficient, then C is sufficient for any C such that |C | ≥ k .
3. If C is necessary, then the system is |C |-necessary.
4. If the system is k -sufficient for k < n , then no non-empty coalition is necessary.
5. k -robustness is unique: if the system is k -robust and k ′-robust, then k = k ′.

Proof.

1.-3. Immediate.
4. Let k < n and assume that the system is k -sufficient and that C '= ∅ is necessary.

Let C ′ be a coalition such that |C ′| ≥ k . By k -sufficiency, K † (η ! C ′) |= ϕ, and
by necessity of C , C ⊆ C ′. Since C ′ was arbitrary, we have that C ⊆

⋂
|C ′|≥j C ′.

Assume that a ∈ C . Let |C1| = k . a ∈ C1. Now let b ∈ A \ C1 (b exists because
k < n = |A|), and let C2 = C1 \ {a} ∪{ b}. |C2| = k , but a '∈ C2 which
contradicts the assumption that a ∈ C . Thus, C must be empty.

5. If the system is k -robust and k ′-robust for k > k ′ and C ′ is a coalition of size
k ’, then by k ′-sufficiency (K † (η ! C )) |= ϕ and by k -necessity it follows that
|C | ≥ k which is not the case.

5 A Logical Characterisation of Robustness

We have thus far seen two different ways in which we might want to consider robust-
ness: try to identify some “lynchpin” coalition, or try to “quantify” the robustness of
the normative system in terms of the number of agents whose compliance is required
to make the normative system effective. Often, however, robustness properties will not
take either of these forms. For example, here is an argument about robustness that one
might typically see: “the system will not overheat as long as at least one sensor works
and either one of the relief valves is working or the automatic shutdown is working”.
Clearly, such an argument does not fit any of the types of robustness property that we
have seen so far. So, how are we to characterise such properties? The idea we adopt is
to characterise the robustness by means of a coalition predicate. Coalition predicates
were originally introduced in [3] as a way of quantifying over coalitions. A coalition
predicate, as the name suggests, is simply a predicate over coalitions: if P is a coalition
predicate, then it denotes a set of coalitions – those that satisfy P .



eq(C ) =̂ subseteq(C ) ∧ supseteq(C )
subset(C ) =̂ subseteq(C ) ∧ ¬eq(C )
supset(C ) =̂ supseteq(C ) ∧ ¬eq(C )

incl(i) =̂ supseteq({i})
excl(i) =̂ ¬incl(i)

any =̂ supseteq(∅)
nei(C ) =̂

W
i∈C incl(i)

ei(C ) =̂ ¬nei(C )
gt(n) =̂ geq(n + 1)
lt(n) =̂ ¬geq(n)

leq(n) =̂ lt(n + 1)
maj (n) =̂ geq()(n + 1)/2*)
ceq(n) =̂ (geq(n) ∧ leq(n))

Table 1. Derived coalition predicates.

We first introduce the language of coalition predicates (from [3]), and then show
how this language can be used to characterise robustness properties. Syntactically,
the language of coalition predicates is built from three atomic predicates subseteq ,
supseteq , and geq , and we derive a stock of other predicate forms from these 4. For-
mally, the syntax of coalition predicates is given by the following grammar:

P ::= subseteq(C ) | supseteq(C ) | geq(n) | ¬P | P ∨ P

where C ⊆ A is a set of agents and n ∈ N is a natural number.
The circumstances under which a coalition C0 ⊆ A satisfies a coalition predicate P

are specified by the satisfaction relation “|=cp”, defined by the following rules:

C0 |=cp subseteq(C ) iff C0 ⊆ C
C0 |=cp supseteq(C ) iff C0 ⊇ C
C0 |=cp geq(n) iff |C0| ≥ n
C0 |=cp ¬P iff not C0 |=cp P
C0 |=cp P1 ∨ P2 iff C0 |=cp P1 or C0 |=cp P2

We assume the conventional definitions of implication (→), biconditional (↔), and
conjunction (∧) in terms of ¬ and ∨. We also find it convenient to make use of the
derived predicates defined in Table 1.

Now, given a Kripke structure K , normative system η, objective ϕ, and coalition
predicate P , we say that P characterises the robustness of η iff the compliance of
any coalition satisfying P is sufficient to ensure that η is effective (w.r.t. K , ϕ). More
formally, P characterises the robustness of η w.r.t. K and ϕ iff:

∀C ⊆ A : (C |=cp P) ⇔ ((K † (η ! C )) |= ϕ).

Now, consider the following simple coalition predicate.

supseteq(C ) (3)
4 In fact, we could choose a smaller base of predicates to work with, deriving the remaining

predicates from these, but the definitions would not be succinct; see the discussion in [3].



Expanding out the semantics, we have that (3) characterises the robustness of a norma-
tive system η w.r.t. K , ϕ iff:

∀C ′ ⊆ A : (C ⊆ C ′) ⇔ ((K † (η ! C )) |= ϕ).

In other words, (3) expresses that C are necessary and sufficient. As another simple
example, the predicate geq(k) characterises the robustness of η iff η is k -robust. The
decision problem of P -characterisation is that of checking whether a given coalition
predicate P characterises robustness in the way described above. Since we can use P -
characterisation to express necessary and sufficient coalitions, we have the following.

Corollary 2. Deciding P -characterisation is co-NP-complete.

Notice that P -characterisation is fully expressive with respect to robustness properties,
in that any robustness property can be characterised with a coalition predicate of the
form:

eq(C1) ∨ eq(C2) ∨ · · ·∨ eq(Cu ).

for some u ∈ N. In the worst case, of course, we may need a coalition predicate where
u may be exponential in the number of agents.

Let us consider some example coalition predicates, and what they say about robust-
ness. Recall the informal example we used in the introduction to this section. Let S be a
set of sensors, let R be the set of relief valves, and let a be the automatic shutdown sys-
tem. Then the following coalition predicate expresses the robustness property expressed
in this argument.

nei(S ) ∧ (nei(R) ∨ incl(a))

The coalition predicate any expresses the fact that the normative system is trivial, in
the sense that it is robust against any deviation (in which case it is unnecessary, since the
objective will hold of the original system). The coalition predicate ¬any expresses the
fact that the normative system will fail w.r.t. its objective irrespective of who complies
with it.

6 Conclusions

We have investigated three types of robustness: necessary and/or sufficient coalitions;
the number of non-compliant agents that can be tolerated; and, more generally, a logical
characterisation of robustness.

Fitoussi and Tennenholz [6] formulate two criteria when choosing between different
social laws. Simplicity tries to minimise, for each agent, the differences between states
in terms of the allowed actions. The idea behind minimality is to reduce the number
of forbidden actions that are not necessary to achieve the objective. Obviously, these
two criteria typically conflict: one may sacrifice one in favour of the other. One would
expect that there is a trade-off between minimality and robustness, and that minimality
of η would coincide with the grand coalition A being necessary for it. This match is
not perfect, however: first of all, if the latter condition holds, there still may be more
transitions forbidden for A than necessary to guarantee the objective ϕ. Secondly, it



might be that not all agents in A are constrained by η. But what we do have is that a
minimal norm η must have A(η) (the agents involved in it) as a necessary coalition.

Recently, French et al. proposed a temporal logic of robustness [7]. A brief descrip-
tion of the main ideas, using our formalisms, is as follows. Let η be a norm. A path π
complies with η if for no n ∈ N, (π[n], π[n + 1]) ∈ η, i.e., no step in π is forbidden.
Let Oϕ mean that ϕ is obligatory: it is true in s if for all η-compliant s-paths, ϕ holds.
Pϕ (ϕ is permitted) is ¬O¬ϕ. Given an s-path π, let

∆1
s (π) = {π′ | π′ is s-path , ∃j ∈ N∀i < jπ(i) = π′(i) &

π′[j + 1]π′[j + 2] . . . complies with η}
In words: π′ ∈ ∆1

s if it is like π up to some point j , in j it may do an illegal step,
but from then on complies with the norm. French et al. then define an operator #ϕ
(‘robustly, ϕ’) which is true on a path π, if for all paths in ∆ 1

s(π), and π itself, ϕ is
true. So, #ϕ is true in a η-complient path, if it is true in all paths that have at most one
η-forbidden transition. This is a way of bringing robustness in to the object language.
However, note that in [7], there is no notion of agency: only the system can deviate
from or comply with a norm. If ϕ is a universal formula, then K , s 0 |= P#ϕ would
imply (in our framework) that there is a single agent i such that A \ {i} is sufficient
for Eϕ, given K and η. Although it seems a good idea for future work to incorporate
such ‘deontic-like’ operators in the object language, even the semantics of [7] is quite
different from ours: whereas [7] focusses on the number of illegal transitions, we are
concerned with the number of compliant agents, or compliant coalitions.
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